首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two geographically distinct populations of giraffe (Giraffa camelopardalis) were sampled for this study, the northern Namib Desert and Etosha National Park. Population genetic parameters and relationships within subpopulations were estimated to better understand the genetic architecture of this isolated subspecies. Gene flow between the geographically separated populations can be attributed to recent translocation of giraffe between the two populations. Inbreeding estimates in the six subpopulations studied were low though we found evidence that genetic drift may be affecting the genetic diversity of the isolated populations in northern Namibia. Population dynamics of the sampling locations was inferred with relationship coefficient analyses. Recent molecular systematics of the Namibian giraffe populations indicates that they are distinct from the subspecies Giraffa camelopardalis giraffa and classified as G. c. angolensis. Based on genetic analyses, these giraffe populations of northern Namibia, the desert‐dwelling giraffe and those protected in Etosha National Park, are a distinct subspecies from that previously assumed; thus we add data on G. c. angolensis to our scientific knowledge of this giraffe of southern Africa.  相似文献   

2.
Summary  A comparative study of the leaf outline morphometrics of Monstera adansonii var. klotzschiana, M. adansonii var. laniata and M. praetermissa was carried out. The study focused on populations in isolated montane humid (brejo) forests of Ceará state in Northeast Brazil and compared them with populations from Amazonia and the Brazilian Atlantic Forest. Digitised outlines were prepared from a total of 1,695 field-collected leaf images from 20 populations, and elliptic Fourier analysis was used to generate matrices of coefficients, from which six shape variables (principal components) were extracted using Principal Components Analysis. Intra-population variability and inter-population differences were analysed with multivariate distance methods. Separate analyses were carried out for each of three leaf size classes (juvenile, submature, mature) because of the strong heteroblasty typical of this genus. Juvenile leaves were the least variable size class within populations of M. adansonii var. klotzschiana. The shape variables expressed very similar types of variation in all three size classes. The Ceará brejo populations of M. adansonii var. klotzschiana showed significant differences between mature leaf outlines in all pairwise comparisons; the Pacatuba population was the most distinct. The Ceará populations did not cluster together exclusively. In all three size classes, populations clustered together into their taxonomic groups, most clearly so in mature leaves. No correlation between morphological and geographic distance matrices was found, nor between morphological and molecular distance. The study showed that leaf outline shape is a practicable and useful quantitative trait for studying morphological variability at species, varietal and population levels. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Truncatelloid gastropods are one of the most species‐rich subterranean invertebrate groups. Their current taxonomy is based on morphological characters. However, this is not a comprehensive approach and does not take into account the degree of phylogenetic divergence between stygobiont populations inhabiting hydrologically isolated but geographically close caves. We studied two Paladilhiopsis populations of a small and isolated karstic area (Mecsek Mountains, Hungary) with two hydrologically separated cave systems, investigating morphological (shell morphometrics) and genetic (COI, 16S) divergence together. The populations differed both morphologically and genetically: we found strong divergence in the relative width of the shell (best described by the variable “shell angle”) and a 6.4% divergence in COI. This provides strong support for the presence of two distinct taxa; however, it is still doubtful whether they differ at the species or the subspecies level. In one of the caves, we found representatives of both haplotypes (and phenotypes), which can be explained by secondary contact after an allopatric divergence.  相似文献   

4.
Scalation, colour pattern, linear and geometric morphometrics were used to quantify geographical differentiation in the long-nosed snake, Rhinocheilus lecontei, and to test the hypothesis that all four subspecies are morphologically distinct. Also investigated were potential associations between morphological (scalation, colour pattern, linear measurements) and environmental variables (climate, vegetation, soil). Sexual dimorphism was weakest for geometric and strongest for linear morphometric variables. Morphological variables differed widely in their ability to differentiate subspecies. Linear morphometric variables achieved the most statistically significant pairwise Mahalanobis distances between subspecies, while geometric morphometrics largely failed to differentiate them. Colour pattern showed the strongest and linear morphometrics the weakest correlation with environment. Several characters varied continuously along latitudinal or longitudinal gradients, such that, in some cases, the clines for closely related traits were discordant. No one subspecies was consistently divergent in all analyses, leading to the conclusion that the three mainland subspecies are not sufficiently distinct to warrant separate subspecies status. The island subspecies, though not always statistically distinct, is geographically separate from other populations and differs in characters related to size. Given the small number of specimens available, a decision regarding its taxonomic status (i.e. elevation to species level) is best deferred until additional specimens can be examined and data on molecular variation can be analysed.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 65–85.  相似文献   

