首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past decade, molecular approaches to species delimitation have seen rapid development. However, species delimitation based on a single locus, for example, DNA barcodes, can lead to inaccurate results in cases of recent speciation and incomplete lineage sorting. Here, we compare the performance of Automatic Barcode Gap Discovery (ABGD), Bayesian Poisson tree processes (PTP), networks, generalized mixed Yule coalescent (GMYC) and Bayesian phylogenetics and phylogeography (BPP) models to delineate cryptic species previously detected by DNA barcodes within Tanytarsus (Diptera: Chironomidae) non‐biting midges. We compare the results from analyses of one mitochondrial (cytochrome c oxidase subunit I [COI]) and three nuclear (alanyl‐tRNA synthetase 1 [AATS1], carbamoyl phosphate synthetase 1 [CAD1] and 6‐phosphogluconate dehydrogenase [PGD]) protein‐coding genes. Our results show that species delimitation based on multiple nuclear DNA markers is largely concordant with morphological variation and delimitations using a single locus, for example, the COI barcode. However, ABGD, GMYC, PTP and network models led to conflicting results based on a single locus and delineate species differently than morphology. Results from BPP analyses on multiple loci correspond best with current morphological species concept. In total, 10 lineages of the Tanytarsus curticornis species complex were uncovered. Excluding a Norwegian population of Tanytarsus brundini which might have undergone recent hybridization, this suggests six hitherto unrecognized species new to science. Five distinct species are well supported in the Tanytarsus heusdensis species complex, including two species new to science.  相似文献   

2.
Soft‐bodied marine taxa, like ribbon worms (Nemertea), often lack clear diagnostic morphological characters impeding traditional species delimitation. Therefore, recent studies concentrated on molecular genetic methods to solve taxonomic issues. Different delimitation methods were employed to explore species boundaries and the presence of cryptic species. However, the performance of the different delimitation methods needs to be tested. A particularly promising nemertean genus in this regard is the palaeonemertean genus Cephalothrix that is commonly found in European waters. In order to gain information on the number and distribution of European cephalotrichids and to test different tree‐based and non‐tree‐based delimitation methods, we analyzed a dataset comprising the barcoding region of the mitochondrial cytochrome c oxidase subunit I (COI) of 215 European Cephalothrix specimens, of which 78 were collected for this study. Our results show the presence of 12–13 European lineages of which several can be assigned to known European species. Analyzing a second dataset comprising 74 additional sequences from the Pacific and the Atlantic Oceans helped identify some of the unassigned European specimens. One resulting clade seems to represent a non‐native introduced Cephalothrix species, while another has never been recorded from Europe before. In our analysis, especially the tree‐based methods and the phylogenetic analysis proved to be a useful tool when delimiting species. It remains unclear whether the different identified clades result from cryptic speciation or from a high genetic variability of the COI gene.  相似文献   

3.
Polypedilum Kieffer (Diptera: Chironomidae), with 520 currently known species worldwide, can be extremely difficult to identify species level based on the morphology. We used 3,670 cytochrome c oxidase subunit I (COI) barcodes to explore the efficiency of the COI barcodes to differentiate between species in a superdiverse aquatic insect genus. The Barcode of Life Data System (BOLD) presented 286 BIN clusters in Polypedilum, representing 163 morphospecies, of which 93 were contributed from our laboratory. Molecular operational taxonomic units (OTUs) ranged from 158 to 345, based on Automatic Barcode Gap Discovery (ABGD), the Barcode Index Number (BIN), Bayesian Poisson tree processes (bPTP), generalized mixed Yule coalescent (GMYC), jMOTU, multi‐rate Poisson tree processes (mPTP), neighbor‐joining (NJ) tree and prethreshold clustering. In comparison, GMYC, bPTP, mPTP and BIN suggested more species than warranted by morphology, while ABGD, jMOTU, NJ, prethreshold clustering and ABGD yielded a conservative number of species when setting higher thresholds. Nine species complexes with deep intraspecific divergences indicated 18 potentially cryptic species, which require further taxonomic research including complete life histories and nuclear genetic data to be resolved. The discrimination of Polypedilum species by DNA barcodes proved to be successful in 94.4% of all studied morphological species.  相似文献   

