首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tetraploidy has been proposed as an intermediate state in neoplastic transformation due to the intrinsic chromosome instability of tetraploid cells. Despite the identification of p53 as a major factor in growth arrest of tetraploid cells, it is still unclear whether the p53-dependent mechanism for proliferation restriction is intrinsic to the tetraploid status or dependent on the origin of tetraploidy. Substrate adherence is fundamental for cytokinesis completion in adherent untransformed cells. Here we show that untransformed fibroblast cells undergoing mitosis in suspension produce binucleated tetraploid cells due to defective cleavage furrow constriction that leads to incomplete cell abscission. Binucleated cells obtained after loss of substrate adhesion maintain an inactive p53 status and are able to progress into G1 and S phase. However, binucleated cells arrest in G2, accumulate p53 and are not able to enter mitosis as no tetraploid metaphases were recorded after one cell cycle time. In contrast, tetraploid metaphases were found following pharmacological inhibition of Chk1 kinase, suggesting the involvement of the ATR/Chk1 pathway in the G2 arrest of binucleated cells. Interestingly, after persistence in the G2 phase of the cell cycle, a large fraction of binucleated cells become senescent. These findings identify a new pathway of proliferation restriction for tetraploid untransformed cells that seems to be specific for loss of adhesion-dependent cytokinesis failure. This involves Chk1 and p53 activation during G2. Inhibition of growth and entrance into senescence after cytokinesis in suspension may represent an important mechanism to control tumor growth. In fact, anchorage independent growth is a hallmark of cancer and it has been demonstrated that binucleated transformed cells can enter a cycle of anchorage independent growth.  相似文献   

2.
The poly(ADP-ribosyl)ation inhibitor 3 aminobenzamide (3AB) is used extensively to probe the involvement of post-translational modifications of proteins in the control of DNA repair and cell cycle progression. However, 3AB appears to lack specificity for the synthetase, and the use of excessive concentrations of the inhibitor may adversely affect the potential responsiveness of cells to DNA-damaging agents. Here we address the concentration dependency of the cellular impact of 3AB alone by using flow cytometry to analyze the cell cycle phase-dependent, anti-proliferative effects of 3AB on mouse L1210 cells together with fluctuations in RNA (predominantly ribosomal) levels. We report that 3AB, at cytostatic concentrations, does not block cells in G2 committed to mitosis but imposes an immediate G1 and S phase arrest. Eventually cells arrested in G1 and S phase can reenter cycle but become irreversibly blocked in G2 and are incapable either of progression to mitosis or of the reinitiation of DNA synthesis when cytokinesis is blocked by colcemid exposure. 3AB exposure rapidly reduced RNA levels in all phases of the cell cycle with recovery from depletion apparent only at nontoxic concentrations (5 mM). The responses of a 3AB-resistant subline, capable of sustained culture growth in a normally cytostatic concentration of inhibitor (25 mM), suggest a close association between the sensitivity to RNA depletion and cell cycle arrest.  相似文献   

3.
The effects of ACTH and 8-Br-cAMP on growth and replication of a functional mouse adrenal tumor cell line (Y-1) were investigated. ACTH and 8-Br-cAMP both inhibited DNA synthesis and replication when added to randomly growing cell cultures. ACTH addition and serum deprivation each arrested cells in G1; an additional point of arrest in G2 occurred with 8-Br-cAMP. Cells whose growth was arrested in G1 by ACTH had a significantly larger volume and protein and RNA content compared to cells arrested in G1 by serum deprivation. When ACTH or 8-Br-cAMP was added with serum to cells arrested by serum deprivation, the wave of DNA synthesis and cell division seen with serum was abolished. ACTH and 8-Br-cAMP had no effect on the serum-induced increases in protein and RNA content, rates of leucine incorporation into protein and uridine incorporation into RNA, and RNA polymerase I activity observed in cells during the pre-replicative period. Partial inhibition of the serum-induced increase in uridine transport occurred. ACTH and cAMP do not appear to inhibit replication by generalized negative pleiotypic effects but rather to inhibit the initiation of DNA synthesis more specifically. The ACTH-arrested Y-1 cell resembles an in vivo hypertrophied adrenal cortical cell.  相似文献   

