首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissimilatory reduction of NO2 to N2O and NH4+ by a soil Citrobacter sp. was studied in an attempt to elucidate the physiological and ecological significance of N2O production by this mechanism. In batch cultures with defined media, NO2 reduction to NH4+ was favored by high glucose and low NO3 concentrations. Nitrous oxide production was greatest at high glucose and intermediate NO3 concentrations. With succinate as the energy source, little or no NO2 was reduced to NH4+ but N2O was produced. Resting cell suspensions reduced NO2 simultaneously to N2O and free extracellular NH4+. Chloramphenicol prevented the induction of N2O-producing activity. The Km for NO2 reduction to N2O was estimated to be 0.9 mM NO2, yet the apparent Km for overall NO2 reduction was considerably lower, no greater than 0.04 mM NO2. Activities for N2O and NH4+ production increased markedly after depletion of NO3 from the media. Amendment with NO3 inhibited N2O and NH4+ production by molybdate-grown cells but not by tungstate-grown cells. Sulfite inhibited production of NH4+ but not of N2O. In a related experiment, three Escherichia coli mutants lacking NADH-dependent nitrite reductase produced N2O at rates equal to the wild type. These observations suggest that N2O is produced enzymatically but not by the same enzyme system responsible for dissimilatory reduction of NO2 to NH4+.  相似文献   

2.
Aquaspirillum magnetotacticum MS-1 grew microaerobically but not anaerobically with NO3 or NH4+ as the sole nitrogen source. Nevertheless, cell yields varied directly with NO3 concentration under microaerobic conditions. Products of NO3 reduction included NH4+, N2O, NO, and N2. NO2 and NH2OH, each toxic to cells at 0.2 mM, were not detected as products of cells growing on NO3. NO3 reduction to NH4+ was completely repressed by the addition of 2 mM NH4+ to the growth medium, whereas NO3 reduction to N2O or to N2 was not. C2H2 completely inhibited N2O reduction to N2 by growing cells. These results indicate that A. magnetotacticum is a microaerophilic denitrifier that is versatile in its nitrogen metabolism, concomitantly reducing NO3 by assimilatory and dissimilatory means. This bacterium appears to be the first described denitrifier with an absolute requirement for O2. The process of NO3 reduction appears well adapted for avoiding accumulation of several nitrogenous intermediates that are toxic to cells.  相似文献   

3.
We examined nitrate assimilation and root gas fluxes in a wild-type barley (Hordeum vulgare L. cv Steptoe), a mutant (nar1a) deficient in NADH nitrate reductase, and a mutant (nar1a;nar7w) deficient in both NADH and NAD(P)H nitrate reductases. Estimates of in vivo nitrate assimilation from excised roots and whole plants indicated that the nar1a mutation influences assimilation only in the shoot and that exposure to NO3 induced shoot nitrate reduction more slowly than root nitrate reduction in all three genotypes. When plants that had been deprived of nitrogen for several days were exposed to ammonium, root carbon dioxide evolution and oxygen consumption increased markedly, but respiratory quotient—the ratio of carbon dioxide evolved to oxygen consumed—did not change. A shift from ammonium to nitrate nutrition stimulated root carbon dioxide evolution slightly and inhibited oxygen consumption in the wild type and nar1a mutant, but had negligible effects on root gas fluxes in the nar1a;nar7w mutant. These results indicate that, under NH4+ nutrition, 14% of root carbon catabolism is coupled to NH4+ absorption and assimilation and that, under NO3 nutrition, 5% of root carbon catabolism is coupled to NO3 absorption, 15% to NO3 assimilation, and 3% to NH4+ assimilation. The additional energy requirements of NO3 assimilation appear to diminish root mitochondrial electron transport. Thus, the energy requirements of NH4+ and NO3 absorption and assimilation constitute a significant portion of root respiration.  相似文献   

