首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The recently established in vitro assay of condensation-sorting of pancreatic enzymes to the zymogen granule membrane (ZGM) (Dartsch, H., R. Kleene, H. F. Kern: In vitro condensation-sorting of enzyme proteins isolated from rat pancreatic acinar cells. Eur. J. Cell Biol. 75, 211-222 (1998)) was used to study the involvement of a novel secretory lectin, ZG16p, in the binding of aggregated proteins to ZGM. In isolated zymogen granules the lectin is predominantly associated with the membrane and can be removed to a large extent by bicarbonate treatment at pH 11.5. In the in vitro assay in which secretory proteins aggregate at pH 5.9 but only those bound to ZGM are sedimented into the pellet, ZG16p is significantly enriched in this pellet fraction, shown both by biochemical and fine structural analysis. Pretreatment of ZGM with anti-ZG16p antibody before their addition to the assay inhibits binding to the membrane by about 50%. Similarly, removal of ZG16p or prevention of its interaction with glycosaminoglycans (GAGs) in the submembranous matrix of ZGM by sodium bicarbonate treatment or chondroitinase digestion of ZGM also inhibits the binding efficiency of secretory proteins to ZGM to about the same extent. We conclude that ZG16p may act as a linker molecule between the submembranous matrix on the luminal side of ZGM and aggregated secretory proteins during granule formation in the TGN.  相似文献   

3.
The lectin-gold technique was used to detect Helix pomatia lectin (HPL) binding sites directly on thin sections of rat pancreas embedded in Lowicryl K4M and on freeze-fractured preparations of rat pancreas submitted to fracture label. On thin sections of acinar cells, whereas the content of zymogen granules was negative or weakly labeled, the limiting membrane displayed a high degree of labeling. In the Golgi complex, labeling by HPL was localized on the trans saccules and the limiting membrane of the condensing vacuoles. The latter appeared to be more intensely labeled than the membrane of the zymogen granules. Intense labeling by HPL was also observed along the microvilli and the plasma membrane. In contrast to the weak labeling of the zymogen-granule content, labeling of the acinar lumen was intense. Fracture-label preparations revealed preferential partition of HPL-binding sites to the exoplasmic half of the zymogen-granule and plasma membranes. The population of zymogen granules was, however, heterogeneous with respect to labeling intensity; the exoplasmic fracture-face of the plasma membrane was intensely and uniformly labeled, while the protoplasmic membrane halves were only weakly labeled. These observations were further confirmed and extended by the thin-section fracture-label approach. In addition, favorable profiles of thin sections of freeze-fractured zymogen granules showed that the labeling was not associated with the external surface of the limiting membrane, but rather localized over the exoplasmic fracture-face. We conclude that 1) zymogen granules contain little HPL-binding glycoconjugates, 2) HPL-binding sites are preferentially associated with the exoplasmic half of the zymogen-granule and plasma membranes, and 3) the limiting membrane of the immature condensing vacuoles carries a greater number of HPL-binding sites than that of the mature zymogen granules. These last, in turn, constitute a heterogenous population with respect to labeling density. These results support the current view that glycoconjugates are directed toward the lumen in secretory granules but become external to the cell surface after fusion of the secretory-granule membrane with the plasma membrane. Also, the results reflect membrane modifications during the maturation process of secretory granules in the exocrine pancreas in which glycoproteins are removed from the limiting membrane of the granule to become soluble and secreted with the content.  相似文献   

4.
The exocrine pancreas releases secretory products essential for nutrient assimilation. In addition to digestive enzymes, the release of lipoprotein-like particles containing the membrane trafficking protein caveolin-1 from isolated pancreatic explants has been reported. The present study examined: (1) if gastrointestinal hormones induce the apical secretion of phospholipid in vivo and (2) a potential association of caveolin-1 and the lipid-soluble vitamin K analog menaquinone-4 (MK-4) with these structures. Analysis of isolated acinar cells, purified zymogen granules, and pancreatic juice collected in vivo indicated the presence a caveolin-1 immunoreactive protein that was acutely released in response hormone stimulation. Chloroform-extracted fractions of pancreatic juice also contained high concentrations of MK-4 that was secreted in parallel to protein and phospholipid. The presence of caveolin-1 and MK-4 in the phospholipid fraction of pancreatic juice places these molecules in the secretory pathway of exocrine cells and suggests a physiological role in digestive enzyme synthesis and/or processing.  相似文献   