4.
5.
The genus Dioscorea is widely distributed in tropical and subtropical regions, and is economically important in terms of food supply and pharmaceutical applications. However, DNA barcodes are relatively unsuccessful in discriminating between Dioscorea species, with the highest discrimination rate (23.26%) derived from matK sequences. In this study, we compared genic and intergenic regions of three Dioscorea chloroplast genomes and found that the density of SNPs and indels in intergenic sites was about twice and seven times higher than that of SNPs and indels in the genic regions, respectively. A total of 52 primer pairs covering highly variable regions were designed and seven pairs of primers had 80%–100% PCR success rate. PCR amplicons of 73 Dioscorea individuals and assembled sequences of 47 Dioscorea SRAs were used for estimating intraspecific and interspecific divergence for the seven loci: The rpoB‐trnC locus had the highest interspecific divergence. Automatic barcoding gap discovery (ABGD), Poisson tree processes (PTP), and generalized mixed Yule coalescence (GMYC) analysis were applied for species delimitation based on the seven loci and successfully identified the majority of species, except for species in the Enantiophyllum section. Phylogenetic analysis of 51 Dioscorea individuals (28 species) showed that most individuals belonging to the same species tended to cluster in the same group. Our results suggest that the variable loci derived from comparative analysis of plastid genome sequences could be good DNA barcode candidates for taxonomic analysis and species delimitation.  相似文献   

6.
7.
Abstract Identification of aphid species is always difficult due to the shortage of easily distinguishable morphological characters. Aphid genus Toxoptera consists of species with similar morphology and similar to Aphis in most morphological characters except the stridulatory apparatus. DNA barcodes with 1 145 bp sequences of partial mitochondrial cytochrome‐coxidase I (COI) genes were used for accurate identification of Toxoptera. Results indicated mean intraspecific sequence divergences were 1.33%, whereas mean interspecific divergences were greater at 8.29% (0.13% and 7.79% if T. aurantii 3 and T. aurantii 4 are cryptic species). Sixteen samples were distinguished to four species correctly by COI barcodes, which implied that DNA barcoding was successful in discrimination of aphid species with similar morphology. Phylogenetic relationships among species of this genus were tested based on this portion of COI sequences. Four species of Toxoptera assembled a clade with low support in maximum‐parsimony (MP) analysis, maximum‐likelihood (ML) analysis and Bayesian phylogenetic trees, the genus Toxoptera was not monophyletic, and there were two sister groups, such as T. citricidus and T. victoriae, and two clades of T. aurantii which probably presented cryptic species in the genus.  相似文献   

8.
The subterranean genus Niphargus is one of the most species‐rich genera among freshwater amphipods in the world, distributed in the Western Palearctic. Thus far, taxonomic and phylogenetic research has focused mainly on the European half of the genus range. In this study, 25 populations of Niphargus from Iran, Lebanon and the Crimean Peninsula were investigated. Bayesian inference based on 28S, H3 and COI gene sequences suggests that populations from the area belong to four different clades. Three species from Crimea and one species from Iran are nested at basal nodes, indicating their rather ancient origin. The rest of the species are younger and belong to two separate clades. One Crimean species is a sister‐species to east Romanian species. The second clade includes one species from Lebanon and all but one population from Iran. The origin of this clade corresponds to marine transgression between the Black Sea and Mediterranean approximately 12 Mya. This clade was further investigated taxonomically. Revision of qualitative morphological traits and unilocus species delimitation methods using COI suggest that this clade comprises 12–16 species, of which only three have been described so far. Multilocus coalescence delimitation methods (using fragments of COI, 28S, H3 and ITS) strongly supported 11 of these species. The remaining populations comprise at least two species complexes that require further and more detailed taxonomic research. © 2015 The Linnean Society of London  相似文献   