5.
6.
The identification of the genes involved in morphological variation in nature is still a major challenge. Here, we explore a new approach: we combine 178 samples from a natural hybrid zone between two subspecies of the house mouse (Mus musculus domesticus and Mus musculus musculus), and high coverage of the genome (~ 145K SNPs) to identify loci underlying craniofacial shape variation. Due to the long history of recombination in the hybrid zone, high mapping resolution is anticipated. The combination of genomes from subspecies allows the mapping of both, variation within subspecies and inter‐subspecific differences, thereby increasing the overall amount of causal genetic variation that can be detected. Skull and mandible shape were measured using 3D landmarks and geometric morphometrics. Using principal component axes as phenotypes, and a linear mixed model accounting for genetic relatedness in the mapping populations, we identified nine genomic regions associated with skull shape and 10 with mandible shape. High mapping resolution (median size of significant regions = 148 kb) enabled identification of single or few candidate genes in most cases. Some of the genes act as regulators or modifiers of signalling pathways relevant for morphological development and bone formation, including several with known craniofacial phenotypes in mice and humans. The significant associations combined explain 13% and 7% of the skull and mandible shape variation, respectively. In addition, a positive correlation was found between chromosomal length and proportion of variation explained. Our results suggest a complex genetic architecture for shape traits and support a polygenic model.  相似文献   

7.
The family Ursidae is currently one of the taxonomic groups with the lowest number of species among Carnivora. Extant bear species exhibit broad ecological adaptations both at inter‐ and intraspecific level, and taxonomic issues within this family remain unresolved (i.e., the number of recognizable subspecies). Here, we investigate a sample of bear mandibles using two‐dimensional geometric morphometrics to better characterize bear taxonomy and evolution with a focus on one of the most widespread species: the brown bear (Ursus arctos). Our analyses confirm that both size and shape data are useful continuous characters that discriminate with very high percentage of accuracy extant bears. We also identify two very distinct mandibular morphologies in the subspecies Ursus actos isabellinus and Ursus arctos marsicanus. These taxa exhibit a high degree of morphological differentiation possibly as a result of a long process of isolation. Ecogeographical variation occurs among bear mandibles with climate impacting the diversification of the whole family.  相似文献   

8.
A detailed uni‐ and multivariate analysis of within‐island geographical variation in scalation and body dimensions of the lacertid lizard, Gallotia atlantica, from Lanzarote (and two neighbouring offshore islets) was carried out. Two main morphological groupings were detected: four populations clustered within a putative malpaís group, i.e. from relatively recent volcanic lava fields (seven populations were sampled from these areas), while the other 19 populations (including the three remaining malpaís populations, and those from the offshore islets of Montaña Clara and Alegranza) also clustered together. Thus, while there is a tendency for occupation of malpaís areas to be related to morphological variation, this model does have some inconsistencies. The differentiated malpaís group comprises populations from two geographically isolated areas, one from the central‐western part of the island (Timanfaya) and the other from the north (Malpaís de la Corona). The divergence of these populations is considered to have arisen recently, rather than their being relicts of an ancient, formerly widespread, lineage. The morphological variation partially supports the previous use of two different subspecies to describe the within‐island variation. However, if such a scheme were applied then one of the subspecies would need to encompass populations from the geographically separated southern Timanfaya and Malpaís de la Corona areas, as opposed to just the latter. We reject previous observations that either malpaís individuals in general, or those corresponding to the north‐eastern subspecies, are larger than individuals from other areas. The pattern of morphological variation of G. atlantica within Lanzarote is less pronounced but shows some similarities with patterns of morphological variation in lizards from neighbouring islands. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85 , 395–406.  相似文献   

9.
The carnivorous wetland plant, Sarracenia purpurea (the northern pitcher plant) is native to eastern and Midwestern North America. This species is abundant within its habitat but suitable habitat is increasingly scarce, raising interest in S. purpurea restoration and conservation. Complicating conservation planning, two controversial subspecies of S. purpurea are historically defined primarily on morphologic traits: S. purpurea subsp. purpurea distributed north of Maryland and S. purpurea subsp. venosa distributed south of Maryland. S. purpurea is also found in three distinct habitat types defined by substrate: acidic Sphagnum peatlands, acidic sandy savannahs, and alkaline marl wetlands. In species level studies, S. purpurea leaves have exhibited morphological plasticity in response to environmental variability, bringing into question the validity of subspecies definitions based on morphology alone. This study examined morphologic and genetic variation throughout S. purpurea’s natural distribution, encompassing both the traditional subspecies and three unique habitat types testing the validity of traditional subspecies definitions. Genetic analysis indicated possible ecological significance of considering a new grouping of S. purpurea populations into Midwest, N. East Coast and S. East Coast populations (AMOVA % variation = 13.34, P = 0.0078) based on genetic differentiation. Morphological variation in leaf shape measurements supported this division as well as indicating plasticity associated with environmental variables. This study conservatively suggests that new, geographical area conservation units may be a more important conservation unit for preserving S. purpurea genetic variation and morphological plasticity than traditional subspecies definitions.  相似文献   