4.
Summary At concentrations that did not affect growth, hydroxyurea and 21-deoxyadenosine inhibited DNA synthesis inChlamydomonas. Evidence that initiation of mitosis is dependent upon completion of DNA replication was provided by the arrest of inhibited cells with undivided nuclei containing undispersed nucleoli. Initiation of cytokinesis is not dependent upon progress of nuclear division since, in arrested cells, cleavage microtubules became deployed in a phycoplast and a cleavage furrow developed fully, until obstructed by the undivided nucleus. Chloroplast constriction and division also continued independently of nuclear division. It is concluded that nuclear division, cytoplasmic cleavage and chloroplast division are in separate sequences of dependent events. This is supported by flexibility of their relative timing in successive divisions, since after the first commitment to divide nuclear division is followed by initiation of cleavage and then chloroplast division, whereas following subsequent commitments these events occur in reverse time order. This flexibility of order indicates changing rates of progress through separate sequences of events.Deposition of wall material was dependent upon the completion of cytokinesis, but this inhibition of wall deposition by incomplete cytokinesis did not extend to other daughters within the same mother cell.These observations are correlated with our earlier data concerning the rate-limiting control points for division and a model for the coordination of division events is presented. The relationships between different plant cell cycles is discussed in view of the findings presented.  相似文献   

5.
A temperature-sensitive mutation was isolated that blocks cilia regeneration and arrests growth in Tetrahymena thermophila. Protein and RNA synthesis and ATP production appeared to be largely unaffected at the restrictive temperature, suggesting that the mutation is specific for cilia regeneration and growth. At the restrictive temperature, mutant cells arrested at a specific point in the cell cycle, after macronuclear S phase and shortly before micronuclear mitosis. Arrested cells did not undergo nuclear divisions, DNA replication, or cytokinesis, so the mutation appears to cause true cell cycle arrest. Surprisingly, the mutation does not appear to affect micronuclear mitosis directly but rather some event(s) prior to micronuclear mitosis that must be completed before cells can complete the cell cycle. The cell cycle arrest was transiently complemented by wild-type cytoplasm exchanged during conjugation with a wild-type cell. Each starved, wild-type cell apparently contained enough rescuing factor to support an average of six cell divisions. Thus, this mutation affects assembly and/or function of at least one but not all of the microtubule-based structures in T. thermophila.  相似文献   

6.
The receptor for activated C kinase 1 (RACK1) is a conserved scaffold protein that helps regulate a range of cell activities including cell growth, shape, and protein translation. We report that a homologue of RACK1 is required for cytokinesis in pathogenic Trypanosoma brucei. The protein, referred to as TRACK, is comprised of WD repeat elements and can complement cpc2 null mutants of Schizosaccharomyces pombe. TRACK is expressed throughout the trypanosome life cycle and is distributed predominantly in a perinuclear region and the cytoplasm but not along the endoplasmic reticulum, mitochondrion, or cleavage furrow of dividing cells. When tetracycline-inducible RNA interference (RNAi) is used to deplete the cellular content of TRACK, the cells remain metabolically active, but growth is inhibited. In bloodstream forms, growth arrest is due to a delay in the onset of cytokinesis. By contrast, procyclic forms are able to initiate cytokinesis in the absence of TRACK but arrest midway through cell cleavage. The RNAi cells undergo multiple rounds of partial cytokinesis and accumulate nuclei and cytoplasmic extensions with attached flagella. The TRACK RNAi construct is also inducible within infected mice. Under these conditions parasites are eliminated from peripheral blood within 3 days post-infection. Taken as a whole, these data indicate that trypanosomes utilize a RACK1 homologue to regulate the final stages of mitosis. Moreover, disrupting the interaction between TRACK and its partners might be targeted in the design of novel therapies.  相似文献   

7.
HeLa cells in monolayer cultures were treated with the following inhibitors of DNA synthesis: mitomycin C, nitrogen mustard, fluorodeoxyuridine, hydroxyurea, arabinofuranosylcytosine and high concentrations of thymidine. The concentration of each inhibitor used was, in most cases, just sufficient to arrest cell multiplication and all produced unbalanced growth in the sense that the synthesis of RNA and protein were only partially inhibited while DNA synthesis stopped. This resulted in approximately 100% increases in RNA and protein content per cell in 48 hours and, since cell volume also increased by 100% during this time, the concentration of RNA and protein per unit cell volume remained constant. It was concluded that cell protein content may be used as an accurate index of variation in cell size in HeLa cells treated with inhibitors of DNA synthesis.  相似文献   

