首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
A new thecideid brachiopod species Kakanuiella chathamensis sp. nov. is described from deep waters on the Chatham Rise, east of South Island, New Zealand. The new species bears an unusual character combination in the shell morphology of its dorsal valve, displaying a mixture of diagnostic characters of both Recent thecideid subfamilies Thecidellininae and Lacazellinae. The resultant consequences for the systematic position of the genus Kakanuiella are discussed.  相似文献   

2.
Aim We examined the biogeography of three freshwater isopod species (Austridotea annectens, A. lacustris, A. benhami), and tested the hypotheses that genetic differences would: (1) exist between geographic locations; and (2) correspond to known geological events (e.g. appearance of islands leading to the availability of habitat). Location Southern New Zealand, including South Island, Stewart Island, Campbell Island and Chatham Islands. Methods We examined specimens throughout the known species range from 12 populations of A. lacustris, five populations of A. annectens, and three populations of A. benhami, using mitochondrial DNA (cytochrome c oxidase I) sequence analyses. Results We resolved three main clades corresponding to the three species, with 16% sequence divergence between A. annectens and A. benhami, and 31% divergence between these species and A. lacustris. Divergence within A. benhami was < 2.0%. However, divergence within A. lacustris reached up to 10% with four main groupings: (1) Chatham Islands; (2) Campbell Island; (3) Fiordland; and (4) east coast South Island and Stewart Island. Divergence within A. annectens reached up to 4.4%, with two main groupings: (1) Chatham Islands and (2) east coast South Island and Stewart Island. Patterns of genetic divergence were most likely the result of geographical isolation among A. lacustris and A. annectens populations. In particular, the divergence of A. lacustris and A. annectens on Chatham Islands may correspond to the availability of this habitat c. 4 Ma, whereas the divergence of A. lacustris on the much older Campbell Island and in Fiordland may indicate either a rare founder event or a change in ocean circulation that resulted in their isolation from a once more widespread gene pool. Main conclusions The three New Zealand species of Austridotea are genetically distinct, with up to 31% divergence between species. Genetic variability was highest between populations of the two most widely distributed species, and divergence was greatest on islands distant from mainland New Zealand and in the discrete Fiordland region. The magnitude of genetic divergence of isopods on the Auckland and Chatham Islands is consistent with these populations having been founded in the Pliocene via oceanic dispersal from mainland New Zealand.  相似文献   

3.
4.
This paper revises and updates taxonomic and distributional information about hagfishes (Myxinidae) from Australia. It covers five species of the genus Eptatretus: Eptatretus cirrhatus known from eastern Australia and also distributed around New Zealand, Eptatretus longipinnis endemic to South Australia, Eptatretus strahani originally described from the Philippines and reported here as a new record from Western Australia and two new species described herein as Eptatretus alastairi and Eptatretus gomoni, both from Western Australia. Eptatretus alastairi is distinguished from all congeners by the unique combination of the following characters: six pairs of gill pouches; three‐cusp multicusps on the anterior and posterior rows of cusps; anterior unicusps 9–12; posterior unicusps 8–11; total cusps 48–56; prebranchial pores 13–16; branchial pores 5–6; trunk pores 50–55; tail pores 11–13; total pores 83–88; two bilaterally symmetrical nasal‐sinus papillae in the dorsal surface of the nasal sinus. Eptatretus gomoni is distinguished from all congeners by the unique combination of the following characters: eight pairs of gill pouches; three‐cusp multicusps on the anterior and two‐cusp multicusps on the posterior row of cusps; anterior unicusps 10–11; posterior unicusps 9–10; total cusps 50; prebranchial pores 12–13; branchial pores 7–8; trunk pores 57–58; tail pores 14–15; total pores 91–93; no nasal‐sinus papillae. An identification key for the Australian species of Eptatretus is also provided.  相似文献   