4.
The effect of nitrogen form (NH4-N, NH4-N + NO3, NO3) on nitrate reductase activity in roots and shoots of maize (Zea mays L. cv INRA 508) seedlings was studied. Nitrate reductase activity in leaves was consistent with the well known fact that NO3 increases, and NH4+ and amide-N decrease, nitrate reductase activity. Nitrate reductase activity in the roots, however, could not be explained by the root content of NO3, NH4-N, and amide-N. In roots, nitrate reductase activity in vitro was correlated with the rate of nitrate reduction in vivo. Inasmuch as nitrate reduction results in the production of OH and stimulates the synthesis of organic anions, it was postulated that nitrate reductase activity of roots is stimulated by the released OH or by the synthesized organic anions rather than by nitrate itself. Addition of HCO3 to nutrient solution of maize seedlings resulted in a significant increase of the nitrate reductase activity in the roots. As HCO3, like OH, increases pH and promotes the synthesis of organic anions, this provides circumstantial evidence that alkaline conditions and/or organic anions have a more direct impact on nitrate reductase activity than do NO3, NH4-N, and amide-N.  相似文献   

5.
Chlamydomonas reinhardii cells, growing photoautotrophically under air, excreted to the culture medium much higher amounts of NO2 and NH4+ under blue than under red light. Under similar conditions, but with NO2 as the only nitrogen source, the cells consumed NO2 and excreted NH4+ at similar rates under blue and red light. In the presence of NO3 and air with 2% CO2 (v/v), no excretion of NO2 and NH4+ occurred and, moreover, if the bubbling air of the cells that were currently excreting NO2 and NH4+ was enriched with 2% CO2 (v/v), the previously excreted reduced nitrogen ions were rapidly reassimilated. The levels of total nitrate reductase and active nitrate reductase increased several times in the blue-light-irradiated cells growing on NO3 under air. When tungstate replaced molybdate in the medium (conditions that do not allow the formation of functional nitrate reductase), blue light activated most of the preformed inactive enzyme of the cells. Furthermore, nitrate reductase extracted from the cells in its inactive form was readily activated in vitro by blue light. It appears that under high irradiance (90 w m−2) and low CO2 tensions, cells growing on NO3 or NO2 may not have sufficient carbon skeletons to incorporate all the photogenerated NH4+. Because these cells should have high levels of reducing power, they might use NO3 or, in its absence, NO2 as terminal electron acceptors. The excretion of the products of NO2 and NH4+ to the medium may provide a mechanism to control reductant level in the cells. Blue light is suggested as an important regulatory factor of this photorespiratory consumption of NO3 and possibly of the whole nitrogen metabolism in green algae.  相似文献   

6.
Biological N2 fixation is the dominant supply of new nitrogen (N) to the oceans, but is often inhibited in the presence of fixed N sources such as nitrate (NO3 ). Anthropogenic fixed N inputs to the ocean are increasing, but their effect on marine N2 fixation is uncertain. Thus, global estimates of new oceanic N depend on a fundamental understanding of factors that modulate N source preferences by N2-fixing cyanobacteria. We examined the unicellular diazotroph Crocosphaera watsonii (strain WH0003) to determine how the light-limited growth rate influences the inhibitory effects of fixed N on N2 fixation. When growth (µ) was limited by low light (µ = 0.23 d−1), short-term experiments indicated that 0.4 µM NH4 + reduced N2-fixation by ∼90% relative to controls without added NH4 +. In fast-growing, high-light-acclimated cultures (µ = 0.68 d−1), 2.0 µM NH4 + was needed to achieve the same effect. In long-term exposures to NO3 , inhibition of N2 fixation also varied with growth rate. In high-light-acclimated, fast-growing cultures, NO3 did not inhibit N2-fixation rates in comparison with cultures growing on N2 alone. Instead NO3 supported even faster growth, indicating that the cellular assimilation rate of N2 alone (i.e. dinitrogen reduction) could not support the light-specific maximum growth rate of Crocosphaera. When growth was severely light-limited, NO3 did not support faster growth rates but instead inhibited N2-fixation rates by 55% relative to controls. These data rest on the basic tenet that light energy is the driver of photoautotrophic growth while various nutrient substrates serve as supports. Our findings provide a novel conceptual framework to examine interactions between N source preferences and predict degrees of inhibition of N2 fixation by fixed N sources based on the growth rate as controlled by light.  相似文献   