8.
Regulation of purine biosynthesis in G1 phase-arrested mammalian cells   总被引:1,自引:0,他引:1  
The effects of G1 phase growth arrest on purine biosynthesis were studied in cultured S49 T lymphoma cells. Incubations of wildtype S49 cells for 18 hr with dibutyryl cyclic AMP or forskolin, two agents which induced G1 arrest, reduced the rates of purine biosynthesis by 95%. Time course and concentration dependence studies indicated that the decrease in rates of purine biosynthesis correlated with the extent of G1 phase arrest. Similar studies with somatic cell mutants deficient in some component of cyclic AMP action or metabolism indicated that the depression in purine synthetic rates required G1 arrest and did not result from cell death. Rates of RNA and DNA synthesis were also markedly diminished in the growth arrested cells. Measurements of purine rates in the presence of azaserine indicated that the block in purine biosynthesis was prior to the formation of phosphoribosylformylglycinamide. Additionally, the activities of adenylosuccinate synthetase and IMP dehydrogenase were diminished in G1 arrested cells. The levels of all controlling enzymes, substrates, and cofactors, however, were not diminished in G1 arrested cells. Despite diminished rates of purine biosynthesis, the amounts of intracellular nucleotides in G1 cells were equivalent to those in exponentially growing cells. However, the concentrations of intracellular nucleotides were 30-50% higher in the growth arrested cells. These results suggested that perturbations in the consumption of nucleotides via inhibition of nucleic acid synthesis have profound effects on the purine pathway and indicated the importance of feedback inhibition by nucleotides in the regulation of purine synthesis in situ.  相似文献   

9.
Dibutyryl cyclic monophosphate (dBcAMP) has been shown to inhibit growth, and alter the morphology of astrocytes. However, the potential contribution of its hydrolytic product, butyrate, in inducing some of the changes that have been attributed to dBcAMP, is not clear. DNA, RNA, and purine synthesis were therefore studied in primary astrocyte cultures after 24 hours of exposure to varying concentrations of butyrate, dBcAMP, and agents that increase intracellular cAMP levels. Progression of cells through cell cycle was also studied by flow cytometry. Dibutyryl cAMP partially arrested cells in Go/G1 phase of cell cycle while sodium butyrate increased the percentage population of cells in G2/M phase. DNA synthesis and de novo purine synthesis were inhibited after treatment with dBcAMP, sodium butyrate, and various drugs that increase intracellular cAMP levels. RNA synthesis was increased with cAMP but was not affected by sodium butyrate. Our study shows that at millimolar concentrations, butyrate is capable of altering the cell cycle and inhibiting DNA synthesis in primary astrocyte cultures, in a manner that is similar although not identical to the effects of dBcAMP.  相似文献   

10.
Anaphase, mitotic exit, and cytokinesis proceed in rapid succession, and while mitotic exit is a requirement for cytokinesis in yeast, it may not be a direct requirement for furrow initiation in animal cells. In this report, we physically manipulated the proximity of the mitotic apparatus (MA) to the cell cortex in combination with microinjection of effectors of the spindle checkpoint and CDK1 activity to determine how the initiation of cytokinesis is coupled to the onset of anaphase and mitotic exit. Whereas precocious contact between the MA and the cell surface advanced the onset of cytokinesis into early anaphase A, furrowing could not be advanced prior to the metaphase-anaphase transition. Additionally, while cells arrested in anaphase could be induced to initiate cleavage furrows, cells arrested in metaphase could not. Finally, activation of the mitotic checkpoint in one spindle of a binucleate cell failed to arrest cytokinesis induced by the control spindle but did inhibit the formation of furrows between the arrested MA and the control, nonarrested MA. Our experiments suggest that the competence of the mitotic apparatus to initiate cytokinesis is not dependent on cyclin degradation but does require anaphase-promoting complex (APC) activity and, thus, inactivation of the mitotic checkpoint.  相似文献   

11.
BP3T3, a clonal benzo(a)pyrene-transformed BALB/c-3T3 cell line, is conditionally responsive to growth factor stimulation. Density arrested cell populations deprived of growth factors by pretreatment with 0.5% platelet-poor plasma synthesized DNA both in response to ng/ml concentrations of PDGF, EGF, and somatomedin C, and in response to insulin, plasma, and serum. The above agents acted singly to induce DNA synthesis, but synergism is suggested because a higher percentage of cells were stimulated to enter the S phase when the growth factors were added in combination. Desensitization to growth factors occurred when cultures were pretreated with the high concentration of growth factors present in 10% serum (or plasma). In desensitized cultures none of the above agents, added singly or in combination, stimulated DNA synthesis. This effect appears to be global because pretreatment with one growth factor (e.g., insulin) inhibited the action of another (e.g., PDGF). Cell density appears to play a critical role in regulating DNA synthesis. Unlike nontransformed BALB/c-3T3 cells whose density is regulated by the serum concentration, the density of BP3T3 cells reached a plateau when cultures were grown in a serum (or plasma) concentration of 3% or greater. Such density arrested cultures were growth factor unresponsive; however, the cells rapidly responded to growth factors by synthesizing DNA and replicating when reseeded at a lower cell density. Thus the growth of BP3T3 cells is regulated by both growth factors and cell density.  相似文献   