5.
We have used comparative phylogenetic analysis to infer the age and biogeographical origins of the Three Kings Islands insect fauna, an archipelago only 56 km off the northern tip of New Zealand. We densely sampled six insect lineages (five Coleoptera, Brachynopus latus, Brachynopus scutellaris, Tarphiomimus spp., Epistranus lawsoni, and Syrphetodes spp., and one Phasmatodea, Pseudoclitarchus sentus) throughout New Zealand and sequenced mitochondrial DNA to assess phylogenetic relationships and determine ages of haplotype lineages on the Three Kings Islands. We recovered two biogeographical patterns. The first pattern was seen in three taxa, B. latus, Syrphetodes spp., and E. lawsoni, which had sister group relationships between the Three Kings and the adjacent North Cape region at the very northern tip of New Zealand. The second pattern, inferred in P. sentus, B. scutellaris, and Tarphiomimus spp., was where Three Kings lineages had sister groups that were widespread throughout most or all of New Zealand. The divergence dates, estimated using a range of previously estimated substitution rates, ranged from as old as 24 Mya in B. scutellaris to as young as 2.24 Mya in Tarphiomimus. These results are consistent with continual emergent land on the Three Kings Ridge since at least the Miocene and a lack of land connections between the Three Kings Islands and mainland New Zealand during Pleistocene sea‐level lowering. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 108 , 361–377.  相似文献   

6.
Lepidapedon blairi n. sp. is described from the gut of Coelorhinchus bollonsi from a depth of 570 m on the Chatham Rise off the east coast of South Island, New Zealand. It is distinguished from its congeners by its vitelline distribution, which does not extend much anterior to the ovary, and the extent of the excretory vesicle, which does not reach the posterior testis.  相似文献   

7.
We describe an extinct parrot from late Quaternary fossil bone deposits on the Chatham Islands, located c. 800 km east of mainland New Zealand. Mitochondrial DNA analyses and osteological characters confirm that the Chatham Islands parrot was a sister taxon to the New Zealand kaka (Nestor meridionalis Gmelin, 1788). The relatively large femur : humerus length ratio and broad pelvis of the Chatham Islands parrot indicate that it had a more terrestrial habit than the kaka. Stable dietary isotope analyses (δ 15N and δ 13C) of Chatham Islands parrot bones suggest that the species may have been mainly herbivorous, although further analyses are required to confirm this. The presence of Chatham Islands parrot bones in early midden deposits shows that the species persisted into the post‐settlement era, and became extinct possibly as a result of habitat loss, hunting pressure, and rat predation following initial Polynesian settlement of the islands (sometime between the 13th and 16th centuries AD). © 2014 The Linnean Society of London  相似文献   

8.
Aim Determine the phylogeny and dispersal patterns of the cicada genus Kikihia in New Zealand and the origin of the Norfolk, Kermadec, and Chatham Island cicadas. Location New Zealand, Norfolk Island, Kermadec Islands and Chatham Island. Methods DNA sequences from 16 species and four soon to be described species of cicadas from New Zealand and Norfolk Island (Australia) were examined. A total of 1401 base pairs were analysed from whole genome extraction of three mitochondrial genes (cytochrome oxidase subunit II, ATPase6 and ATPase8). These DNA sequences were aligned and analysed using standard likelihood approaches to phylogenetic analysis. Dates of divergences between clades were determined using a molecular clock based on Bayesian statistics. Results Most species in the genus Kikihia diverged between 3 and 5 million years ago (Ma) coincident with a period of rapid mountain building in New Zealand. Cicada species on the Kermadec and Norfolk Islands invaded recently from New Zealand and are closely related to the New Zealand North Island species Kikihia cutora. Main conclusions Speciation in the genus Kikihia was likely due in large part to the appearance of new habitats associated with the rise of the Southern Alps, starting c. 5 Ma. Dispersal of Kikihia species within mainland New Zealand probably occurred gradually rather than through long‐distance jumps. However, invasion of Norfolk, the Kermadecs and Chatham Islands had to have occurred through long‐distance dispersal.  相似文献   

9.
Cretaceous–Tertiary (K–T) boundary (ca. 65 Ma) sections on a Southwest Pacific island containing dinosaurs were unknown until March 2003 when theropod bones were recovered from the Takatika Grit on the remote Chatham Islands (latitude 44° S, longitude 176° W), along the Chatham Rise. Tectonic and palaeontologic evidence support the eastward extension of a ca. 900 km land bridge that connected the islands to what is now New Zealand prior to the K–T boundary. The Chathams terrestrial fauna inhabited coastal, temperate environments along a low-lying, narrow, crustal extension of the New Zealand subcontinent, characterised by a tectonically dynamic, volcanic landscape with eroding hills (horsts) adjacent to flood plains and deltas, all sediments accumulating in grabens. This finger-like tract was blanketed with a conifer and clubmoss (Lycopodiopsida) dominated forest. The Chatham Islands region would have, along with New Zealand, provided a dinosaur island sanctuary after separating from the Gondwana margin ca. 80 Ma.  相似文献   