9.
10.
Oligoryzomys, as currently understood is formed by 25 living species, is the most diverse genus of the tribe Oryzomyini of the New World subfamily Sigmodontinae of cricetid rodents. Nonetheless, the species richness of Oligoryzomys seems to be an underestimate, given some species complex has been proposed in previous studies, at the time that large geographic areas remain to be sampled, and several taxonomic forms have not been assessed with contemporary approaches. In this study, we present a new assessment of the species diversity of Oligoryzomys based on multiple unilocus species delimitation methods (ABGD, BPP, PTP, GMYC and b GMYC), using 665 cytb gene sequences as evidence (532 gathered from Genbank and 133 obtained in this study). We sampled representatives of almost all currently known species of Oligoryzomys, at the time that extending the geographic coverage to the Central Andes, a large area that was largely unrepresented in previous studies. Phylogenetic relationships, based on a non‐redundant alignment, were inferred via maximum likelihood and Bayesian inference; an ultrametric tree, used in species delimitation analyses, was obtained using multiple secondary calibration points. Results of species delimitation methods are discussed at the light of previous knowledge (e.g., taxonomic history and geographic provenance of samples in relation to type localities) and the morphological assessments of some specimens. Results of the distinct delimitation methods are mostly congruent, being BPP and PTP the most sensible to estimate species delimitation, allowing us to suggest that Oligoryzomys is composed of 30 lineages of species level. Of these, 22 correspond to forms currently considered species; some of these include in their synonymy some forms currently considered valid species (e.g., yatesi would be a synonym of longicaudatus). The remaining eight lineages are candidate species that need to be further evaluated. This study, by advancing taxonomic hypothesis that should be further tested in future studies, constitutes a stepping‐stone for upcoming taxonomic and biogeographic studies centred on Oligoryzomys.  相似文献   

11.
Each holotype specimen provides the only objective link to a particular Linnean binomen. Sequence information from them is increasingly valuable due to the growing usage of DNA barcodes in taxonomy. As type specimens are often old, it may only be possible to recover fragmentary sequence information from them. We tested the efficacy of short sequences from type specimens in the resolution of a challenging taxonomic puzzle: the Elachista dispunctella complex which includes 64 described species with minuscule morphological differences. We applied a multistep procedure to resolve the taxonomy of this species complex. First, we sequenced a large number of newly collected specimens and as many holotypes as possible. Second, we used all >400 bp examine species boundaries. We employed three unsupervised methods (BIN, ABGD, GMYC) with specified criteria on how to handle discordant results and examined diagnostic bases from each delineated putative species (operational taxonomic units, OTUs). Third, we evaluated the morphological characters of each OTU. Finally, we associated short barcodes from types with the delineated OTUs. In this step, we employed various supervised methods, including distance‐based, tree‐based and character‐based. We recovered 658 bp barcode sequences from 194 of 215 fresh specimens and recovered an average of 141 bp from 33 of 42 holotypes. We observed strong congruence among all methods and good correspondence with morphology. We demonstrate potential pitfalls with tree‐, distance‐ and character‐based approaches when associating sequences of varied length. Our results suggest that sequences as short as 56 bp can often provide valuable taxonomic information. The results support significant taxonomic oversplitting of species in the Elachista dispunctella complex.  相似文献   

12.
Sandfly specimens from the subgenus Evandromyia (Aldamyia) Galati, 2003 (Diptera: Psychodidae: Phlebotominae) were collected between 2012 and 2019 from nine localities in seven Brazilian states, morphologically-identified, and then DNA barcoded by sequencing the mitochondrial cytochrome c oxidase subunit I (coi) gene. Forty-four new barcode sequences generated from 10 morphospecies were combined with 49 previously published sequences from the same subgenus and analysed using sequence-similarity methods (best-match criteria) to assess their ability at specimen identification, while four different species delimitation methods (ABGD, GMYC, PTP and TCS) were used to infer molecular operational taxonomic units (MOTUs). Overall, seven of the 11 morphospecies analysed were congruent with both the well-supported clades identified by phylogenetic analysis and the MOTUs inferred by species delimitation, while the remaining four morphospecies – E. carmelinoi, E. evandroi, E. lenti and E. piperiformis – were merged into a single well-supported clade/MOTU. Although E. carmelinoi, E. evandroi and E. lenti were indistinguishable using coi DNA barcodes, E. piperiformis did form a distinct phylogenetic cluster and could be correctly identified using best-match criteria. Despite their apparent morphological differences, we propose on the basis of the molecular similarity of their DNA barcodes that these latter four morphospecies should be considered members of a recently-diverged species complex.  相似文献   