5.
Zymogen granules (ZGs) are specialized storage organelles in the exocrine pancreas, which allow digestive enzyme storage and regulated apical secretion. To understand the function of these important organelles, we are conducting studies to identify and characterize ZG membrane proteins. Small guanosine triphosphatases (GTPases) of the Rab family are key protein components involved in vesicular/granular trafficking and membrane fusion in eukaryotic cells. In this study, we show by morphological studies that Rab8 (Rab8A) localizes to ZGs in acinar cells of the pancreas. We find that Rab8 is present on isolated ZGs from rat pancreas and in the ZG membrane fraction obtained after granule subfractionation. To address a putative role of Rab8 in granule biogenesis, we conducted RNA interference experiments to 'knock down' the expression of Rab8 in pancreatic AR42J cells. Silencing of Rab8 (but not of Rab3) resulted in a decrease in the number of ZGs and in an accumulation of granule marker proteins within the Golgi complex. By contrast, the trafficking of lysosomal and plasma membrane proteins was not affected. These data provide first evidence for a role of Rab8 early on in ZG formation at the Golgi complex and thus, apical trafficking of digestive enzymes in acinar cells of the pancreas.  相似文献   

6.
The dog pancreas isolated in situ was perfused with oxygenated dog blood and stimulated with pancreozymin, secretin, or both. There were no significant changes in the fine structure of the acinar, centroacinar, or duct cells attributable to the perfusion. Combined glutaraldehyde and osmium fixation gave good preservation of the secretory products of the acinar cell. Before stimulation, the lumen of the acini is filled with material similar in texture to the content of the zymogen granules, but of somewhat lower density. Release of secretion commonly takes place by coalescence of the limiting membrane of zymogen granules with the plasmalemma, but one granule opening at the surface may frequently be joined by others coalescing with its membrane and forming an interconnected series all with contents having the same texture as the released zymogen. Such a mechanism seems to permit a more rapid release of secretory product than discharge of individual granules. Pancreozymin stimulation caused marked depletion of zymogen granules, but no obvious changes in the Golgi apparatus. It is clear, therefore, that this hormone exerts its effect upon release of granules rather than upon their formation. Secretin stimulation of water and bicarbonate secretion caused a marked washing out of the luminal contents, but had little detectable effect on cellular structure.  相似文献   

7.
Regulated secretion from pancreatic acinar cells occurs by exocytosis of zymogen granules (ZG) at the apical plasmalemma. ZGs originate from the TGN and undergo prolonged maturation and condensation. After exocytosis, the zymogen granule membrane (ZGM) is retrieved from the plasma membrane and ultimately reaches the TGN. In this study, we analyzed the fate of a low M(r) GTP-binding protein during induced exocytosis and membrane retrieval using immunoblots as well as light and electron microscopic immunocytochemistry. This 27-kD protein, identified by a monoclonal antibody that recognizes rab3A and B, may be a novel rab3 isoform. In resting acinar cells, the rab3-like protein was detected primarily on the cytoplasmic face of ZGs, with little labeling of the Golgi complex and no significant labeling of the apical plasmalemma or any other intracellular membranes. Stimulation of pancreatic lobules in vitro by carbamylcholine for 15 min, resulted in massive exocytosis that led to a near doubling of the area of the apical plasma membrane. However, no relocation of the rab3-like protein to the apical plasmalemma was seen. After 3 h of induced exocytosis, during which time approximately 90% of the ZGs is released, the rab3- like protein appeared to translocate to small vesicles and newly forming secretory granules in the TGN. No significant increase of the rab3-like protein was found in the cytosolic fraction at any time during stimulation. Since the protein is not detected on the apical plasmalemma after stimulation, we conclude that recycling may involve a membrane dissociation-association cycle that accompanies regulated exocytosis.  相似文献   

