首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phenotype modulation of vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of various vascular diseases, including hypertension and atherosclerosis. Several microRNAs (miRNAs) were found involved in regulating the VSMC phenotype with platelet-derived growth factor (PDGF) treatment, but the role of miRNAs in the mechanical stretch-altered VSMC phenotype is not clear. Here, we identified miR-145 as a major miRNA contributing to stretch-altered VSMC phenotype by miRNA array, quantitative RT-PCR and gain- and loss-of-function methods. Our data demonstrated that 16% stretch suppressed miR-145 expression, with reduced expression of contractile markers of VSMCs cultured on collagenI; overexpression of miR-145 could partially recover the expression in stretched cells. Serum response factor (SRF), myocardin, and Kruppel-like factor 4 (KLF4) are major regulators of the VSMC phenotype. The effect of stretch on myocardin and KLF4 protein expression was altered by miR-145 mimics, but SRF expression was not affected. In addition, stretch-activated extracellular signal-regulated kinase 1/2 (ERK1/2) and up-regulated angiotensin-converting enzyme (ACE) were confirmed to be responsible for the inhibition of miR-145 expression. Mechanical stretch inhibits miR-145 expression by activating the ERK1/2 signaling pathway and promoting ACE expression, thus modulating the VSMC phenotype.  相似文献   

2.
3.
Accumulating studies have suggested that microRNA‐760 (miR‐760) plays an important role in chemoresistance of various cancer cells. However, whether miR‐760 regulates the chemoresistance of hepatocellular carcinoma (HCC) remains unclear. In this study, we found that miR‐760 was decreased in HCC cell lines, and doxorubicin (Dox) treatment significantly decreased miR‐760 expression in HCC cells. Overexpression of miR‐760 sensitized HCC cells to Dox‐induced cytotoxicity and apoptosis, whereas miR‐760 inhibition showed the opposite effects. Notch1 was predicted as a target gene of miR‐760. miR‐760 negatively regulated Notch1 expression and Notch1/Hes1 signaling. Overexpression of miR‐760 increased PTEN expression and decreased the phosphorylation of Akt. Activation of Notch signaling significantly reversed the inhibitory effect of miR‐760 on Dox‐resistance and abrogated the effect of miR‐760 on the PTEN/Akt signaling pathway in HCC cells. Overall, our results demonstrate that miR‐760 inhibits Dox‐resistance in HCC cells through inhibiting Notch1 and promoting PTEN expression.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Notch signaling releases the Notch receptor intracellular domain (ICD), which complexes with CBF1 and Mastermind (MAM) to activate responsive genes. We previously reported that MAM interacts with CBP/p300 and promotes hyperphosphorylation and degradation of the Notch ICD in vivo. Here we show that CycC:CDK8 and CycT1:CDK9/P-TEFb are recruited with Notch and associated coactivators (MAM, SKIP) to the HES1 promoter in signaling cells. MAM interacts directly with CDK8 and can cause it to localize to subnuclear foci. Purified recombinant CycC:CDK8 phosphorylates the Notch ICD within the TAD and PEST domains, and expression of CycC:CDK8 strongly enhances Notch ICD hyperphosphorylation and PEST-dependent degradation by the Fbw7/Sel10 ubiquitin ligase in vivo. Point mutations affecting conserved Ser residues within the ICD PEST motif prevent hyperphosphorylation by CycC:CDK8 and stabilize the ICD in vivo. These findings suggest a role for MAM and CycC:CDK8 in the turnover of the Notch enhancer complex at target genes.  相似文献   

11.

Background

Changes in the vascular smooth muscle cell (VSMC) contractile phenotype occur in pathological states such as restenosis and atherosclerosis. Multiple cytokines, signaling through receptor tyrosine kinases (RTK) and PI3K/Akt and MAPK/ERK pathways, regulate these phenotypic transitions. The Spry proteins are feedback modulators of RTK signaling, but their specific roles in VSMC have not been established.

