首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 877 毫秒
1.
The disruption of a typical filamentous fungus, a native strain of Neurospora sitophila, was studied using a glass bead mill of novel design (the Sulzer Annu Mill 01). Cell concentration (in the range of 2.5–5 g dry weight/L) had little influence on the disruption attained. Disruption increased with increasing rotor speed (1000 –4000 r.p.m.) and number of passes (up to six passes) through the Annu Mill. Disruption was observed to follow traditional first-order kinetics for bead mills possessing predominantly plug flow characteristics. It was concluded that in general the Annu Mill would be applicable for the disruption of filamentous organisms.Nomenclature CP aqueous-phase soluble protein concentration of disrupted sample (g/mL) - CP,MAX aqueous-phase soluble protein concentration of a completely disrupted sample (g/mL) - CPO aqueous-phase soluble protein concentration of undisrupted sample (g/mL) - N number of passes though the bead mill (–) - R total fraction of cells disrupted (–) Greek Letters C internal moisture volume fraction of undisrupted cells (–) - L aqueous phase volume fraction of disrupted cell suspension (–) - LO aqueous phase volume fraction of undisrupted cell suspension (–) - L,MAX aqueous phase volume fraction at complete disruption (R=1) (–) - fluid density (kg/m3) - C density of the microorganism (kg/m3) - L density of the suspending aqueous phase (kg/m3) - suspension batch residence time in the Annu Mill 01 (min.) Abbreviations DW dry weight  相似文献   

2.
Laboratory and pilot-plant high-speed bead mills of 0.6 and 5 liter capacity and consisting of four and five impellers in series, respectively, were used to follow the batch and continuous disruption of bakers' yeast (Saccharomyces cerevisiae). The mills are not scaled equivalents. Throughputs ranging from 1 × 10?6m3/sec to 12 × 10?6m3/sec for the 0.6 liter mill and from 16 × 10?6m3/sec to 100 × 10?6m3/sec for the 5 liter mill were used for continuous disruption studies. Variables studied included the effect of impeller tip speed, temperature, and packed yeast concentration (ranging from 15 to75% by weight packed yeast). Disruption kinetics, as measured by the release of soluble protein, followed a first-order rate equation, the rate constant being a function of impeller tip speed and yeast concentration. For continuous disruption studies the bead mills behaved as a series of continuous stirred-tank reactors, each impeller forming a reactor. In the smaller mill a considerable degree of backflow between the reactors was evident. For certain mixing conditions the maximum amount of releasable protein was dependent on the impeller geometry, construction material, and also the concentration of packed yeast. The relative power efficiencies of the two mills are discussed along with possible criteria for scaling of bead mills.  相似文献   

3.
Baker’s yeast was disrupted in a 1.4-L stainless steel horizontal bead mill under a continuous recycle mode using 0.3 mm diameter zirconia beads as abrasive. A single pass in continuous mode bead mill operation liberates half of the maximally released protein. The maximum total protein release can only be achieved after passaging the cells 5 times through the disruption chamber. The degree of cell disruption was increased with the increase in feeding rate, but the total protein release was highest at the middle range of feeding rate (45 L/h). The total protein release was increased with an increase in biomass concentration from 10 to 50% (w/v). However, higher heat dissipation as a result of high viscosity of concentrated biomass led to the denaturation of labile protein such as glucose 6-phosphate dehydrogenase (G6PDH). As a result the highest specific activity of G6PDH was achieved at biomass concentration of 20% (ww/v). Generally, the degree of cell disruption and total protein released were increased with an increase in impeller tip speed, but the specific activity of G6PDH was decreased substantially at higher impeller tip speed (14 m/s). Both the degree of cell disruption and total protein release increased, as the bead loading increased from 75 to 85% (v/v). Hence, in order to obtain a higher yield of labile protein such as G6PDH, the yeast cell should not be disrupted at biomass concentration and impeller tip speed higher than 20% (w/v) and 10 m/s, respectively.  相似文献   