8.
GP-2 is the major secretory granule membrane glycoprotein of the exocrine pancreas and appears in the pancreatic juice in a modified sedimentable form. We have localized GP-2 in the rat pancreas at the electron microscopic level using affinity-purified antibodies and found it to be concentrated in the zymogen granules and in the acinar lumen. Label was also present on the apical and basolateral plasma membranes but prior treatment of the sections with periodate to eliminate the contribution of highly antigenic oligosaccharide moieties reduced substantially the staining of the basolateral surface. Approximately 45% of the GP-2 in the granules was not membrane-associated but appeared instead in the granule lumen. Parallel biochemical characterization of GP-2 in isolated secretory granules demonstrated that 60% fractionated with the membranes after granule lysis while 40% remained in the content fraction. Unlike the membrane-associated form of the protein, which is linked to the membrane via glycosyl-phosphatidylinositol (GPI), GP-2 in the content did not enter the detergent phase upon Triton X-114 extraction; nor was it sedimentable at 200,000g, as is characteristic of the form collected in the pancreatic juice. In addition, GP-2 in the pancreatic juice was recovered in the aqueous phase during Triton X-114 extraction and yet remained sedimentable after detergent extraction, demonstrating that its ability to remain in large aggregates was independent of lipid. These results are consistent with a life cycle for the protein that begins with synthesis of a membrane-associated precursor that can be converted by lipolytic or proteolytic cleavage to a soluble form within the zymogen granule. Further modification to a sedimentable form may then occur in the pancreatic juice.  相似文献   

9.
We separated by two-dimensional (2D) gel electrophoresis the content of isolated rat zymogen granules and from the gel excised a protein of apparent MW 77,500 and an isoelectric point of about 4.7. A rabbit antiserum against this previously uncharacterized rat zymogen granule protein recognized two cDNA clones in a rat pancreas expression library. The cDNA inserts of these two clones had sequences showing perfect homology to the published cDNA sequence of rat pancreatic lysophospholipase. The antiserum recognized only a single protein, lysophospholipase, on one and two-dimensional immunoblots of rat pancreas homogenates and isolated zymogen granules. The antiserum did not react with any protein in homogenates of rat liver, spleen, adrenal, parotid, and prostate tissue. The zymogen granule protein of the guinea pig, previously identified as Lipase 1, was recognized specifically by the antiserum against rat lysophospholipase. This guinea pig protein can now be regarded as lysophospholipase. The same protein was demonstrated in the transformed rat acinar cell line AR4-2J, where both the rate of total enzyme synthesized and the amount of mRNA increased following treatment with dexamethasone. Immunogold labeling established that pancreatic lysophospholipase is restricted exclusively to exocrine cells where it occurs only in compartments of the exocytotic pathway. It could also be detected in pancreatic juice in the ducts of the tissue. Finally, we have shown that lysophospholipase is not related to the zymogen granule membrane protein GP2. This work establishes that lysophospholipase is a normal member of the set of soluble enzymes and proenzymes that are stored in zymogen granules and secreted into pancreatic juice.  相似文献   

10.
The protein-A gold method using specific rabbit sera directed against pure human pancreatic chymotrypsinogen and carboxylic ester hydrolase was applied to locate these (pro)enzymes in human pancreatic acinar cells and intestinal Paneth cells. Quantitative evaluation of the labelling indicated that both (pro)enzymes are present in pancreatic acinar secretory granules. In Paneth cell secretory granules, only carboxylic ester hydrolase was present in significant amounts, although the labelling for this enzyme was less intense than that observed in pancreatic zymogen granules. The results obtained support the view that Paneth cells represent a "diffuse exocrine gland" scattered along the intestine, whose role is either to act as a substitute in the event of a deficient pancreas or to regulate the intestinal flora.  相似文献   

