首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whereas the vast majority of gastropods possess dextral shell and body organization, members of the Clausiliidae family are almost exclusively sinistral. Within this group a unique feature of the alpine genus Alopia is the comparable representation of sinistral and dextral taxa, and the existence of enantiomorph taxon pairs that appear to differ only in their chirality. We carried out a molecular phylogenetic study, using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences, in order to find out whether chiral inversions are more frequent in this genus than in other genera of land snails. Our results revealed multiple independent inversions in the evolutionary history of Alopia and a close genetic relationship between members of the enantiomorph pairs. The inferred COI phylogeny also provided valuable clues for the taxonomic division and zoogeographical evaluation of Alopia species. The high number of inverse forms indicates unstable fixation of the coiling direction. This deficiency and the availability of enantiomorph pairs may make Alopia species attractive experimental models for genetic studies aimed at elucidating the molecular basis of chiral stability. © 2013 The Linnean Society of London  相似文献   

2.
Coiling direction in pulmonate gastropods is determined by a single gene via a maternal effect, which causes cytoskeletal dynamics in the early embryo of dextral gastropods to be the mirror image of the same in sinistral ones. We note that pulmonate gastropod spermatids also go through a helical twisting during their maturation. Moreover, we suspect that the coiling direction of the helical elements of the spermatozoa may affect their behaviour in the female reproductive tract, giving rise to the possibility that sperm chirality plays a role in the maintenance of whole-body chiral dimorphism in the tropical arboreal gastropod Amphidromus inversus (Müller, 1774). For these reasons, we investigated whether there is a relationship between a gastropod’s body chirality and the chirality of the spermatozoa it produces. We found that spermatozoa in A. inversus are always dextrally coiled, regardless of the coiling direction of the animal itself. However, a partial review of the literature on sperm morphology in the Pulmonata revealed that chiral dimorphism does exist in certain species, apparently without any relationship with the coiling direction of the body. Though our study shows that body and sperm chirality follows independent developmental pathways, it gives rise to several questions that may be relevant to the understanding of the chirality of spermatid ultrastructure and spermatozoan motility and sexual selection.  相似文献   

3.
The land snail genus Albinaria exhibits an extreme degree of morphological differentiation in Greece, especially in the island of Crete. Twenty-six representatives of 17 nominal species and a suspected hybrid were examined by sequence analysis of a PCR-amplified mitochondrial DNA fragment of the large rRNA subunit gene. Maximum parsimony and neighbor-joining phylogenetic analyses demonstrate a complex pattern of speciation and differentiation and suggest that Albinaria species from Crete belong to at least three distinct monophyletic groups, which, however, are not monophyletic with reference to the genus as a whole. There is considerable variation of genetic distance within and among “species” and groups. The revealed phylogenetic relations do not correlate well with current taxonomy, but exhibit biogeographical coherence. Certain small- and large-scale vicariance events can be traced, although dispersal and parapatric speciation may also be present. Our analysis suggests that there was an early and rapid differentiation of Albinaria groups across the whole of the range followed by local speciation events within confined geographical areas.  相似文献   

4.
It has long been debated whether mirror image‐like similarity in shell morphology between enantiomorphic pairs of dextral and sinistral taxa represents their sister relationship, or each of them is closer related to other congeners with the same coiling direction. The obligate rock‐dwelling genus Cristataria Vest, 1867 of the eastern Mediterranean region belongs to the Alopiinae subfamily of door snails (Clausiliidae). Cristataria and a few other genera of this subfamily include enantiomorphic pairs that are conchologically very similar to each other. Dextral C. colbeauiana (Pfeiffer, 1861) and its sinistral counterpart of such an enantiomorphic pair occur nearby one another in southern Turkey. However, the latter has been classified either as the sinistral subspecies C. colbeauiana inversa Szekeres, 1998 or as a form of sinistral C. leprevieri (Pallary, 1922). To examine the phylogenetic relationship of this enantiomorphic pair, we carried out molecular phylogenetic analysis of all the Turkish and two other Cristataria taxa based on both mitochondrial and nuclear DNA markers. Our results show that dextral C. colbeauiana and its sinistral counterpart are closest related to one another. This supports the classification of this enantiomorphic pair as dextral C. colbeauiana colbeauiana and sinistral C. colbeauiana inversa. Our results also reveal that these taxa and C. intersita Németh & Szekeres, 1995, sharing a characteristic collar behind the aperture of the shell, represent a monophyletic lineage. By contrast, the Cristataria species of non‐collared shells belong to another clade.  相似文献   