4.
Baker’s yeast was disrupted in a 1.4-L stainless steel horizontal bead mill under a continuous recycle mode using 0.3 mm diameter zirconia beads as abrasive. A single pass in continuous mode bead mill operation liberates half of the maximally released protein. The maximum total protein release can only be achieved after passaging the cells 5 times through the disruption chamber. The degree of cell disruption was increased with the increase in feeding rate, but the total protein release was highest at the middle range of feeding rate (45 L/h). The total protein release was increased with an increase in biomass concentration from 10 to 50% (w/v). However, higher heat dissipation as a result of high viscosity of concentrated biomass led to the denaturation of labile protein such as glucose 6-phosphate dehydrogenase (G6PDH). As a result the highest specific activity of G6PDH was achieved at biomass concentration of 20% (ww/v). Generally, the degree of cell disruption and total protein released were increased with an increase in impeller tip speed, but the specific activity of G6PDH was decreased substantially at higher impeller tip speed (14 m/s). Both the degree of cell disruption and total protein release increased, as the bead loading increased from 75 to 85% (v/v). Hence, in order to obtain a higher yield of labile protein such as G6PDH, the yeast cell should not be disrupted at biomass concentration and impeller tip speed higher than 20% (w/v) and 10 m/s, respectively.  相似文献   

5.
Investigation of disintegration of yeast Saccharomyces cerevisiae in the laboratory batch perl mill with a bell-shaped impeller was carried out. The number of non-damaged cells, changing in time was determined using hemocytometer (Thom's chamber).To describe kinetics of the disintegration process the differential equation was applied: where N p the number of non-damaged cells in the sample, [number of cells/ml] t time, [s] m,k constants.The effect of three operating parameters: rotation frequency of the impeller shaft n, filling of the mill with disintegrating elements (ballotini) S k and the initial concentration of yeast cells in the suspension C 0 on the process of disintegration was analyzed.For S k =0.5, m=1 and dependence of constant k on the rotation frequency of the impeller and suspension concentration were obtained. For S k =0.6 and 0.7 the values of m were higher than 1. The effect of rotation frequency of the impeller and filling of the mill, with ballotini on constant k and exponent m was determined.List of Symbols a, b constants - a 1, b 1, c 1, d 1 constants - C 0 initial concentration of suspension g/ml - C concentration of cell suspension g/ml - k constant disintegration rate 1/s; N 0 1-m /s - m variable in the equation - N 0 initial number of cells no. of cells/ml - N p number of non-damaged cells no. of cells/ml - r process rate g/ml·s - X(t) disintegration degree % - , variables in the equation - z variable in the equation - S k degree of filling the mill with disintegrating elements  相似文献   

6.
Summary Four intracellular enzymes from two species of breadmaking yeasts- S. cerevisiae and C. boidinii- have been measured as a function of time during its disruption using a bead mill in batch operation. The amount and rate of enzyme released was dependent on its location inside the cell as well as on the kind of yeast. The maximum amount of invertase, a-D-glucosidase, alcohol dehydrogenase and fumarase was obtained at 2,5,10,15 min. respectively for S. cerevisiae. C. boidinii did not show either invertase nor a-D glucosidase activity and the maximum amount of alcohol dehydrogenase and fumarase were reached at 5 and 20 min. respectively.  相似文献   

7.
A three-phase fluidized bed equipped with a turbine agitator was utilized as a simple device for disrupting bakers' yeast cells (Saccharomyces cerevisiae). The degree of yeast cell disruption was evaluated based on the number of broken cells and its validity was confirmed by the total amount of crude soluble proteins released and by microscopic observation. It was found that the equipment could yield 90% of yeast cell disruption. With the presence of glass beads, the degree of cell disruption became higher as agitating speed is increased. The disruption enhancement would be attributed to the grinding effect resulting from the interaction between yeast cells and glass beads. One-thousand micrometers of glass beads yielded a higher degree of disruption than larger ones. An increase in liquid flow rate hindered the degree of disruption because of shorter contact time although the shear rates in the yeast suspension would become more rigorous.  相似文献   