11.
Chromogranin B (CgB, secretogranin I) is a secretory granule matrix protein expressed in a wide variety of endocrine cells and neurons. Here we generated transgenic mice expressing CgB under the control of the human cytomegalovirus promoter. Northern and immunoblot analyses, in situ hybridization and immunocytochemistry revealed that the exocrine pancreas was the tissue with the highest level of ectopic CgB expression. Upon subcellular fractionation of the exocrine pancreas, the distribution of CgB in the various fractions was indistinguishable from that of amylase, an endogenous constituent of zymogen granules. Immunogold electron microscopy of pancreatic acinar cells showed co-localization of CgB with zymogens in Golgi cisternae, condensing vacuoles/immature granules and mature zymogen granules; the ratio of immunoreactivity of CgB to zymogens being highest in condensing vacuoles/immature granules. CgB isolated from zymogen granules of the pancreas of the transgenic mice aggregated in a mildly acidic (pH 5.5) milieu in vitro, suggesting that low pH-induced aggregation contributed to the observed concentration of CgB in condensing vacuoles. Our results show that a neuroendocrine-regulated secretory protein can be sorted to exocrine secretory granules in vivo, and imply that a key feature of CgB sorting in the trans-Golgi network of neuroendocrine cells, i.e. its aggregation-mediated concentration in the course of immature secretory granule formation, also occurs in exocrine cells although secretory protein sorting in these cells is thought to occur largely in the course of secretory granule maturation.  相似文献   

12.
The major membrane protein of zymogen granules in the rat pancreas is a glycoprotein of 78 kDa (GP-2), which is inserted into the membrane via a glycosyl-phosphatidylinositol (GPI) anchor. GP-2 occurs in both, a membrane-attached and a soluble form. Due to its specific luminal orientation and its quantitative contribution to the zymogen granule membrane, GP-2 has been postulated to play an important role in sorting of digestive enzymes into the granule and in the formation of the granule as a storage organelle. We have tested this hypothesis in the rat pancreas under three different functional conditions, where both the rates of enzyme/isoenzyme synthesis change drastically, and new zymogen granules form at a high rate: a) during prolonged hormonal stimulation of the adult rat pancreas, b) during the differentiation of AR4-2J cells induced by dexamethasone in vitro, and c) during embryonic development and early postnatal life, when gene expression is modulated due to the differentiation program. Both, GP-2 mRNA levels and the rate of GP-2 biosynthesis were quantitated and compared to the immunohistochemical localization of this protein in tissue sections. Under all three functional conditions, significant changes could be demonstrated at the level of digestive enzyme gene expression, but no concomitant modulation of GP-2 expression was observed. GP-2 mRNA is absent from the embryonic pancreas and for the first time is expressed after birth with a significant increase during the period of weaning. Furthermore, GP-2 mRNA and protein levels are not modulated by hormonal stimulation, either in the adult pancreas or in AR4-2J cells in culture. Therefore, we conclude that GP-2, in spite of its quantitative contribution to the zymogen granule membrane, is not involved in enzyme protein sorting or granule formation. Alternative functions for GP-2 are discussed.  相似文献   

13.
The localization of the protein-disulfide interchange enzyme, glutathione-insulin transhydrogenase (GIT), in rat and mouse pancreas was studied by protein A-gold immunocytochemistry, immunodiffusion, and assay of enzymatic activity. Immunocytochemistry on tissue sections using antibody to GIT and protein A-gold complex indicated the presence of GIT in alpha and beta cells in islets as well as acinar cells. The beta cells in obese (ob/ob) hyperinsulinemic mice showed increased GIT immunoreactivity. In both alpha and beta cells, GIT immunoreactive sites were associated predominantly with secretory granules. In pancreas from rats injected with glibenclamide, the degranulated beta cells contained GIT immunoreactive sites on the cisternal surface of the rough endoplasmic reticulum (RER). In acinar cells, the RER, Golgi elements, condensing vacuoles, and zymogen granules possessed GIT immunoreactive sites as did mitochondria. Immunocytochemistry on sections of isolated subcellular fractions showed that GIT was associated with different membranes. The enzymatic activity of GIT was found in the following order: Golgi elements greater than mitochondria greater than microsomes greater than zymogen granules greater than cytosol. In Ouchterlony immunodiffusion tests, each subcellular fraction showed a precipitin band which was continuous with that of purified GIT, a result indicating the presence of immunologically identical GIT in all fractions.  相似文献   