5.
Shell chirality among Cambrian gastropods is discussed. It is demonstrated that the earliest members of the class include chiral aberrations with abnormal opposite coiling of the shell. It is assumed that, in Cambrian gastropods, speciation could have occurred by mutation in the locus determining the chirality, as is proposed for extant gastropods. In contrast to modern gastropods, the existence of chiral morphs within single species has not been recorded in Cambrian mollusks, whereas the presence of chiral twin species is possible. The systematic position of sinistral representatives of the genus Aldanella Vostokova, 1962 is considered. Aldanella golubevi sp. nov. with sinistral shell is described from the base of the Tommotian Stage of the Anabar Region. Aberrant sinistral specimens of the normally dextral species Aldanella utchurica Missarzhevsky in Rozanov et al., 1969 and Pelagiella adunca Missarzhevsky in Rozanov et al., 1969 are figured.  相似文献   

6.
Aim We studied the history of colonization, diversification and introgression among major phylogroups in the American pika, Ochotona princeps (Lagomorpha), using comparative and statistical phylogeographic methods. Our goal was to understand how Pleistocene climatic fluctuations have shaped the distribution of diversity at mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) loci in this alpine specialist. Location North America’s Intermountain West. Methods We accumulated mtDNA sequence data (c. 560–1700 bp) from 232 pikas representing 64 localities, and sequenced two nuclear introns (mast cell growth factor, c. 550 bp, n = 148; protein kinase C iota, c. 660 bp, n = 139) from a subset of individuals. To determine the distribution of major mtDNA lineages, we conducted a phylogenetic analysis on the mtDNA sequence data, and we calculated divergence times among the lineages using a Bayesian Markov chain Monte Carlo approach. Relationships among nuclear alleles were explored with minimum spanning networks. Finally, we conducted coalescent simulations of alternative models of population history to test for congruence between nDNA and mtDNA responses to Pleistocene glacial cycles. Results We found that: (1) all individuals could be assigned to one of five allopatric mtDNA lineages; (2) lineages are associated with separate mountain provinces; (3) lineages originated from at least two rounds of differentiation; (4) nDNA and mtDNA markers exhibited overall phylogeographic congruence; and (5) introgression among phylogroups has occurred at nuclear loci since their initial isolation. Main conclusions Pika populations associated with different mountain systems have followed separate but not completely independent evolutionary trajectories through multiple glacial cycles. Range expansion associated with climate cooling (i.e. glaciations) promoted genetic admixture among populations within mountain ranges. It also permitted periodic contact and introgression between phylogroups associated with different mountain systems, the record of which is retained at nDNA but not mtDNA loci. Evidence for different histories at nuclear and mtDNA loci (i.e. periodic introgression versus deep isolation, respectively) emphasizes the importance of multilocus perspectives for reconstructing complete population histories.  相似文献   

7.
Albinaria, despite its restricted geographical distribution,exhibits an extreme degree of differentiation. The use of conventionalor numerical taxonomy has not facilitated the understandingof evolution of the genus. Twelve populations belonging to fourspecies were studied with a combined approach using mitochondrialDNA (mtDNA) and qualitative morphological data. The completemtDNA genome of A. coerulea from Amorgos island was cloned andused in mtDNA restriction site analysis of the other populations.Maximum parsimony cladistic analysis of nine populations providedtrees sharing the same basic topology. Certain restriction sitesand morphological characters appear to be species specific,while incongruity is observed at the intraspecific level. Sequencedivergence and the paleogeographic history of the area wereused for construction of an evolutionary scenario and a roughestimation of the Albinaria mtDNA clock. (Received 7 February 1994; accepted 20 July 1994)  相似文献   