8.
Saccharomyces cerevisiae grown in batch culture at pH 5.5 releases 0.1 to 0.2 pg protein per cell to the external medium over a period of four to five days, final concentration 20–40 g/ml. Cells grown at pH 3.0 release 10-fold this quantity (1–2 pg/cell, final concentration 100–200 g/ml). A kinetic model based on published behavior of periplasmic protein gave a good fit to the observed kinetics of exoprotein yield. The electrophoretic pattern of exoprotein differed from that of cell lysate protein, and exoprotein synthesis was apparently limited to early stages of the life cycle. These results are consistent with the identification of exoprotein as periplasmic protein released to the external medium through the cell wall. Analysis of the observed kinetics of exoprotein yield, utilizing the kinetic model suggests that the greater exoprotein production of cells grown at pH 3.0 was due entirely to greater synthesis of periplasmic proteins while the fraction of periplasmic protein released per unit time was greater for cells grown at pH 5.5. The latter conclusion is supported by thicker cell walls of cells grown at pH 3.0 as observed by electron microscopy. At an applied level the apparent limitation of exoprotein synthesis to the first few hours of cell life, the slow leakage of exoprotein through the cell wall, and the dilute nature of a yeast suspension do not favor the utilization of yeast cells for direct conversion of substrate into protein released to the external medium.  相似文献   

9.
Release of protein from a suspension of bakers' yeast (Saccharomyces cerevisiae) by disruption in an industrial agitator mill has been studied. Protein release on disruption in the mill is a first-order rate process. The rate constant is dependent on at least six parameters. Increased disruption efficiency was obtained at higher agitator speeds, greater loading of bead attritive elements and lower rates of upward recycle of yeast suspension through the mill. An increase in temperature from 5 to 42°C was accompanied by a reduction in disruption efficiency of approximately 20%. With optimal values of the parameters examined the throughput of the mill is 5.32 kg/hr of soluble protein for 90% disruption.  相似文献   

10.
An efficient method for Pichia cell disruption that employs an aminopropyl magnesium phyllosilicate (AMP) clay-assisted glass beads mill is presented. AMP clay is functionalized nanocomposite resembling the talc parent structure Si8Mg6O20(OH)4 that has been proven to permeate the bacterial membrane and cause cell lysis. The recombinant capsid protein of cowpea chlorotic mottle virus (CCMV) expressed in Pichia pastoris GS115 was used as demonstration system for their ability of self-assembly into icosahedral virus-like particles (VLPs). The total protein concentration reached 4.24 mg/ml after 4 min treatment by glass beads mill combined with 0.2 % AMP clay, which was 11.2 % higher compared to glass beads mill only and the time was half shortened. The stability of purified CCMV VLPs illustrated AMP clay had no influence on virus assembly process. Considering the tiny amount added and simple approach of AMP clay, it could be a reliable method for yeast cell disruption.  相似文献   

11.
Callus and suspension cultures were established from the leaves of Agastache rugosa. The suspension cell growth was maximum at 15 days after inoculation. The cellular content of rosmarinic acid increased slowly and reached maximum (0.42 mg g–1 dry wt) during the stationary phase of culture, after 18 days of inoculation. The addition of yeast extract preparation (MW <10000) at 50 g ml–1 elevated the rosmarinic acid content up to 5.7-fold of that found in non-elicited suspension cells. The elicitation of yeast extract preparation was further 2-fold enhanced by the presence of benzothiadiazole, a synthetic activator of plant systemic acquired resistance, as compared to yeast extract alone. These results showed that benzothiadiazole can be used as a tool for enhancing secondary metabolite accumulation in cell cultures.  相似文献   