10.
We assess morphological and multilocus genetic variation among 11 isolated montane populations of white‐toothed shrews from Tanzania that have been referred to either Crocidura monax Thomas or C. montis Thomas. The montane sites we sampled represent ‘sky‐islands’ from two geologically distinct archipelagos (Northern Highlands and the Eastern Arc Mountains) and are a significant component of the Eastern Afromontane Biodiversity Hotspot. We used multivariate analyses of morphometric traits and phylogenetic and species‐delimitation analyses of multilocus DNA sequence data to assess species‐level diversity. Our species delimitation analyses included a novel, pairwise validation approach that avoids potential biases associated with specifying a guide tree. These analyses reveal several distinct lineages, which we treat as six allopatric species. Each species is restricted to one, two or four mountains. We use available names to recognize C. monax, C. tansaniana Hutterer and C. usambarae Dippenaar, while naming and describing three new species. Our results demonstrate the effectiveness of combining morphological and genetic data to uncover and describe hidden diversity in a cryptic mammalian system. © 2015 The Linnean Society of London  相似文献   

11.
We evaluated the validity of the subspecific designation for Schistocerca gregaria gregaria (Forskål) and Schistocerca gregaria flaviventris (Burmeister), isolated in distinct regions along the north–south axis of Africa. Towards this goal, we assessed the variation of multiple morphological and molecular traits within species. We first used elliptic Fourier and landmark‐based relative warps analyses to compare the size and shape of two internal and two external structures of male genitalia. We provide a discriminant function which classified the specimens with 100% accuracy and selected shape elements of the external structures only (cercus and epiproct). We also tested eight molecular markers, and because of either absence of variation or contamination by mitochondrial DNA (mtDNA)‐like sequences, we used a clone‐and‐sequence analysis of the standard cytochrome c oxidase subunit I mitochondrial DNA barcode only. We differentiated 185 true mitochondrial sequences from 66 mitochondrial DNA‐like sequences, most of which were from S. g. gregaria specimens. On the dataset of mitochondrial origin, we identified three characteristic point mutations that diagnosed the two allopatric subspecies with 94% accuracy. Minimum spanning network and parsimony tree analyses identified S. g. flaviventris as a monophyletic lineage distinct from the nominate subspecies. Accordingly, microsatellite data indicate rarely occurring admixture events only, showing that independent evolutionary history is the norm.  相似文献   

12.
Molecular and morphological variation in the Balkan diploidCardamine acris was studied by amplified fragment length polymorphism (AFLP) and multivariate morphometric analyses. Principal coordinate analysis and neighbour-joining analysis of the AFLP data showed three genetically differentiated groups of populations corresponding to their geographic origin. Following the results of molecular analysis three subspecies were recognized by a combination of morphological characters as shown by separate analyses of field-collected and cultivated plants. These subspecies are allopatric;C. acris subsp.acris occurs in most parts of the Balkan Peninsula, and newly described subsp.pindicola and subsp.vardousiae are endemic to the Northern Pindhos Mts. in Northwestern Greece, and Central Greece, respectively. The differentiation into geographically isolated subspecies is most probably caused by long-term isolation of populations in different mountain ranges of the Balkan Peninsula, possibly initiated during the cold periods of the Pleistocene.  相似文献   

13.
《Journal of morphology》2017,278(4):475-485
The study of morphological variation among and within taxa can shed light on the evolution of phenotypic diversification. In the case of urodeles, the dorso‐ventral view of the head captures most of the ontogenetic and evolutionary variation of the entire head, which is a structure with a high potential for being a target of selection due to its relevance in ecological and social functions. Here, we describe a non‐invasive procedure of geometric morphometrics for exploring morphological variation in the external dorso‐ventral view of urodeles' head. To explore the accuracy of the method and its potential for describing morphological patterns we applied it to two populations of Salamandra salamandra gallaica from NW Iberia. Using landmark‐based geometric morphometrics, we detected differences in head shape between populations and sexes, and an allometric relationship between shape and size. We also determined that not all differences in head shape are due to size variation, suggesting intrinsic shape differences across sexes and populations. These morphological patterns had not been previously explored in S. salamandra , despite the high levels of intraspecific diversity within this species. The methodological procedure presented here allows to detect shape variation at a very fine scale, and solves the drawbacks of using cranial samples, thus increasing the possibilities of using collection specimens and alive animals for exploring dorsal head shape variation and its evolutionary and ecological implications in urodeles. J. Morphol. 278:475–485, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