13.
The genus Potamometra Bianchi, 1896 represents big rheophilic semi-aquatic bugs that typically inhabit middle-altitude mountainous streams. Here, we integrated molecular and morphological data for delimiting species boundaries and understanding the evolutionary history of the genus Potamometra. Twenty-seven complete mitochondrial genomes of Potamometra were sequenced, with samples representing most of the known geographically distributed locations around the Sichuan Basin. The results of different species delimitation methods (ABGD, bPTP, GMYC and BPP) based on the monolocus or multilocus data strongly supported the existence of two cryptic new species (Potamometra anderseni Zheng, Ye & Bu, sp. nov. and Potamometra zhengi Zheng, Ye & Bu, sp. nov.) although more entities were found in the tree-based delimitation methods. The two new species were successfully validated using morphological characters within a detailed taxonomic framework. Phylogenetic analyses supported the reciprocal monophyly of the seven highly node-supported clades, which were matched with the five known species and two new taxa. A novel gene arrangement pattern that two trnF (trnF1 and trnF2) genes separated by an intergenic spacer (IGS) were found in all the species except the sister group of Potamometra berezowskii Bianchi, 1896 and Potamometra linnavuorii Chen, Nieser & Bu, 2016. This gene rearrangement event could be explained by the tandem duplication and random loss (TDRL) model. Our study emphasized that the combination of molecular sequence data, morphological characters and mitochondrial structural information could improve the accuracy of species delimitation.  相似文献   

14.
Molecular species delimitation is increasingly being used to discover and illuminate species level diversity, and a number of methods have been developed. Here, we compare the ability of two molecular species delimitation methods to recover song‐delimited species in the Cicadetta montana cryptic species complex throughout Europe. Recent bioacoustics studies of male calling songs (premating reproductive barriers) have revealed cryptic species diversity in this complex. Maximum likelihood and Bayesian phylogenetic analyses were used to analyse the mitochondrial genes COI and COII and the nuclear genes EF1α and period for thirteen European Cicadetta species as well as the closely related monotypic genus Euboeana. Two molecular species delimitation methods, general mixed Yule‐coalescent (GMYC) and Bayesian phylogenetics and phylogeography, identified the majority of song‐delimited species and were largely congruent with each other. None of the molecular delimitation methods were able to fully recover a recent radiation of four Greek species.  相似文献   

15.
Biodiversity reduction and loss continues to progress at an alarming rate, and thus, there is widespread interest in utilizing rapid and efficient methods for quantifying and delimiting taxonomic diversity. Single‐locus species delimitation methods have become popular, in part due to the adoption of the DNA barcoding paradigm. These techniques can be broadly classified into tree‐based and distance‐based methods depending on whether species are delimited based on a constructed genealogy. Although the relative performance of these methods has been tested repeatedly with simulations, additional studies are needed to assess congruence with empirical data. We compiled a large data set of mitochondrial ND4 sequences from horned lizards (Phrynosoma) to elucidate congruence using four tree‐based (single‐threshold GMYC, multiple‐threshold GMYC, bPTP, mPTP) and one distance‐based (ABGD) species delimitation models. We were particularly interested in cases with highly uneven sampling and/or large differences in intraspecific diversity. Results showed a high degree of discordance among methods, with multiple‐threshold GMYC and bPTP suggesting an unrealistically high number of species (29 and 26 species within the P. douglasii complex alone). The single‐threshold GMYC model was the most conservative, likely a result of difficulty in locating the inflection point in the genealogies. mPTP and ABGD appeared to be the most stable across sampling regimes and suggested the presence of additional cryptic species that warrant further investigation. These results suggest that the mPTP model may be preferable in empirical data sets with highly uneven sampling or large differences in effective population sizes of species.  相似文献   