10.
A newly discovered plesiomorphic genus and species of calanoid copepod ( P inkertonius ambiguus gen. et sp. nov. ) taken with an epibenthic sledge from the flanks of the Chatham Rise, east of New Zealand, at a depth of about 900 m, could not be assigned to any known genus or family based on available diagnoses. A morphology‐based cladistic analysis of all genera previously placed in the Epacteriscidae, Pseudocyclopidae, Ridgewayiidae, Boholinidae, and the new taxon is presented. The Pseudocyclopidae and Epacteriscidae are confirmed as monophyletic families, and the family names Ridgewayiidae and Boholinidae become synonyms of Pseudocyclopidae. There are no grounds upon which more than a single basal superfamily, the Pseudocyclopoidea, can be recognized. The superfamily Pseudocyclopoidea, and families Pseudocyclopidae, Epacteriscidae, and the new genus are diagnosed. P inkertonius ambiguus gen. et sp. nov. is placed within the Pseudocyclopidae. Genetic data adds to the definition of the new taxon and confirms the basal position of the Pseudocyclopoidea in a revised Calanoida phylogeny. This phylogeny contributes to an improved resolution of the relationships among the Centropagoidea, Megacalanoidea, Bathypontioidea, Eucalanoidea, and Clausocalanoidea, as well as providing testable hypotheses for future work. © 2014 The Linnean Society of London  相似文献   

11.
Abstract

The second species of the genus, Macroasteropteron chathamensis sp. nov. is described in the present paper. It was collected from 1000 m depth during the New Zealand national biodiversity programme Ocean Survey 20/20 to the Chatham Rise and the Challenger Plateau. To accommodate this genus, a new subfamily Macroasteropteroninae is described herein. It is defined by the following autapomorphies: locking system on the shell; very small second segment on the second antenna (bearing no dorsal bristles); square shaped third and fourth segments on the same appendage; absence of dorsal bristles on the third segment of the male clasping organ; reverse position of the alpha and beta bristles on the maxillula; almost square shaped skirt on the sixth limb; and a bulbous terminal part of the seventh limb, which, in addition, does not have any bell-bearing bristles. A key to the four subfamilies of Cylindroleberididae is provided.  相似文献   

12.
Aim The New Zealand avifauna includes lineages that lack close relatives elsewhere and have low diversity, characteristics sometimes ascribed to long geographic isolation. However, extinction at the population and species levels could yield the same pattern. A prominent example is the ecologically important pigeon genus Hemiphaga. In this study, we examined the population structure and phylogeography of Hemiphaga across islands in the region. Location New Zealand, Chatham Islands and Norfolk Island. Methods Mitochondrial DNA was sequenced for all species of the genus Hemiphaga. Sixty‐seven individuals from mainland New Zealand (Hemiphaga novaeseelandiae novaeseelandiae), six of the Chatham Islands sister species (Hemiphaga chathamensis), and three of the extinct Norfolk Island subspecies (Hemiphaga novaeseelandiae spadicea) were included in this study. Novel D‐loop and cytochrome b primers were designed to amplify DNA from museum samples. Additionally, five other mitochondrial genes were used to examine placement of the phylogenetic root. Results Analyses of mitochondrial DNA sequences revealed three Hemiphaga clades, consistent with the allopatric populations of recognized (sub)species on oceanic islands. Of the 23 D‐loop haplotypes among 67 New Zealand pigeons (Hemiphaga n. novaeseelandiae), 19 haplotypes were singletons and one haplotype was common and widespread. Population genetic diversity was shallow within and between New Zealand populations, indicating range expansion with high inter‐population exchange. Tentative rooting of the Hemiphaga clade with cyt b data indicates exchange between mainland New Zealand and the Chatham Islands prior to colonization of Norfolk Island. We found low genetic divergence between populations on New Zealand, the Chatham Islands and Norfolk Island, but deep phylogenetic divergence from the closest living relatives of Hemiphaga. Main conclusions The data are consistent with the hypothesis of population reduction during the Pleistocene and subsequent expansion from forest refugia. Observed mobility of Hemiphaga when feeding helps explain the shallow diversity among populations on islands separated by many hundreds of kilometres of ocean. Together with comparison of distribution patterns observed among birds of the New Zealand region, these data suggest that endemicity might represent not long occupancy of an area, but descent from geologically recent colonizations. We consider the role of lineage pruning in creating the impression of old endemicity.  相似文献   