7.
The capacity for dissimilatory reduction of NO3 to N2 (N2O) and NH4+ was measured in 15NO3-amended marine sediment. Incubation with acetylene (7 × 10−3 atmospheres [normal]) caused accumulation of N2O in the sediment. The rate of N2O production equaled the rate of N2 production in samples without acetylene. Complete inhibition of the reduction of N2O to N2 suggests that the “acetylene blockage technique” is applicable to assays for denitrification in marine sediments. The capacity for reduction of NO3 by denitrification decreased rapidly with depth in the sediment, whereas the capacity for reduction of NO3 to NH4+ was significant also in deeper layers. The data suggested that the latter process may be equally as significant as denitrification in the turnover of NO3 in marine sediments.  相似文献   

8.
We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3 to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3 by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3 ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3 reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2 to consumed NH4+ (ΔNO2/ΔNH4+) and produced NO3 to consumed NH4+ (ΔNO3/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment.  相似文献   

9.
Bacteria able to perform dissimilatory nitrate reduction to ammonium were isolated from low-oxygen masses in the Baltic Sea. In liquid media enriched with 15NO3 and incubated anaerobically, the NH4+-producing isolates transformed 25 to 72% of the 15NO3 to 15NH4+.  相似文献   

10.
Anammox and denitrification mediated by bacteria are known to be the major microbial processes converting fixed N to N2 gas in various ecosystems. Codenitrification and denitrification by fungi are additional pathways producing N2 in soils. However, fungal codenitrification and denitrification have not been well investigated in agricultural soils. To evaluate bacterial and fungal processes contributing to N2 production, molecular and 15N isotope analyses were conducted with soil samples collected at six different agricultural fields in the United States. Denitrifying and anammox bacterial abundances were measured based on quantitative PCR (qPCR) of nitrous oxide reductase (nosZ) and hydrazine oxidase (hzo) genes, respectively, while the internal transcribed spacer (ITS) of Fusarium oxysporum was quantified to estimate the abundance of codenitrifying and denitrifying fungi. 15N tracer incubation experiments with 15NO3 or 15NH4+ addition were conducted to measure the N2 production rates from anammox, denitrification, and codenitrification. Soil incubation experiments with antibiotic treatments were also used to differentiate between fungal and bacterial N2 production rates in soil samples. Denitrifying bacteria were found to be the most abundant, followed by F. oxysporum based on the qPCR assays. The potential denitrification rates by bacteria and fungi ranged from 4.118 to 42.121 nmol N2-N g−1 day−1, while the combined potential rates of anammox and codenitrification ranged from 2.796 to 147.711 nmol N2-N g−1 day−1. Soil incubation experiments with antibiotics indicated that fungal codenitrification was the primary process contributing to N2 production in the North Carolina soil. This study clearly demonstrates the importance of fungal processes in the agricultural N cycle.  相似文献   

11.
The denitrification rates in a marine sediment, estimated by using 15N-nitrate, Vmax, Km, and sediment nitrate concentrations, were 12.5 and 2.0 nmol of N2-N cm−3 day−1 at 0 to 1 and 1 to 3 cm, respectively, at 12°C. The total rate was 165 nmol of N2-N m−2 day−1.  相似文献   

12.
The photochemical release of inorganic nitrogen from dissolved organic matter is an important source of bio-available nitrogen (N) in N-limited aquatic ecosystems. We conducted photochemical experiments and used mathematical models based on pseudo-first-order reaction kinetics to quantify the photochemical transformations of individual N species and their seasonal effects on N cycling in a mountain forest stream and lake (Plešné Lake, Czech Republic). Results from laboratory experiments on photochemical changes in N speciation were compared to measured lake N budgets. Concentrations of organic nitrogen (Norg; 40–58 µmol L−1) decreased from 3 to 26% during 48-hour laboratory irradiation (an equivalent of 4–5 days of natural solar insolation) due to photochemical mineralization to ammonium (NH4 +) and other N forms (Nx; possibly N oxides and N2). In addition to Norg mineralization, Nx also originated from photochemical nitrate (NO3 ) reduction. Laboratory exposure of a first-order forest stream water samples showed a high amount of seasonality, with the maximum rates of Norg mineralization and NH4 + production in winter and spring, and the maximum NO3 reduction occurring in summer. These photochemical changes could have an ecologically significant effect on NH4 + concentrations in streams (doubling their terrestrial fluxes from soils) and on concentrations of dissolved Norg in the lake. In contrast, photochemical reactions reduced NO3 fluxes by a negligible (<1%) amount and had a negligible effect on the aquatic cycle of this N form.  相似文献   