12.
Noncoordinate control of RNA synthesis in eucaryotic cells   总被引:3,自引:0,他引:3  
M V Willis  J B Baseman  H Amos 《Cell》1974,3(2):179-184
Inhibition of protein synthesis in confluent monolayers of chick fibroblasts stimulates selectively the synthesis of 4S RNA, resulting in a net accumulation of 4S RNA in the inhibited cells. Under these conditions, inhibition of ribosomal RNA synthesis and processing occurs, as does a decrease in soluble uridine phosphate concentrations; increased pools of certain amino acids are also apparent. Recovery of cells from inhibition is accompanied by a rapidly increasing rate of protein synthesis that lasts for several hours. The small molecular weight RNA synthesized during inhibition of protein synthesis appears properly methylated, and in the presence of cycloheximide and actinomycin D shows a precursor-product conversion. Radiolabeled RNA synthesized during inhibition of protein synthesis is stable following the recovery of cells from inhibition. Stimulation of uridine incorporation into 4S RNA during arrest of protein synthesis is also demonstrated in high-density cultures of L- and Hep-2 cells, suggesting that this non-coordinate stimulation of 4S RNA may be a general property of eucaryotic cells.  相似文献   

13.
14.
Previous studies have shown that the nontransformed AKR-2B mouse embryo derived cell line may growth arrest by two separate mechanisms in the G1 phase of the cell cycle-growth factor deficiency arrest (G0) and low molecular weight nutrient deficiency arrest. An examination of epidermal growth factor (EGF) receptors under the different resting or growth conditions has shown that rapidly growing cells or cells arrested due to growth factor deficiency have the expected amount of 125I-EGF binding with approximately 105 receptors per cell being present in G0 arrested cells. In contrast, cells arrested due to nutrient deficiency show a reduction in 125I-EGF binding to 10--20% of that observed under the other conditions. This effect appears to be due to decreased receptor number and not to a change in the affinity of the receptor. Stimulation of DNA synthesis by nutrient replenishment causes a tenfold increase in EGF binding 20 hours later, with some increase in binding being detectable as early as six hours. The increase in binding is inhibited by cycloheximide and actinomycin D. This suggests that new mRNA synthesis as well as increased protein synthesis is required for the increase in EGF binding.  相似文献   

15.
In the yeast Saccharomyces cerevisiae, the specific activity of the enzyme ornithine decarboxylase (ODC) was correlated with overall growth status. The activity of ODC was highest in actively growing cells, whereas the specific activity was lower in slow-growing cultures limited for nitrogen or inhibited by low concentrations of cycloheximide. Specific activities of ODC were also low in cultures arrested in the stationary phase (in the G1 portion of the cell cycle) by starvation for required nutrients. Although correlated with overall growth, ODC activity was not required for growth or cell cycle regulation. Cells continued to grow in the presence of the polyamine spermidine or spermine, which markedly reduced ODC specific activities. Thus, high levels of ODC activity were not necessary for growth, nor were decreased ODC specific activities sufficient to cause cells to arrest in G1. Conversely, one agent (o-phenanthroline) which causes growing cells to arrest in G1 did so with no effect on ODC specific activity. Therefore, ODC specific activity changes are not necessary for cell cycle regulation but simply reflect the normal growth status of cells.  相似文献   

16.
Cytokinesis is initiated only after mitotic exit in eukaryotes. However, in the insect (procyclic) form of an ancient protist, Trypanosoma brucei, a blockade at the G2/M checkpoint results in an enrichment of anucleate cells (zoids), suggesting separated regulations between mitosis and cytokinesis (X. Tu and C. C. Wang, J. Biol. Chem. 279:20519-20528, 2004). Polo-like kinases (Plks) are known to play critical roles in controlling both mitosis and cytokinesis. A single Plk homologue in T. brucei, TbPLK, was found to be capable of complementing the Plk (Cdc5) functions in Saccharomyces cerevisiae, thus raising the question of how it may function in the trypanosome with cytokinesis dissociated from mitosis. Depletion of TbPLK in the procyclic form of T. brucei by RNA interference resulted in growth arrest with accumulation of multiple nuclei, kinetoplasts, basal bodies, and flagella in approximately equal numbers among individual cells. There were, however, few zoids detectable, indicating inhibited cytokinesis with unblocked mitosis and kinetoplast segregation. TbPLK is thus apparently involved only in initiating cytokinesis in T. brucei. Overexpression of TbPLK in the trypanosome did not affect cell growth, but 13% of the resulting population was in the zoid form, suggesting runaway cytokinesis. An immunofluorescence assay indicated that TbPLK was localized in a chain of likely flagellum attachment zones in the cytoskeleton. In a dividing cell, a new line of such zones appeared closely paralleling the existing one, which could constitute the cleavage furrow. An exposed region of TbPLK at the anterior tip of the cell may provide the trigger of cytokinesis. Taken together, our results revealed a novel mechanism of cytokinesis initiation in the trypanosome that may serve as a useful model for further in-depth investigations.  相似文献   