13.
The morphological characteristics of the venous pole and pericardium of the heart were examined in three hagfish species, Myxine glutinosa, Eptatretus stoutii, and Eptatretus cirrhatus. In these species, the atrioventricular (AV) canal is long, funnel‐shaped and contains small amounts of myocardium. The AV valve is formed by two pocket‐like leaflets that lack a papillary system. The atrial wall is formed by interconnected muscle trabeculae and a well‐defined collagenous system. The sinus venosus (SV) shows a collagenous wall and is connected to the left side of the atrium. An abrupt collagen‐muscle boundary marks the SV‐atrium transition. It is hypothesized that the SV is not homologous to that of other vertebrates which could have important implications for understanding heart evolution. In M. glutinosa and E. stoutii, the pericardium is a closed bag that hangs from the tissues dorsal to the heart and encloses both the heart and the ventral aorta. In contrast, the pericardium is continuous with the loose periaortic tissue in E. cirrhatus. In all three species, the pericardium ends at the level of the SV excluding most of the atrium from the pericardial cavity. In M. glutinosa and E. stoutii, connective bridges extend between the base of the aorta and the ventricular wall. In E. cirrhatus, the connections between the periaortic tissue and the ventricle may carry blood vessels that reach the ventricular base. A further difference specific to E. cirrhatus is that the adipose tissue associated with the pericardium contains thyroid follicles. J. Morphol. 277:853–865, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
Abstract

We describe a new skink species (Oligosoma taumakae sp. nov.) from the Open Bay Islands, New Zealand. This species is diagnosed on the basis of several morphological characteristics, and its specific status is supported by mitochondrial sequence data (ND2, ND4). The new species appears to be most closely related to O. acrinasum, O. infra‐punctatum, O. otagense and O. waimatense. The new taxon appears to be rare and endemic to the island of Taumaka in the Open Bay Islands (off the west coast of the South Island). Predation by a flightless rail (weka, Gallirallus australis), native to New Zealand but introduced to the Open Bay Islands, is a major conservation concern.  相似文献   

15.
Abstract

Three endemic taxa of Cominella Gray are recorded from the Three Kings Islands, New Zealand. Cominella (Josepha) regalis n.sp. and C. (Josepha) quoyana griseicalx n.ssp. occur sympatrically in relatively shallow water (to c.50m), whereas C. (Eucominia) mirabilis mirabilis Powell is known only from c.180m. The history of colonisation by these taxa is hypothesised and discussed.  相似文献   

16.
The New Zealand hagfish, Eptatretus cirrhatus, is known to eliminate parts of its chromosomes during embryogenesis from presumptive somatic cells. Electrophoresis of germ line and somatic DNAs of this species, after treatment with the restriction endonucleases DraI and EcoRI, revealed three fragments of DNA that were restricted to the germ line. DNA filter hybridization experiments demonstrated that these fragments were present almost exclusively in the germ line DNA of E. cirrhatus and that they were highly and tandemly repeated. Thus, these DNA fragments appeared to be eliminated during embryogenesis. Moreover, one fragment (a DraI fragment) cross-hybridized with the germ line DNA from other species of hagfish, namely, Eptatretus okinoseanus and Paramyxine atami. Molecular cloning and sequence analysis revealed that the DraI fragment was composed mainly of closely related sequences of 85 bp in length and that this sequence was about 75% homologous to the sequence of EEEo2 (eliminated element of E. okinoseanus 2) which is a germ line-restricted and highly repetitive sequence that was isolated previously from E. okinoseanus. The other two fragments were composed of three families of closely related sequences that were 172 bp long (designated EEEc1), 61 bp long (EEEc2) and 54 bp long (EEEc3). Fluorescence in situ hybridization experiments revealed that each eliminated element was distributed on several chromosomes that are limited to germ cells. EEEo2 was dispersed on 12 C-band-positive chromosomes. EEEc1 and EEEc3 were dispersed on all C-band-positive and several C-band-negative chromosomes. By contrast, EEEc2 was located to terminal regions of several C-band-negative chromosomes. These results suggest that the eliminated chromosomes in hagfish are mosaics of highly repeated, germ line-restricted families of DNA sequences. Received: ██; in revised form: 25 October 1997 / Accepted: ██  相似文献   