14.
The Mariana flying fox (Pteropus mariannus) has suffered substantial decline in recent years. Taxonomic classification of P. mariannus has been inconsistent, with subspecies designations based mainly on geography and morphological variation within small sample sizes. In this study, we examine relationships of P. mariannus across two island groups in the western Pacific Ocean. Microsatellite data and mitochondrial sequences, from D-loop, cytochrome oxidase I, and cytochrome b, suggest that the population on the islands of Palau is genetically isolated from the populations in the Mariana Islands. Our data confirm that the bats of Palau should be considered a separate conservation unit from the bats of the Mariana Islands, supporting the current subspecies separation of these two populations. Our results also suggest that there is gene flow among islands within the Mariana archipelago and that the bats on these islands, currently classified as two subspecies, should be managed as a single conservation unit, although we refrain from suggesting taxonomic revisions until genetic and morphological data become available from geographically intermediate populations.  相似文献   

15.
Morphometric relationships between populations ofPapaver radicatum within the southern Norwegian mountains were investigated using canonical variates analysis andWard's clustering on capsule and leaf character sets. The survey describes patterns of variation among 13 wild-scored populations from five geographically disjunct localities, usually assigned to five races or subspecies. Our results from wild-collected material largely support earlier findings based on univariate statistics on cultivated material. In general, populations from within a disjunct locality (=subspecies) are most similar to other populations from the same locality. However, the subspecies vary in the degree to which they are differentiated in capsule morphology. The subsp.groevudalense populations are morphologically close to the main group of subsp.ovatilobum populations. Subspp.intermedium andoeksendalense are clearly distinct from one another and from the other subspecies, whereas the single subsp.gjaerevolli population is more similar to theovatilobum/groevudalense complex. Variation in leaf characters showed only partial congruence with variation in capsule characters. The pattern of morphological relationships among the subspecies is thus more complex than previously thought. The subspecies may have become differentiated during a period of isolation, but such results alone cannot indicate the duration of such a period.  相似文献   

16.
The aim of this study was to delimit the taxa of the Crataegus rosei complex using an integrative approach that incorporates a suite of molecular (cpDNA and nuclear microsatellite markers), morphological, and geometric morphometric characters. One hundred and ten plants from 19 populations that encompass the entire distribution range of the species complex were collected and examined along with herbarium specimens. Parsimony and Bayesian inference analyses were run using morphological, molecular, and both the morphological and molecular data sets combined. Analyses to determine genetic structure based on microsatellite data and multivariate analyses incorporating geometric morphometrics were also done to identify differences in leaf shape. The results supported the recognition of two taxa: C. rosei with high levels of gene flow among its populations, remarkable morphological variation and a wide distribution range and C. rosei var. amoena, composed of a few isolated populations in the high elevation location of Cerro Potosí; a new specific epithet will be decided for the latter in accordance with the International Code of Nomenclature for algae, fungi, and plants.  相似文献   

17.
Ecogeographical patterns of morphological variation were studied in the Eurasian pygmy shrew Sorex minutus aiming to understand the species’ morphological diversity in a continental and island setting, and within the context of previous detailed phylogeographical studies. In total, 568 mandibles and 377 skulls of S. minutus from continental and island populations from Europe and Atlantic islands were examined using a geometric morphometrics approach, and the general relationships of mandible and skull size and shape with geographical and environmental variables were studied. Samples were then pooled into predefined geographical groups to evaluate the morphological differences among them using analyses of variance, aiming to contrast the morphological and genetic relationships based on morphological and genetic distances and ancestral state reconstructions, as well as assess the correlations of morphological, genetic, and geographical distances with Mantel tests. We found significant relationships of mandible size with geographical and environmental variables, fitting the converse Bergmann's rule; however, for skull size, this was less evident. Continental groups of S. minutus could not readily be differentiated from each other by shape. Most island groups of S. minutus were easily discriminated from the continental groups by being larger, indicative of an island effect. Moreover, morphological and genetic distances differed substantially and, again, island groups were distinctive morphologically. Morphological and geographical distances were significantly correlated, although this was not the case for morphological and genetic distances, indicating that morphological variation does not reflect genetic subdivision in S. minutus. Our analyses showed that environmental variables and insularity had important effects on the morphological differentiation of S. minutus.  相似文献   