8.
We provide a review of the systematics of Herichthys by evaluating the usefulness of several mitochondrial and nuclear genetic markers together with morphological data. The nDNA next‐generation sequencing ddRAD analysis together with the mtDNA cytochrome b gene provided well‐resolved and well‐supported phylogenies of Herichthys. On the other hand, the nDNA S7 introns have limited resolution and support and the COI barcoding analysis completely failed to recover all but one species of Herichthys as monophyletic. The COI barcoding as currently implemented is thus insufficient to distinguish clearly distinct species in the genus Herichthys that are supported by other molecular markers and by morphological characters. Based on our results, Herichthys is composed of 11 species and includes two main clades (the H. labridens and H. cyanoguttatus species groups). Herichthys bartoni is in many respects the most plesiomorphic species in the genus and has a conflicting phylogenetic position between mtDNA and nDNA markers, where the robust nDNA ddRAD data place it as a rather distant basal member of the H. labridens species group. The mtDNA of H. bartoni is on the other hand only slightly divergent from the sympatric and syntopic H. labridens, and the species thus probably have hybridized in the relatively recent past. The sympatric and syntopic Herichthys steindachneri and H. pame are supported as sister species. The Herichthys cyanoguttatus species group shows two well‐separated basal species (the northernmost H. minckleyi and the southernmost H. deppii) followed by the closely related and centrally distributed species H. cyanoguttatus, H. tepehua, H. carpintis, and H. tamasopoensis whose relationships differ between analyses and show likely hybridizations between themselves and the two basal species as suggested by conflicts between DNA analyses. Several instances of introgressions/hybridizations have also been found between the two main clades of Herichthys.  相似文献   

9.
Studies of right-left asymmetries have yielded valuable insights into the mechanisms of both development and evolution. Larvae from several groups of caddisflies (Trichoptera) build portable asymmetrical cases within which they live. In nearly all species that build spiral-walled tubular cases, the direction of wall coiling is random (equal numbers of dextral and sinistral cases within species) whereas in all species that build helicospiral, snail-like cases the direction of coiling is exclusively dextral. Asymmetrical tubes result from handed behavior, and ~20% of larvae removed from a spiral-walled, tubular case build a replacement case of opposite chirality. So handed behavior (and hence direction of tube-wall spiraling) is likely learned rather than determined genetically. Asymmetrical larval cases appear to have evolved at least seven times in the Trichoptera, five times as spiral-walled tubes and twice as snail-like helicospiral cases. Helicospiral cases may reduce vulnerability to predation by mimicking snail shells, whereas spiral arrangements of vegetation fragments in tube walls may be more robust mechanically than other arrangements, but experimental evidence is lacking. Within one family (Phryganeidae), one or perhaps two species exhibit an excess of sinistral-walled cases, suggesting that genes that bias handed behavior in a particular direction evolved after handed behaviors already existed (genetic assimilation).  相似文献   

10.
Summary Base composition, content of pyrimidine isopliths and the degree of methylation of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) from various vertebrates and protozoonCrithidia oncopelti have been studied. MtDNAs from mammals (ox, rat) do not differ in fact in the GC content from the respective nDNA. The GC content in mtDNA from fishes (sheat fish) and birds (duck, chicken) is 1.5–2.5 mole % higher than in the respective nDNA. Kinetoplast DNA (kDNA) fromCrithidia oncopelti (GC = 42.9 mole %) differs significantly in base composition from nDNA (GC = 51.3 mole %). All the mtDNA and kDNA studied differ from the respective nDNA by a lower degree of pyrimidine clustering. Th amount of mono and dipyrimidine fragments in mtDNA is more than 30 mole %, whereas in nDNA it does not exceed 23 mole %. The quantity of long pyrimidine clusters (hexa and others) is 2–4 times lower in mtDNA than in nDNA. The lower degree of clustering of pyrimidine nucleotides seems to be a specific feature of all the mtDNA studied. This may be indicative of common traits in the organization and origin of mtDNA. All mtDNA of vertebrates contain 5-methylcytosine as a minor base (1.5–3.15 mole %) and surpass by 1.5–2 times the respective nDNA in the methylation degree. It has been found that in animals mtDNA is species specific as far as the 5-methyl-cytosine content is concerned. In mitochondria and nuclei of rat liver certain DNA methylase activity has been detected, which providesin vitro the methylation of cytosine residues both in homologous DNA and various heterologous DNAs. The specificity of methylationin vitro of cytosine residues in the same heterologous DNA fromE. coli B varies with the source of enzymes. The mitochondrial enzyme methylates cytosine as the lone monopyrimidine residue, whereas the nuclear enzyme methylates cytosine in the di- and tripyrimidine fragments.  相似文献   

11.
The handedness of gastropods is genetically determined. The freshwater gastropod Lymnaea stagnalis is a normally dextral species, but contains minor sinistral populations. The gene responsible for handedness determination in this species is predicted to function maternally and specifically in the dextral-ovipositing snail. In this study, we used differential screening and cDNA subtraction to isolate eight dextral genes that are specific to, or enriched in, the dextral-ovipositing strains of L. stagnalis. These genes were promising candidates for the handedness-determining gene. In order to determine whether the true handedness-determining gene was among them, we tested for genetic correlations between the level of expression of each dextral gene and the handedness phenotype, i.e., the chirality of the next generation offspring, by using a collection of backcross F2 progeny of F1 offspring from crosses between dextral and sinistral strains. Although the present study could not identify the handedness-determining molecules, this approach appears to be promising for the isolation of such developmentally important genes.Edited by N. Satoh  相似文献   