17.
Osteopeltidae n. fam. is proposed for Osteopelta mirabilis n.gen. & sp., a limpet from whale skulls trawled on the ChathamRise and off the Chatham Islands, New Zealand. Osteopelta mirabiliscombines a pseudococculinid-like shell and radula with an add-isoniid-likeanimal. Apparent homologies in lepe-telloidean and cocculinoideanradulae are discussed. (Received 27 August 1986;  相似文献   

18.
Hagfishes have been the target of commercial fisheries in many areas of the world, with the catch processed for leather and for human consumption. A fishery has been operating in New Zealand waters for the last six years, harvesting the bearded hagfish, Eptatretus cirrhatus. The fishery has thus far been unregulated. Based on samples collected dockside over a two-year period, this report expands the morphometric database for this species, provides information on the size and weight of the harvested animals, determines the sizes at the onset of gonadal development and the minimum sizes at sexual maturation for males and females, and indicates that E. cirrhatus, like most other hagfish species, has no specific breeding season. Although females appear in the population at smaller sizes, the sex ratio for mature animals is 1:1 and the sizes of the largest males and females are comparable. The changes observed in sex ratio as a function of TL suggest differences in the timing and rates of gonadal development in females versus males rather than protogyny. Based on the size of the eggs, the number of eggs per female, the proportion of the population that contains large eggs, and the number of postovulatory females, it is clear that E. cirrhatus, like other hagfish species, are potentially vulnerable to overexploitation.  相似文献   

19.
Two species of Phycodrys, Phycodrys quercifolia (Bory) Skottsberg and Phycodrys profunda E.Y.Dawson were previously recorded from New Zealand. However, an examination of Phycodrys collections from the New Zealand region showed that all were morphologically different from P. quercifolia (Type locality: the Falkland Islands) and P. profunda (Type locality: CA, USA). RbcL sequence analyses established that the New Zealand Phycodrys species formed a natural assemblage within the genus, consisting of three new species: P. novae-zelandiae sp. nov., P. franiae sp. nov. and P. adamsiae sp. nov. Phycodrys novae-zelandiae is the largest of the three, up to 20 cm in height, with a distinct midrib and multicellular, opposite to subopposite lateral macroscopic veins. It has entirely monostromatic blades except near the midrib and veins, and its procarp contains a three-celled sterile group one (st1) and a one-celled sterile group two (st2). Phycodrys franiae was previously treated as a cryptic species among herbarium collections of P. ‘quercifolia’. It is smaller (4–11 cm high) with weakly developed midribs and veins, the blade is tristromatic throughout, except at the growing margins, and the procarp consists of a four-celled st1 and a two–three-celled st2. Phycodrys adamsiae, previously reported as P. profunda, is a small decumbent or prostrate plant, 1–8 cm long, with a midrib and inconspicuous lateral veins. The blades are tristromatic with serrated margins, two–four-celled surface spines and multicellular marginal holdfasts that differ from those of Californian specimens. The tetrasporangia are borne on marginal bladelets. Phylogenetic analyses place the New Zealand species in a separate group that is distantly removed from most other Phycodrys species.  相似文献   

20.
Aim  It is well established that many groups of plants and animals have undergone long-distance dispersal, but the extent to which this continues beyond initial colonization is largely unknown. To provide further insight into the frequency of gene flow mediated by long-distance dispersal, we investigated the origins of the fern Asplenium hookerianum on the Chatham Islands, and present a review of the contribution of molecular data to elucidating the origins of this archipelago's biota.
Location  Chatham Islands and New Zealand. A. hookerianum is scarce on the Chatham Islands but common in New Zealand, some 800 km to the west.
Methods  We compared chloroplast trnL–trnF DNA sequence data from Chatham Islands' A. hookerianum with extensive phylogeographic data for this genetically variable species in mainland New Zealand.
Results  Our sequencing revealed the presence of two haplotypes in Chatham Islands' A. hookerianum . These haplotypes differed by four mutational events and were each more closely related to haplotypes found in New Zealand than to each other.
Main conclusions  Despite the rarity of A. hookerianum on the Chatham Islands, its populations there appear to derive from at least two long-distance dispersal events from New Zealand, these possibly originating from different areas. We suggest that long-distance transoceanic dispersal, and the gene flow it can mediate, may be more common than is generally appreciated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号