12.
Dichloromethane (8.9 mg/l) was eliminated from industrially polluted, anaerobic groundwater in a fixed-bed reactor (43 m3) which was packed with activated charcoal and operated continuously for over three years. The elimination of dichloromethane over this period was some ten-fold in excess of the sorptive capacity of the charcoal, and the elimination (3.7 mg/h·[kg of charcoal]: residence time, 49 h) was tentatively attributed to dehalogenative microorganisms immobilized on the charcoal. Anaerobic enrichment cultures, with dichloromethane as the sole added source of carbon and energy, were inoculated with material from the reactor. Reproducibly complete substrate disappearance in subcultures was observed when traces of groundwater (1%) or yeast extract (0.01%) were supplied. Fed-batch experiments under an atmosphere of CO2 plus N2 led to the conversion in 11 days of 11 mM dichloromethane to 3 mM acetate and 2 mM methane, with a growth yield of 0.4 g of protein/mol of dichloromethane; insignificant amounts (<1 M) of chloromethane accumulated. Methanogenesis could be inhibited by 50 mM 2-bromoethane sulfonate without any effect on the dehalogenation rate. The maximum dehalogenation rate was 0.13 mmol dichloromethane/h·l (2.6 mkat/kg of protein).Abbreviation DCM dichloromethane  相似文献   

13.
Summary Insect cells have been propagated in monolayers in T-flasks or in suspension culture in spinner flasks, the latter being conducted over a range of spinner speeds. In both configurations, the cells were also infected with either wild or recombinant -galactosidase baculovirus at MOI of 0.1, 1 and 10. The strength of both uninfected and infected cells was also measured by a micro-manipulation technique. No significant difference in growth rate was obtained between monolayer culture and suspension culture at the spinner rate which was optimum for growth. This optimum was quite sharp. At the lowest speeds cells settled, whilst above the optimum speed the spinner action led to significant cell damage. The maximum infectivity was obtained at this optimum speed which also gave maximum survival after infection. There were significant changes of cell survival and infection, even over relatively small changes of speed, and presumably energy dissipation rate. As changes in growth in turbine-agitated bioreactors have been shown to be much less, even when the energy inputs varied by two orders of magnitude, these findings throw doubt on the usefulness of spinner flasks for assessing shear sensitivity of cell lines. The percentage of infected cells and -galactosidase production were significantly lower in the monolayer culture compared to that in the suspension culture at MOI values below 10 pfu/cell. This difference is explained as being due to the reduced movement of released virus particles from infected to non-infected cells in the T-flasks.  相似文献   

14.
Suspensions of several yeast strains and bacterial species were disrupted in a continuously operating industrial agitator mill of 22.7 litre internal working volume. The influence of agitator speed, flow rate, concentration of microorganisms in the slurry, packing density of glass beads and bead diameter on the disruption process was studied using baker's yeast (Saccharomyces cerevisiae). Cell disintegration was followed by assaying the appearance of protein and the activities of d-glucose-6-phosphate dehydrogenase [d-glucose-6-phosphate:NADP+ oxidoreductase, EC 1.1.1.49] and α-d-glucosidase [α-d-glucoside glucohydrolase, EC 3.2.1.20] in the soluble fraction. The best operating conditions for the disintegration of baker's yeast with respect to activity yield appeared to be at a rotational speed of 1100 rev/min, a flow rate of 100 litre h?1 and a cell concentration of 40% (w/v). The location of the desired enzyme in the cell is of importance for the choice of bead diameter and packing density of the glass beads. Temperature increase and power consumption during disintegration are also strongly influenced by the bead loading in the mill. With optimized parameters, 200 kg baker's yeast can be processed per hour with a degree of disintegration >85%. The disruption process in the mill was found to be very effective for several yeast species tested, e.g. Saccharomyces cerevisiae, Saccharomyces carlsbergensis, and Candida boidinii. The usefulness of the Netzsch LME 20-mill for the disruption of bacteria species was demonstrated with Escherichia coli, Brevibacterium ammoniagenes, Bacillus sphaericus and Lactobacillus confusus. As expected, the mill capacity for bacterial disruption was significantly smaller than for the yeast. Between 10 and 20 kg per h bacteria may be processed, depending on the organism.  相似文献   