13.
The influence of NH4+, in the external medium, on fluxes of NO3 and K+ were investigated using barley (Hordeum vulgare cv Betzes) plants. NH4+ was without effect on NO3 (36ClO3) influx whereas inhibition of net uptake appeared to be a function of previous NO3 provision. Plants grown at 10 micromolar NO3 were sensitive to external NH4+ when uptake was measured in 100 micromolar NO3. By contrast, NO3 uptake (from 100 micromolar NO3) by plants previously grown at this concentration was not reduced by NH4+ treatment. Plants pretreated for 2 days with 5 millimolar NO3 showed net efflux of NO3 when roots were transferred to 100 micromolar NO3. This efflux was stimulated in the presence of NH4+. NH4+ also stimulated NO3 efflux from plants pretreated with relatively low nitrate concentrations. It is proposed that short term effects on net uptake of NO3 occur via effects upon efflux. By contrast to the situation for NO3, net K+ uptake and influx of 36Rb+-labeled K+ was inhibited by NH4+ regardless of the nutrient history of the plants. Inhibition of net K+ uptake reached its maximum value within 2 minutes of NH4+ addition. It is concluded that the latter ion exerts a direct effect upon K+ influx.  相似文献   

14.
Nitrogen (N) is an essential nutrient in the sea and its distribution is controlled by microorganisms. Within the N cycle, nitrite (NO2) has a central role because its intermediate redox state allows both oxidation and reduction, and so it may be used by several coupled and/or competing microbial processes. In the upper water column and oxygen minimum zone (OMZ) of the eastern tropical North Pacific Ocean (ETNP), we investigated aerobic NO2 oxidation, and its relationship to ammonia (NH3) oxidation, using rate measurements, quantification of NO2-oxidizing bacteria via quantitative PCR (QPCR), and pyrosequencing. 15NO2 oxidation rates typically exhibited two subsurface maxima at six stations sampled: one located below the euphotic zone and beneath NH3 oxidation rate maxima, and another within the OMZ. 15NO2 oxidation rates were highest where dissolved oxygen concentrations were <5 μM, where NO2 accumulated, and when nitrate (NO3) reductase genes were expressed; they are likely sustained by NO3 reduction at these depths. QPCR and pyrosequencing data were strongly correlated (r2=0.79), and indicated that Nitrospina bacteria numbered up to 9.25% of bacterial communities. Different Nitrospina groups were distributed across different depth ranges, suggesting significant ecological diversity within Nitrospina as a whole. Across the data set, 15NO2 oxidation rates were decoupled from 15NH4+ oxidation rates, but correlated with Nitrospina (r2=0.246, P<0.05) and NO2 concentrations (r2=0.276, P<0.05). Our findings suggest that Nitrospina have a quantitatively important role in NO2 oxidation and N cycling in the ETNP, and provide new insight into their ecology and interactions with other N-cycling processes in this biogeochemically important region of the ocean.  相似文献   