12.
Why are sinistral snails so rare? Two main hypotheses are that selection acts against the establishment of new coiling morphs, because dextral and sinistral snails have trouble mating, or else a developmental constraint prevents the establishment of sinistrals. We therefore used an isolate of the snail Lymnaea stagnalis, in which sinistrals are rare, and populations of Partula suturalis, in which sinistrals are common, as well as a mathematical model, to understand the circumstances by which new morphs evolve. The main finding is that the sinistral genotype is associated with reduced egg viability in L. stagnalis, but in P. suturalis individuals of sinistral and dextral genotype appear equally fecund, implying a lack of a constraint. As positive frequency‐dependent selection against the rare chiral morph in P. suturalis also operates over a narrow range (< 3%), the results suggest a model for chiral evolution in snails in which weak positive frequency‐dependent selection may be overcome by a negative frequency‐dependent selection, such as reproductive character displacement. In snails, there is not always a developmental constraint. As the direction of cleavage, and thus the directional asymmetry of the entire body, does not generally vary in other Spiralia (annelids, echiurans, vestimentiferans, sipunculids and nemerteans), it remains an open question as to whether this is because of a constraint and/or because most taxa do not have a conspicuous external asymmetry (like a shell) upon which selection can act.  相似文献   

13.
Sinistral and dextral snails have repeatedly evolved by left-right reversal of bilateral asymmetry as well as coiling direction. However, in most snail species, populations are fixed for either enantiomorph and laboratory breeding is difficult even if chiral variants are found. Thus, only few experimental models of chiral variation within species have been available to study the evolution of the primary asymmetry. We have established laboratory lines of enantiomorphs of the pond snail Lymnaea stagnalis starting from a wild population. Crossing experiments demonstrated that the primary asymmetry of L. stagnalis is determined by the maternal genotype at a single nuclear locus where the dextral allele is dominant to the sinistral allele. Field surveys revealed that the sinistral allele has persisted for at least 10 years, that is, about 10 generations. The frequency of the sinistral allele showed large fluctuations, reaching as frequent as 0.156 in estimate under the assumption of Hardy-Weinberg equilibrium. The frequency shifts suggest that selection against chiral reversal was not strong enough to counterbalance genetic drift in an ephemeral small pond. Because of the advantages as a model animal, enantiomorphs of L. stagnalis can be a unique system to study aspects of chirality in diverse biological disciplines.  相似文献   

14.
Aim Hypotheses proposed for lineage diversification of tropical montane species have rarely been tested within oceanic islands. Our goal was to understand how basin barriers and Pleistocene climatic fluctuations shaped the distribution of diversity in Eleutherodactylus portoricensis (Eleutherodactylidae), a frog endemic to the montane rain forests of Puerto Rico. Location The north‐eastern (Luquillo) and south‐eastern (Cayey) mountains of Puerto Rico. Methods We generated mitochondrial DNA (mtDNA) control region sequences (c. 565 bp) from 144 individuals of E. portoricensis representing 16 localities, and sequenced 646 bp of cytochrome b and 596 bp of nuclear DNA (nDNA) rhodopsin exon and intron 1 from a subset of individuals. We conducted a phylogenetic analysis on the mtDNA sequence data and explored population substructure with maximum parsimony networks, a spatial analysis of molecular variance, and pairwise FST analysis. Coalescent simulations were performed to test alternative models of population divergence in response to late Pleistocene interglacial periods. Historical demography was assessed through coalescent analyses and Bayesian skyline plots. Results We found: (1) two highly divergent groups associated with the disjunct Luquillo and Cayey Mountains, respectively; (2) a shallow mtDNA genetic discontinuity across the La Plata Basin within the Cayey Mountains; (3) phylogeographic congruence between nDNA and mtDNA markers; (4) divergence dates for both mtDNA and nDNA pre‐dating the Holocene interglacial (c. 10 ka), and nDNA suggesting divergence in the penultimate interglacial (c. 245 ka); and (5) historical demographic stability in both lineages. Main conclusions The low‐elevation Caguas Basin is a long‐term barrier to gene flow between the two montane frog populations. Measures of genetic diversity for mtDNA were similar in both lineages, but lower nDNA diversity in the Luquillo Mountains lineage suggests infrequent dispersal between the two mountain ranges and colonization by a low‐diversity founder population. Population divergence began prior to the Holocene interglacial. Stable population sizes over time indicate a lack of demonstrable demographic response to climatic changes during the last glacial period. This study highlights the importance of topographic complexity in promoting within‐island vicariant speciation in the Greater Antilles, and indicates long‐term persistence and lineage diversification despite late Pleistocene climatic oscillations.  相似文献   