15.
Experiments were conducted in a packed bed bio-reactor consisting of entrapped yeast cells in alginate matrix for continuous production of alcohol. The variables include initial substrate level, reactor diameter, diameter of the bead and residence time. The influence of these parameters on the conversion of substrate was studied. The film and pore diffusional effects were observed by varying the column and bead diameters, respectively. The pseudo first order reaction rate constant was calculated and correlated with the bead diameter. The effectiveness factor and the Thiele modulus were estimated. A correlation was proposed for fractional conversion in terms of operating variables. It is possible to predict the residence time required and volumetric productivity achieved in a bioreactor for any given initial substrate concentration at any fractional conversion obtained.List of Symbols a m m2/kg surface are per unit mass of catalyst particle - D m diameter of the reactor - D e m2/s effective diffusivity - d m particle diameter - h m bed height - k m/s first order reaction rate constant - k m3/(kg · s) pseudo first order reaction rate constant - k in m3/(kg · s) intrinsic reaction rate constant, (=K/gh) - k m m/s mass transfer coefficient - P kmol/(m3 · s) volumetric productivity - Q m3/s flow rate of the feed - S kmol/m3 substrate concentration at any time - S o kmol/m3 initial substrate concentration - S p kmol/m3 substrate concentration on the gel bead surface - t s reaction time - T (kg · cat · s)/m3 space time (weight of the biocatalyst/flow rate of the feed) - v kmol/(kg · cat · s) reaction rate - V pfr m3 volume of the packed bed reactor - X [1-(S/S o)] fraction of the substrate converted in to product Greek Symbols effectiveness factor - Thiele modulus - kg/m3 density of the catalyst particle - s residence time, (= D2 h/4Q) - voidage  相似文献   

16.
Micromanipulation measurements of biological materials   总被引:9,自引:0,他引:9  
Micromanipulation enables the mechanical properties of microscopic biological particles to be measured in particular cells. It is capable of measurements at high deformations, including up to cell bursting. Particles as small as 1 m, with breaking forces as low as 1 N, can be characterised. The method can be enhanced by mechanical modelling to allow intrinsic mechanical properties such as the cell wall elastic modulus to be estimated. Present and potential applications include studying yeast and bacterial cell disruption, mechanical damage to animal cells in suspension cultures and filamentous microorganisms in submerged fermentations, plant cell behaviour in food processing, and flocculation processes.  相似文献   

17.
Bioreactors are compared based on oxygen transfer rate and efficiency, mixing performance, cell mass productivity as well as with respect to enzyme and metabolite productivity.List of Symbols AC acetate concentration - AL airlift tower loop reactor - CFU colony-forming units - CP coalescence-promoting medium - CS coalescence-suppressing medium - D D impeller clearance - D M molecular diffusivity - D S diameter of the column - DT flat-bladed disc turbine - D v vessel diameter - E. act enzyme activity - EDR energy dissipation rate - EcoRI restriction endonuclease - EcoR4 protection plasmid - E O 2 efficiency of oxygen transfer rate - E X efficiency of cell mass production with respect to the specific power input - g acceleration of gravity - H height of column - H v vessel height - HV highly viscous medium - IPTG isopropyl thiogalactoside (inducer of Lacpromoter) - k fluid consistency factor - k L mass transfer coefficient - k La volumetric mass transfer coefficient - m exponent - N impeller speed - n exponent - n flow behaviour index - P power input - P/VL specific power input - PR marine propeller - P LacUV5 Lac-promoter-induced by IPTG - P R promoter-induced with temperature shift - O 2 oxygen transfer rate - q g,q O 2 aeration rate, specific aeration rate with respect to liquid volume - R density of cultivation medium - R p product formation rate - R X growth rate - SpA protein A - ST stirred tank reactor - TCC total cell count - t Lc liquid circulation time - U enzyme activity unit - u B bubble rise velocity - u G superficial gas velocity - V L volume of the liquid phase - v kinematic viscosity of the cultivation medium - W SG superficial gas velocity - X cell mass concentration - Y E/S yield coefficient of ethanol formation with respect to substrate consumption - Y P/X specific product formation with respect to cell concentration - Y X/E yield coefficient of cell growth with respect to ethanol consumption - Y X/O 2 yield coefficient of cell growth with respect to oxygen consumption rate - Y X/S yield coefficient of growth with respect to substrate consumption - L liquid mixing time - eff effective dynamic viscosity of the cultivation medium - W dynamic viscosity of water - max maximum specific growth rate - surface tension of the cultivation medium  相似文献   