15.
A more sensitive analytical method for NO3 was developed based on the conversion of NO3 to N2O by a denitrifier that could not reduce N2O further. The improved detectability resulted from the high sensitivity of the 63Ni electron capture gas chromatographic detector for N2O and the purification of the nitrogen afforded by the transformation of the N to a gaseous product with a low atmospheric background. The selected denitrifier quantitatively converted NO3 to N2O within 10 min. The optimum measurement range was from 0.5 to 50 ppb (50 μg/liter) of NO3 N, and the detection limit was 0.2 ppb of N. The values measured by the denitrifier method compared well with those measured by the high-pressure liquid chromatographic UV method above 2 ppb of N, which is the detection limit of the latter method. It should be possible to analyze all types of samples for nitrate, except those with inhibiting substances, by this method. To illustrate the use of the denitrifier method, NO3 concentrations of <2 ppb of NO3 N were measured in distilled and deionized purified water samples and in anaerobic lake water samples, but were not detected at the surface of the sediment. The denitrifier method was also used to measure the atom% of 15N in NO3. This method avoids the incomplete reduction and contamination of the NO3 -N by the NH4+ and N2 pools which can occur by the conventional method of 15NO3 analysis. N2O-producing denitrifier strains were also used to measure the apparent Km values for NO3 use by these organisms. Analysis of N2O production by use of a progress curve yielded Km values of 1.7 and 1.8 μM NO3 for the two denitrifier strains studied.  相似文献   

16.
Ricinus communis L. plants were grown in nutrient solutions in which N was supplied as NO3 or NH4+, the solutions being maintained at pH 5.5. In NO3-fed plants excess nutrient anion over cation uptake was equivalent to net OH efflux, and the total charge from NO3 and SO42− reduction equated to the sum of organic anion accumulation plus net OH efflux. In NH4+-fed plants a large H+ efflux was recorded in close agreement with excess cation over anion uptake. This H+ efflux equated to the sum of net cation (NH4+ minus SO42−) assimilation plus organic anion accumulation. In vivo nitrate reductase assays revealed that the roots may have the capacity to reduce just under half of the total NO3 that is taken up and reduced in NO3-fed plants. Organic anion concentration in these plants was much higher in the shoots than in the roots. In NH4+-fed plants absorbed NH4+ was almost exclusively assimilated in the roots. These plants were considerably lower in organic anions than NO3-fed plants, but had equal concentrations in shoots and roots. Xylem and phloem saps were collected from plants exposed to both N sources and analyzed for all major contributing ionic and nitrogenous compounds. The results obtained were used to assist in interpreting the ion uptake, assimilation, and accumulation data in terms of shoot/root pH regulation and cycling of nutrients.  相似文献   

17.
The present lab-scale research reveals the potential of implementation of an oxygen-limited autotrophic nitrification-denitrification (OLAND) system with normal nitrifying sludge as the biocatalyst for the removal of nitrogen from nitrogen-rich wastewater in one step. In a sequential batch reactor, synthetic wastewater containing 1 g of NH4+-N liter−1 and minerals was treated. Oxygen supply to the reactor was double-controlled with a pH controller and a timer. At a volumetric loading rate (Bv) of 0.13 g of NH4+-N liter−1 day−1, about 22% of the fed NH4+-N was converted to NO2-N or NO3-N, 38% remained as NH4+-N, and the other 40% was removed mainly as N2. The specific removal rate of nitrogen was on the order of 50 mg of N liter−1 day−1, corresponding to 16 mg of N g of volatile suspended solids−1 day−1. The microorganisms which catalyzed the OLAND process are assumed to be normal nitrifiers dominated by ammonium oxidizers. The loss of nitrogen in the OLAND system is presumed to occur via the oxidation of NH4+ to N2 with NO2 as the electron acceptor. Hydroxylamine stimulated the removal of NH4+ and NO2. Hydroxylamine oxidoreductase (HAO) or an HAO-related enzyme might be responsible for the loss of nitrogen.  相似文献   

18.
Phosphate-limited chemostat cultures were used to study cell growth and N assimilation in Anabaena flos-aquae under various N sources to determine the relative energetic costs associated with the assimilation of NH3, NO3, or N2. Expressed as a function of relative growth rate, steady state cellular P contents and PO4 assimilation rates did not vary with N-source. However, N-source did alter the maximal PO4-limited growth rate achieved by the cultures: the NO3 and N2 cultures attained only 97 and 80%, respectively, of the maximal growth rate of the NH3 grown cells. Cellular biomass and C contents did not vary with growth rate, but changed with N source. The NO3-grown cells were the smallest (627 ± 34 micromoles C · 10−9 cells), while NH3-grown cells were largest (900 ± 44 micromoles C · 10−9 cells) and N2-fixing cells were intermediate (726 ± 48 micromoles C · 10−9 cells) in size. In the NO3-and N2-grown cultures, N content per cell was only 57 and 63%, respectively, of that in the NH3-grown cells. Heterocysts were absent in NH3-grown cultures but were present in both the N2 and NO3 cultures. In the NO3-grown cultures C2H2 reduction was detected only at high growth rates, where it was estimated to account for a maximum of 6% of the N assimilated. In the N2-fixing cultures the acetylene:N2 ratio varied from 3.4:1 at lower growth rates to 3.0:1 at growth rates approaching maximal.