17.
Cytokinesis in animal cells involves the contraction of an actomyosin ring formed at the cleavage furrow. Nuclear division, or karyokinesis, must be precisely timed to occur before cytokinesis in order to prevent genetic anomalies that would result in either cell death or uncontrolled cell division. The septin family of GTPase proteins has been shown to be important for cytokinesis although little is known about their role during this process. Here we investigate the distribution and function of the mammalian septin MSF. We show that during interphase, MSF colocalizes with actin, microtubules, and another mammalian septin, Nedd5, and coprecipitates with six septin proteins. In addition, transfections of various MSF isoforms reveal that MSF-A specifically localizes with microtubules and that this localization is disrupted by nocodazole treatment. Furthermore, MSF isoforms localize primarily with tubulin at the central spindle during mitosis, whereas Nedd5 is mainly associated with actin. Microinjection of affinity-purified anti-MSF antibodies into synchronized cells, or depletion of MSF by small interfering RNAs, results in the accumulation of binucleated cells and in cells that have arrested during cytokinesis. These results reveal that MSF is required for the completion of cytokinesis and suggest a role that is distinct from that of Nedd5.  相似文献   

18.
We have studied the effect of maturation-promoting factor (MPF) on embryonic nuclei during the early cleavage stage of Xenopus laevis development. When protein synthesis is inhibited by cycloheximide during this stage, the embryonic cell cycle arrests in an artificially produced G2 phase-like state, after completion of one additional round of DNA synthesis. Approximately 100 nuclei can be arrested in a common cytoplasm if cytokinesis is first inhibited by cytochalasin B. Within 5 min after injection of MPF into such embryos, the nuclear envelope surrounding each nucleus disperses, as determined histologically or by immunofluorescent staining of the nuclear lamina with antilamin antiserum. The breakdown of the nuclear envelope occurs at levels of MPF comparable to or slightly lower than those required for oocyte maturation. Amplification of MPF activity, however, does not occur in the arrested egg as it does in the oocyte. These results suggest that MPF can act to advance interphase nuclei into the first events of mitosis and show that the nuclear lamina responds rapidly to MPF.  相似文献   

19.
Earlier I found that a variety of stimuli to proliferation of cultured human fibroblasts caused an increase in the rate of putrescine transport into the cells. This paper reports the effects of cycloheximide on putrescine transport in stationary and growing cultures. Cycloheximide in concentrations that inhibited protein synthesis caused increased putrescine transport in serumstarved and density-inhibited cultures. Similar effects were found with pactamycin, also an inhibitor of protein synthesis. Actinomycin D in concentrations that suppressed messenger RNA (mRNA) synthesis, did not cause increased putrescine transport. When both serum and cycloheximide were added to serum-starved cultures, the increase in putrescine transport was greater than when serum alone was added. However, cycloheximide had an inhibitory effect when added 1–2 h after addition of serum. These results suggest that one or more rapidly metabolizing proteins may be important in the regulation of putrescine transport and initiation of cell growth.  相似文献   

20.
The antiproliferative effect of roxithromycin (RXM) was studied using human myeloid leukemia HL60 cells. RXM inhibited the growth of HL60 cells in a concentration-dependent manner, and significantly inhibited growth at concentrations above 75 M. This growth inhibition was not associated with specific cell cycle arrest and DNA synthesis was not impaired. In addition, the number of viable cells remained almost unchanged in the presence of 100 M RXM. RXM induced growth inhibition at least partly by the formation of multinucleate cells. Both flowcytometric and morphological examination revealed that more than 40% of the RXM-treated cells were binucleate. These findings demonstrate that RXM is a potent new modulator of cell cycle progression in HL60 cells and suggest that the inhibition of cytokinesis by this drug may provide a new model for studying mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号