18.
Multiple highly divergent lineages have been identified within Ligia occidentalis sensu lato, a rocky supralittoral isopod distributed along a ~3000 km latitudinal gradient that encompasses several proposed marine biogeographic provinces and ecoregions in the eastern Pacific. Highly divergent lineages have nonoverlapping geographic distributions, with distributional limits that generally correspond with sharp environmental changes. Crossbreeding experiments suggest postmating reproductive barriers exist among some of them, and surveys of mitochondrial and nuclear gene markers do not show evidence of hybridization. Populations are highly isolated, some of which appear to be very small; thus, the effects of drift are expected to reduce the efficiency of selection. Large genetic divergences among lineages, marked environmental differences in their ranges, reproductive isolation, and/or high isolation of populations may have resulted in morphological differences in L. occidentalis, not detected yet by traditional taxonomy. We used landmark‐based geometric morphometric analyses to test for differences in body shape among highly divergent lineages of L. occidentalis, and among populations within these lineages. We analyzed a total of 492 individuals from 53 coastal localities from the southern California Bight to Central Mexico, including the Gulf of California. We conducted discriminant function analyses (DFAs) on body shape morphometrics to assess morphological variation among genetically differentiated lineages and their populations. We also tested for associations between phylogeny and morphological variation, and whether genetic divergence is correlated to multivariate morphological divergence. We detected significant differences in body shape among highly divergent lineages, and among populations within these lineages. Nonetheless, neither lineages nor populations can be discriminated on the basis of body shape, because correct classification rates of cross‐validated DFAs were low. Genetic distance and phylogeny had weak to no effect on body shape variation. The supralittoral environment appears to exert strong stabilizing selection and/or strong functional constraints on body shape in L. occidentalis, thereby leading to morphological stasis in this isopod.  相似文献   

19.
To investigate the presence of cryptic diversity in the African longfin-tetra Bryconalestes longipinnis, we employed DNA barcoding in a phylogeographic context, as well as geometric morphometrics, documenting for the first time genetic and body shape variation in the species. Analysis of cytochrome oxidase I gene (coI) sequence variation exposed extremely high levels of genetic differentiation among samples from across the geographic range of the species (up to 18%), certainly much greater than the traditionally employed c. 3% sequence divergence heuristic threshold for conspecifics. Phylogeographic analyses of coI data revealed eight clusters/clades that diverge by >4% and up to 18% (p-distance), potentially representing cryptic members of a species complex. A clear biogeographic pattern was also uncovered, in which the two main coI lineages corresponded geographically with the upper Guinea (UG) and lower Guinea (LG) ichthyofaunal provinces of continental Africa, respectively. Within each of these main lineages, however, no apparent phylogeographic structuring was found. Despite strong genetic differentiation, there is considerable overlap in body shape variation between UG and LG populations. For the most part, morphological variation does not match the strength of the molecular phylogeographic signal. Therefore, the ability to reliably utilise external body shape for regional delimitation remains elusive. Further anatomical investigation appears necessary to establish whether compelling diagnostic morphological features do exist between the divergent lineages of the B. longipinnis complex uncovered in this study.  相似文献   

20.
The Andes constitute one of the main factors that have promoted diversification in the Neotropics. However, the role of other highland regions in the southern cone of South America has been barely studied. We analyzed the level of endemism in the avifauna of the Central Sierras in Córdoba, a high region in central Argentina, to evaluate the effect of its geographic isolation from the Andes. There are 11 species with endemic subspecies in this region, all of them described based only on differences in morphology (mainly plumage color) with no genetic evidence. We performed the first genetic analyses of seven of these species using mitochondrial DNA obtained from fresh tissue and toe pad samples. Our results show that for three of these species, Catamenia inornata, Phrygilus unicolor and Cinclodes atacamensis, the population in the Central Sierras is clearly differentiated from those of other regions, and the first two of them also show divergence among Andean subspecies. In the remaining species we found a varying degree of differentiation, ranging from a small divergence in Muscisaxicola rufivertex to the presence of different haplotypes but with an apparent lack of phylogeographic structure in Phrygilus plebejus and Sturnella loyca (being the latter the only species with a continuous distribution between the Central Sierras and the Andes) to haplotype sharing in Asthenes modesta. While further analyses including additional markers, morphological characters and vocalizations are needed, our results show that some of the species that have disjunct distributions, with a population in the Central Sierras isolated geographically from the Andes, possess distinct genetic lineages in the Central Sierras that suggest an evolutionary isolation from other populations. These findings highlight the importance of montane regions in general, and the Central Sierras in particular, as drivers of diversification in the Neotropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号