Methodology/Principal Findings

Here, we report for the first time that Spry1, but not Spry4, is required for maintaining the differentiated state of human VSMC in vitro. While Spry1 is a known MAPK/ERK inhibitor in many cell types, we found that Spry1 has little effect on MAPK/ERK signaling but increases and maintains Akt activation in VSMC. Sustained Akt signaling is required for VSMC marker expression in vitro, while ERK signaling negatively modulates Akt activation and VSMC marker gene expression. Spry4, which antagonizes both MAPK/ERK and Akt signaling, suppresses VSMC differentiation marker gene expression. We show using siRNA knockdown and ChIP assays that FoxO3a, a downstream target of PI3K/Akt signaling, represses myocardin promoter activity, and that Spry1 increases, while Spry4 decreases myocardin mRNA levels.

Conclusions

Together, these data indicate that Spry1 and Spry4 have opposing roles in VSMC phenotypic modulation, and Spry1 maintains the VSMC differentiation phenotype in vitro in part through an Akt/FoxO/myocardin pathway.  相似文献   

12.
13.
14.
Mice carrying loss-of-function mutations in certain Notch pathway genes display increased and accelerated pancreatic endocrine development, leading to depletion of precursor cells followed by pancreatic hypoplasia. Here, we have investigated the effect of expressing a constitutively active form of the Notch1 receptor (Notch1(ICD)) in the developing pancreas using the pdx1 promoter. At e10.5 to e12.5, we observe a disorganized pancreatic epithelium with reduced numbers of endocrine cells, confirming a repressive activity of Notch1 upon the early differentiation program. Subsequent branching morphogenesis is impaired and the pancreatic epithelium forms cyst-like structures with ductal phenotype containing a few endocrine cells but completely devoid of acinar cells. The endocrine cells that do form show abnormal expression of cell type-specific markers. Our observations show that sustained Notch1 signaling not only significantly represses endocrine development, but also fully prevents pancreatic exocrine development, suggesting that a possible role of Notch1 is to maintain the undifferentiated state of common pancreatic precursor cells.  相似文献   

15.
16.
17.
摘要 目的:探讨非小细胞肺癌(NSCLC)组织微小核糖核酸(miRNA)-1179、miR-1182表达与缺口(Notch)信号通路、临床病理特征和预后的关系。方法:选取2018年1月~2019年12月武汉市中医医院收治的118例NSCLC患者,收集手术切除的癌组织和癌旁组织标本,采用实时荧光定量聚合酶链式反应检测miR-1179、miR-1182和Notch信号通路相关分子表达。分析miR-1179、miR-1182表达与Notch信号通路相关分子和NSCLC患者临床病理特征的关系。根据NSCLC组织中miR-1179、miR-1182表达均值分为高、低表达组,采用K-M法绘制不同miR-1179、miR-1182表达NSCLC患者生存曲线,多因素Cox回归分析NSCLC患者预后的影响因素。结果:与癌旁组织比较,NSCLC组织中miR-1179、miR-1182表达降低,Notch受体1(Notch1) 信使核糖核酸(mRNA)、Notch2 mRNA、Notch3 mRNA、Notch4 mRNA表达升高(P<0.05)。Pearson相关性分析显示,NSCLC组织中miR-1179、miR-1182表达与Notch1 mRNA、Notch2 mRNA、Notch3 mRNA、Notch4 mRNA表达均呈负相关(P<0.05)。不同分化程度、TNM分期、淋巴结转移NSCLC患者miR-1179、miR-1182表达比较有统计学差异(P<0.05)。118例NSCLC患者随访3年,失访5例,3年总生存率为55.75%。K-M生存曲线分析显示,miR-1179、miR-1182高表达组总生存率高于低表达组(P<0.05)。多因素Cox回归分析显示,低分化、TNM分期Ⅲ期、淋巴结转移为NSCLC患者预后的独立危险因素,miR-1179、miR-1182升高为其独立保护因素(P<0.05)。结论:NSCLC组织中miR-1179、miR-1182低表达,与Notch信号通路、分化程度、TNM分期、淋巴结转移和预后有关,miR-1179、miR-1182表达可能通过抑制Notch信号通路发挥抑癌作用。  相似文献   