18.
In the successive cultures of human keratinocyte cells, cellular motions of extension and rotation were analyzed based on observation of the individual cells, to evaluate the proliferative potential in a whole cell population. In lag phases of the serial cultures, an extension index of individual cells, RE, was defined as an average spreading rate divided by initial cell area for each cell. The mean value of RE was found to relate to prolongation of lag time; namely it decreased with increasing passage number in the successive cultures approaching cellular senescence. During the courses of the cultures, the rotation rate of paired cells was also measured through time-lapse observation. The mean value of rotation rate, , decreased with an increase in doubling time caused by the progress of cellular age, reaching an almost constant value of h-1 in the cultures with prolonged doubling time of over 59 h. It was concluded that the indices determined from the motions of individual cells, RE and , were correlated with the lag time and doubling time, respectively, which are growth parameters varied with the vitality of the cells approaching cellular senescence.  相似文献   

19.
Bacillus polymyxa grown in a recycling fermentor shows the same behavior previously observed with Escherichia coli: 3 successive growth phases. In the last 2 phases the growth rate is linear and the apparent maintenance energy demand rate and the molar growth yield are both independent of the specific growth rate, , and of the cells mass. The final phase of very slow growth is an indefinitely prolonged state of strong, stringent control, the regulatory system based on guanosine 3-diphosphate 5-diphosphate, and guanosine 3-diphosphate 5-triphosphate. The maximum cost of this stringent response is calculated to be 9% of the energy available to these energy-limited cells. There is a further energy cost contained in substantial amounts of DNA, RNA, and protein released from the cells during the latter 2 growth phases. The cost of production of these extra cellular anabolites ranges from 8–11% of the available energy.After a carbon-energy upshift in phase 3, the population growth rate immediately returned to that of early phase 2 growth, 50 h or more earlier.If maintenance energy is considered as energy expended by cells to maintain homeostasis, catabolic capacity, or anabolic potential, then the cost of stringent control — which preserves the fidelity of protein synthesis in slowly growing cells — must be considered a maintenance energy cost.Abbreviations GPR glucose provision rate - FR medium flow rate - SR substrate concentration - VF fermentor volume - FS filtrate removal rate - ppGpp guanosine 3-diphosphate 5-diphosphate - pppGpp guanosine 3-diphosphate 5-triphosphate  相似文献   

20.
The amount of carbon (μmoles of carbon atoms) drained from the tricarboxylic acid cycle for protein synthesis was compared with μmoles of CO2 released from the cycle at 2-day intervals during the growth of suspension cultures of Paul's Scarlet rose. We concluded that during the period of most rapid protein synthesis (day 0-4) one-sixth as much carbon was drained from the tricarboxylic acid cycle for protein synthesis as was released as CO2. By day 8, one-thirtieth of the amount of carbon released as CO2 was incorporated into protein. Net protein synthesis stopped on day 8, but the evolution of CO2/culture continued at its maximum rate until day 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号