Compared with NH3, the assimilation of NO3 and N2 resulted either in a decrease in cellular C (NO3 and N2 cultures) or in a lower maximal growth rate (N2 culture only). The observed changes in cell C content were used to calculate the net cost (in electron pair equivalents) associated with growth on NO3 or N2 compared with NH3.

  相似文献   

19.
Macroalgae has bloomed in the brackish lake of Shenzhen Bay, China continuously from 2010 to 2014. Gracilaria tenuistipitata was identified as the causative macroalgal species. The aim of this study was to explore the outbreak mechanism of G. tenuistipitata, by studying the effects of salinity and nitrogen sources on growth, and the different nitrogen sources uptake characteristic. Our experimental design was based on environmental conditions observed in the bloom areas, and these main factors were simulated in the laboratory. Results showed that salinity 12 to 20 ‰ was suitable for G. tenuistipitata growth. When the nitrogen sources'' (NH4 +, NO3 ) concentrations reached 40 µM or above, the growth rate of G. tenuistipitata was significantly higher. Algal biomass was higher (approximately 1.4 times) when cultured with NH4 + than that with NO3 addition. Coincidentally, macroalgal bloom formed during times of moderate salinity (∼12 ‰) and high nitrogen conditions. The NH4 + and NO3 uptake characteristic was studied to understand the potential mechanism of G. tenuistipitata bloom. NH4 + uptake was best described by a linear, rate-unsaturated response, with the slope decreasing with time intervals. In contrast, NO3 uptake followed a rate-saturating mechanism best described by the Michaelis-Menten model, with kinetic parameters Vmax = 37.2 µM g−1 DM h−1 and Ks = 61.5 µM. Further, based on the isotope 15N tracer method, we found that 15N from NH4 + accumulated faster and reached an atom% twice than that of 15N from NO3 , suggesting when both NH4 + and NO3 were available, NH4 + was assimilated more rapidly. The results of the present study indicate that in the estuarine environment, the combination of moderate salinity with high ammonium may stimulate bloom formation.  相似文献   

20.
Mass spectrometric analysis shows that assimilation of inorganic nitrogen (NH4+, NO2, NO3) by N-limited cells of Selenastrum minutum (Naeg.) Collins results in a stimulation of tricarboxylic acid cycle (TCA cycle) CO2 release in both the light and dark. In a previous study we have shown that TCA cycle reductant generated during NH4+ assimilation is oxidized via the cytochrome electron transport chain, resulting in an increase in respiratory O2 consumption during photosynthesis (HG Weger, DG Birch, IR Elrifi, DH Turpin [1988] Plant Physiol 86: 688-692). NO3 and NO2 assimilation resulted in a larger stimulation of TCA cycle CO2 release than did NH4+, but a much smaller stimulation of mitochondrial O2 consumption. NH4+ assimilation was the same in the light and dark and insensitive to DCMU, but was 82% inhibited by anaerobiosis in both the light and dark. NO3 and NO2 assimilation rates were maximal in the light, but assimilation could proceed at substantial rates in the light in the presence of DCMU and in the dark. Unlike NH4+, NO3 and NO2 assimilation were relatively insensitive to anaerobiosis. These results indicated that operation of the mitochondrial electron transport chain was not required to maintain TCA cycle activity during NO3 and NO2 assimilation, suggesting an alternative sink for TCA cycle generated reductant. Evaluation of changes in gross O2 consumption during NO3 and NO2 assimilation suggest that TCA cycle reductant was exported to the chloroplast during photosynthesis and used to support NO3 and NO2 reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号