15.
The mitochondrial DNA (mtDNA) size of the terrestrial gastropod Albinaria turrita was determined by restriction enzyme mapping and found to be approximately 14.5 kb. Its partial gene content and organization were examined by sequencing three cloned segments representing about one-fourth of the mtDNA molecule. Complete sequences of cytochrome c oxidase subunit II (COII), and ATPase subunit 8 (ATPase8), as well as partial sequences of cytochrome c oxidase subunit I (COI), NADH dehydrogenase subunit 6 (ND6), and the large ribosomal RNA (IrRNA) genes were determined. Nine putative tRNA genes were also identified by their ability to conform to typical mitochondrial tRNA secondary structures. An 82-nt sequence resembles a noncoding region of the bivalve Mytilus edulis, even though it might contain a tenth tRNA gene with an unusual 5-nt overlap with another tRNA gene. The genetic code of Albinaria turrita appears to be the same as that of Drosophila and Mytilus edulis. The structures of COI and COII are conservative, but those of ATPase8 and ND6 are diversified. The sequenced portion of thelrRNA gene (1,079 nt) is characterized by conspicuous deletions in the 5 and 3 ends; this gene represents the smallest coelomate IrRNA gene so far known. Sequence comparisons of the identified genes indicate that there is greater difference between Albinaria and Mytilus than between Albinaria and Drosophila. An evolutionary analysis, based on COII sequences, suggests a possible nonmonophyletic origin of molluskan mtDNA. This is supported also by the absence of the ATPase8 gene in the mtDNA of Mytilus and nematodes, while this gene is present in the mtDNA of Albinaria and Cepaea nemoralis and in all other known coelomate metazoan mtDNAs.  相似文献   

16.
Aim To reconstruct the phylogenetic relationships of the four species of the genus Sarda (Sarda sarda, Sarda orientalis, Sarda australis and Sarda chilensis) and their phylogeographic history in the context of historical and ecological biogeography. Also, to reconstruct within‐species phylogenetic relationships to test whether the North Atlantic and Mediterranean populations of Atlantic bonito (S. sarda) warrant subspecies status, and the validity of the allopatric northern and southern populations of eastern Pacific bonito (S. chiliensis), recognized as S. chiliensis lineolata and S. chiliensis chiliensis. Location Representative samples of all four Sarda species collected world‐wide were analysed. Methods Phylogenetic inference was carried out with neighbour‐joining, maximum parsimony and maximum likelihood, employing nucleotide sequences of the mitochondrial DNA (mtDNA) control region I (CR‐I) and of the single‐copy nuclear DNA (nDNA) Tmo‐4c4 gene. Analysis of molecular variance was used on the mtDNA data to estimate the extent of geographic population structuring. Results Gene trees derived from mtDNA and nDNA data yielded concordant phylogenies that support the monophyly of the genus Sarda. The following sibling pairs received strong statistical support: striped bonito (S. orientalis) with Australian bonito (S. australis), and Atlantic bonito (S. sarda) with eastern Pacific bonito (S. chiliensis). Furthermore, the origin of S. sarda mtDNA is paraphyletic with respect to S. chiliensis, and these results are indicative of introgression. The analysis of Tmo‐4c4 sequences corroborates the ancestral hybridization between these allopatric species. Comparisons of north‐west Atlantic and Mediterranean populations of S. sarda using mtDNA CR‐I data revealed substantial genetic differentiation. By contrast, no differences between the putative northern and southern allopatric subspecies of S. chiliensis were detected. Main conclusions The monophyly of the genus Sarda as indicated by morphology is corroborated using both molecular markers. However, molecular phylogenies depicted a paraphyletic relationship between S. sarda and S. chiliensis. This phylogeographical relationship is better explained by an ancestral introgression facilitated by trans‐Arctic contact during the Pleistocene. The pronounced genetic differentiation between S. sarda samples from the north‐west Atlantic and the Mediterranean is consistent with the differentiation of these two regions, but not with the amphi‐Atlantic speciation hypothesis. Finally, the S. chiliensis lineolata and S. chiliensis chiliensis subspecies status is not supported by the molecular data.  相似文献   