18.
《Genomics》2020,112(4):2688-2694
Adipose tissue is the largest metabolic organ because of adipogenesis controlled by numerous miRNAs. MiR-145 is classified into the same cluster with famous miR-143. However, few studies have investigated the role of miR-145 in adipogenesis. In the current study, we observed that the expression of miR-145 was downregulated during bovine adipogenesis in vivo and in vitro. The results of RNA-Seq analysis showed that miR-145 mainly disturb the PI3K/Akt and MAPK signaling pathways in bovine preadipocytes. MiR-145 inhibited bovine preadipocyte differentiation and downregulated phosphorylation level of Akt and ERK1/2 proteins. Furthermore, insulin, as a powerful inducer initiating adipogenesis and an activator of the PI3K/Akt and MAPK signaling pathways, was able to rescue the downregulation of Akt and ERK1/2 phosphorylation levels caused by miR-145. Taken together, our findings suggest that miR-145 is a potent inhibitor of adipogenesis that may function by reducing the activity of PI3K/Akt and MAPK signaling pathways.  相似文献   

19.
The Notch signaling pathway plays important roles in a variety of cellular processes. Aberrant transduction of Notch signaling contributes to many diseases and cancers in humans. The Notch receptor intracellular domain, the activated form of Notch receptor, is extremely difficult to detect in normal cells. However, it can activate signaling at very low protein concentration to elicit its biological effects. In the present study, a cell based luciferase reporter gene assay was established in K562 cells to screen drugs which could modulate the endogenous CBF1‐dependent Notch signal pathway. Using this system, we found that the luciferase activity of CBF1‐dependent reporter gene was activated by baicalin and baicalein but suppressed by niclosamide in both dose‐ and time‐dependent manners. Treatment with these drugs modulated endogenous Notch signaling and affected mRNA expression levels of Notch1 receptor and Notch target genes in K562 cells. Additionally, erythroid differentiation of K562 cells was suppressed by baicalin and baicalein yet was promoted by niclosamide. Colony‐forming ability in soft agar was decreased after treatment with baicalin and baicalein, but was not affected in the presence of niclosamide. Thus, modulation of Notch signaling after treatment with any of these three drugs may affect tumorigenesis of K562 cells suggesting that these drugs may have therapeutic potential for those tumors associated with Notch signaling. Taken together, this system could be beneficial for screening of drugs with potential to treat Notch signal pathway‐associated diseases. J. Cell. Biochem. 106: 682–692, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Mitochondrial quality control is a new target for myocardial protection. Notch signaling plays an important role in heart development, maturation, and repair. However, the role of Notch in the myocardial mitochondrial quality control remains elusive. In this study, we isolated myocardial cells from rats and established myocardial ischemia reperfusion injury (IRI) model. We modulated Notch1 expression level in myocardial cells via infection with recombinant adenoviruses Ad-N1ICD and Ad-shN1ICD. We found that IR reduced myocardial cells viability, but Notch1 overexpression increased the viability of myocardial cells exposed to IRI. In addition, Notch1 overexpression improved ATP production, increased mitochondrial fusion and decreased mitochondrial fission, and inhibited mitophagy in myocardial cells exposed to IRI. However, N1ICD knockdown led to opposite effects. The myocardial protection role of Notch1 was related to the inhibition of Pink1 expression and Mfn2 and Parkin phosphorylation. In conclusion, Notch1 exerts myocardial protection and this is correlated with the maintenance of mitochondrial quality control and the inhibition of Pink1/Mfn2/Parkin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号