16.
Integrative taxonomy is considered a reliable taxonomic approach of closely related and cryptic species by integrating different sources of taxonomic data (genetic, ecological, and morphological characters). In order to infer the boundaries of seven species of the evacanthine leafhopper genus Bundera Distant, 1908 (Hemiptera: Cicadellidae), an integrated analysis based on morphology, mitochondrial DNA, and hyperspectral reflectance profiling (37 spectral bands from 411–870 nm) was conducted. Despite their morphological similarities, the genetic distances of the cytochrome c oxidase subunit I (COI) gene among the tested species are relatively large (5.8–17.3%). The species‐specific divergence of five morphologically similar species (Bundera pellucida and Bundera spp. 1–4) was revealed in mitochondrial DNA data and reflectance profiling. A key to identifying males is provided, and their morphological characters are described. Average reflectance profiles from the dorsal side of specimens were classified based on linear discriminant analysis. Cross‐validation of reflectance‐based classification revealed that the seven species could be distinguished with 91.3% classification accuracy. This study verified the feasibility of using hyperspectral imaging data in insect classification, and our work provides a good example of using integrative taxonomy in studies of closely related and cryptic species. © 2015 The Linnean Society of London  相似文献   

17.
Sponges are among the most species‐rich and ecologically important taxa on coral reefs, yet documenting their diversity is difficult due to the simplicity and plasticity of their morphological characters. Genetic attempts to identify species are hampered by the slow rate of mitochondrial sequence evolution characteristic of sponges and some other basal metazoans. Here we determine species boundaries of the Caribbean coral reef sponge genus Callyspongia using a multilocus, model‐based approach. Based on sequence data from one mitochondrial (COI), one ribosomal (28S), and two single‐copy nuclear protein‐coding genes, we found evolutionarily distinct lineages were not concordant with current species designations in Callyspongia. While C. fallax, C. tenerrima, and C. plicifera were reciprocally monophyletic, four taxa with different morphologies (C. armigera, C. longissima, C. eschrichtii, and C. vaginalis) formed a monophyletic group and genetic distances among these taxa overlapped distances within them. A model‐based method of species delimitation supported collapsing these four into a single evolutionary lineage. Variation in spicule size among these four taxa was partitioned geographically, not by current species designations, indicating that in Callyspongia, these key taxonomic characters are poor indicators of genetic differentiation. Taken together, our results suggest a complex relationship between morphology and species boundaries in sponges.  相似文献   

18.
19.
Accelerating taxonomic knowledge and making accurate species identifications are critically important given the current biodiversity crisis, particularly in biodiversity hotspots such as Mesoamerica. Objective species delimitation that reduces investigator‐driven bias is fundamental to the establishment of appropriate conservation strategies, above all in managed species. Previous morphological and molecular studies on three managed stingless bee species of the genus Scaptotrigona distributed in Mexico (S. mexicana, S. pectoralis and S. hellwegeri) suggested that both S. mexicana and S. hellwegeri are cryptic species complexes. Herein we tested species delimitation by analysing sequence information of five markers (two mitochondrial: cox1 and 16S, and three nuclear: ITS1, EF1‐α, ArgK) within a Bayesian coalescent framework to test the putative species. We obtained two different hypotheses using a Generalized Mixed Yule Coalescent (GMYC) model: four (cox1) and six (16S) species. After the species validation step with the Bayesian species‐delimitation analysis (BPP), we suggest that only S. mexicana is a complex of two species with different distribution (along the Pacific and the Atlantic coasts, respectively). We highly recommend avoiding colony exchange between geographical regions in order to conserve the genetic integrity of both taxa.  相似文献   

20.
Diatoms are one of the most abundant and arguably the most species‐rich group of protists. Diatom species delimitation has often been based exclusively on the recognition of morphological discontinuities without investigation of other lines of evidence. Even though DNA sequences and reproductive experiments have revealed several examples of (pseudo)cryptic diversity, our understanding of diatom species boundaries and diversity remains limited. The cosmopolitan pennate raphid diatom genus Pinnularia represents one of the most taxon‐rich diatom genera. In this study, we focused on the delimitation of species in one of the major clades of the genus, the Pinnularia subgibba group, based on 105 strains from a worldwide origin. We compared genetic distances between the sequences of seven molecular markers and selected the most variable pair, the mitochondrial cox1 and nuclear encoded LSU rDNA, to formulate a primary hypothesis on the species limits using three single‐locus automated species delimitation methods. We compared the DNA‐based primary hypotheses with morphology and with other available lines of evidence. The results indicate that our data set comprised 15 species of the P. subgibba group. The vast majority of these taxa have an uncertain taxonomic identity, suggesting that several may be unknown to science and/or members of (pseudo)cryptic species complexes within the P. subgibba group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号