17.
In this study, morphological differences were found that corroborate earlier results that showed the existence of six species within the previously monospecific African pike genus Hepsetus. Additional genetic data (coI, mtDNA and rag1, nDNA) confirm the morphology‐based species delineations. Deep genetic divergences imply a relatively old age for diversification within the genus. An identification key for the six species is provided in the present study.  相似文献   

18.
We have for the first time succeeded in expressing in vitro-synthesized mRNAs in both the sinistral and the dextral Lymnaea stagnalis early embryos by microinjecting the mRNAs into the eggs before the first polar body stage. Translation of exogenous mRNA in developing embryos was confirmed by expressing various fluorescent proteins; mCherry, DsRed-Express, and enhanced green fluorescent protein. We have found that the protein expression derived from the introduced exogenous mRNA largely depends on the elapsed time after the microinjection and not on the developmental stage of injection, and also on the amount of injected mRNA. Developmental abnormalities were hardly observed. The first notable fluorescent signal was detected within 2–3 h after the injection while the embryos were still in uncleaved stage. Fluorescence gradually increased until 8–9 h and was stable up to 24 h. From these results, it is suggested that there is enough translation machinery necessary for early development and the translation of injected mRNA proceeds immediately and constantly in the early embryos. This is true for both the sinistral and dextral L. stagnalis embryos. Application of the developed method to other freshwater pond snails, dextral Lymnaea peregra, sinistral Physa acuta, and sinistral Indoplanorbis exustus revealed that their early expression mechanisms to be similar to that of L. stagnalis. Thus, in vitro-synthesized mRNA expression is expected to be important for the understanding of evolutional process and the molecular mechanism underlining the handedness determination in these freshwater snail embryos.  相似文献   

19.
Summary The genetics of body asymmetry inLymnaea peregra follows a maternal mode of inheritance involving a single locus with dextrality being dominant to sinistrality. Maternal inheritance implies that all members of a brood have the same phenotype, however, some broods contain a few individuals of opposite coil. One purpose of this paper is to explain the origin of these anomalous individuals. Genetic analyses of sinistral broods with a few dextral individuals have led to the development of a cross-over model, with the anomalous dextrals originating as a consequence of crossing over either during meiosis or mitosis in the female germ line. The crossover either reconstitutes the dextral gene from previously dissociated parts, or creates a dextral gene by means of a position effect. The probability of a crossover event depends upon the appropriate combination of complementary sinistral chromosomes. Each crossover event has the potential of creating a unique dextral gene. Genetic analyses of dextral broods containing a few sinistral individuals have demonstrated that different dextral genes vary in penetrance.The dextral gene produces a product during oogenesis which influences the pattern of cleavage in the embryo; this cleavage pattern is translated into the appropriate body asymmetry. The other purpose of this paper is to provide an assay for this gene product. Cytoplasm from dextral eggs injected into uncleaved sinistral eggs causes these eggs to cleave in a dextral pattern. Cytoplasm from sinistral eggs has no effect on the cleavage pattern of dextral eggs. While the dextral gene product is made during oogenesis, it does not function in controlling cleavage until just before this process begins.  相似文献   

20.
The overwhelming predominance of dextral coiling in gastropods is an outstanding and puzzling phenomenon. A few sinistral specimens (left coiling individuals) have been found in many dextral species. Only six sinistral shells have ever been found in Cerion; we base this analysis on the five available shells. We ask whether reversed symmetry is a simple either-or switch without further consequences for shell form, or whether sinistrality engenders associated effects, making left-coiling shells unlike their dextral deme-mates in other ways. All five sinistral shells differ in features of size and coiling late in growth, leading to relatively small apertures and a slight twist in the axis of coiling. We detect and measure this effect as follows: in multivariate morphospace, sinistrals occupy peripheral positions among their dextral deme-mates; in univariate analysis, sinistrals are consistently different for a set of characters involving covariance patterns never before seen in a decade of studies on ontogenetic and age-standardized variation in dextrals; a bootstrap procedure does not recover similar patterns in randomly constituted samples of dextrals matching the true sinistral distribution; direct x-ray measures of the coiling axis detect its slight twist in sinistrals. We discuss the implications of these unsuspected associations for the issues of developmental constraint upon the evolution of morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号