14.
A protocol for isolating milligram quantities of highly purified zymogen granule membranes from calf pancreas was developed. The method provides a fivefold enriched zymogen granule fraction that is virtually free from major isodense contaminants, such as mitochondria and erythrocytes. Isolated granules are osmotically stable in isosmotic KCl buffers with half-lives between 90 and 120 min. They display specific ion permeabilities that can be demonstrated using ionophore probes to override intrinsic control mechanisms. A Cl- conductance, a Cl-/anion exchanger, and a K+ conductance are found in the zymogen granule membrane, as previously reported for rat pancreatic, rat parotid zymogen granules, and rabbit pepsinogen granules. Lysis of calf pancreatic secretory granules in hypotonic buffers and subsequent isolation of pure zymogen granule membranes yield about 5-10 mg membrane protein from approximately 1000 ml pancreas homogenate. The purified zymogen granule membranes are a putative candidate for the rapid identification and purification of epithelial Cl- channels and regulatory proteins, since they contain fewer proteins than plasma membranes.  相似文献   

15.
《Biotechnic & histochemistry》2013,88(5-6):291-293
Following staining with hematoxylin and eosin Y, paraffin sections of mouse pancreas were examined by transmitted light, epifluorescence and confocal laser scanning microscopy. Light microscopy revealed that the nuclei of pancreatic acinar cells were located basally, while the apices of the cells appeared eosinophilic, although the secretory granules were difficult to visualize. Under violet-blue light excitation, the zymogen granules at the apices of the acinar cells showed strong yellowish fluorescence; the other part of the cytoplasm was only faintly fluorescent and the nuclei and the supporting tissues were nonfluorescent. Confocal laser scanning microscopy resulted in clear pictures of the zymogen granules and their distribution within the cell. The fluorescent emission of zymogen granules was certainly the result of eosin Y staining, because hematoxylin is not a fluorochrome and the zymogen granules are not autofluorescent. Staining with eosin Y alone, however, did not result in clear fluorescent images of zymogen granules or any other cellular structures. Our observation shows that the fluorescence emission of eosin Y allows easy and precise recognition of zymogen granules of pancreatic cells.  相似文献   

16.
Following staining with hematoxylin and eosin Y, paraffin sections of mouse pancreas were examined by transmitted light, epifluorescence and confocal laser scanning microscopy. Light microscopy revealed that the nuclei of pancreatic acinar cells were located basally, while the apices of the cells appeared eosinophilic, although the secretory granules were difficult to visualize. Under violet-blue light excitation, the zymogen granules at the apices of the acinar cells showed strong yellowish fluorescence; the other part of the cytoplasm was only faintly fluorescent and the nuclei and the supporting tissues were nonfluorescent. Confocal laser scanning microscopy resulted in clear pictures of the zymogen granules and their distribution within the cell. The fluorescent emission of zymogen granules was certainly the result of eosin Y staining, because hematoxylin is not a fluorochrome and the zymogen granules are not autofluorescent. Staining with eosin Y alone, however, did not result in clear fluorescent images of zymogen granules or any other cellular structures. Our observation shows that the fluorescence emission of eosin Y allows easy and precise recognition of zymogen granules of pancreatic cells.  相似文献   

17.
Following staining with hematoxylin and eosin Y, paraffin sections of mouse pancreas were examined by transmitted light, epifluorescence and confocal laser scanning microscopy. Light microscopy revealed that the nuclei of pancreatic acinar cells were located basally, while the apices of the cells appeared eosinophilic, although the secretory granules were difficult to visualize. Under violet-blue light excitation, the zymogen granules at the apices of the acinar cells showed strong yellowish fluorescence; the other part of the cytoplasm was only faintly fluorescent and the nuclei and the supporting tissues were nonfluorescent. Confocal laser scanning microscopy resulted in clear pictures of the zymogen granules and their distribution within the cell. The fluorescent emission of zymogen granules was certainly the result of eosin Y staining, because hematoxylin is not a fluorochrome and the zymogen granules are not autofluorescent. Staining with eosin Y alone, however, did not result in clear fluorescent images of zymogen granules or any other cellular structures. Our observation shows that the fluorescence emission of eosin Y allows easy and precise recognition of zymogen granules of pancreatic cells.  相似文献   

18.
We used quantitative immunogold electron microscopy and biochemical analysis to evaluate the subcellular distribution of Hsp60 in rat tissues. Western blot analysis, employing both monoclonal and polyclonal antibodies raised against mammalian Hsp60, shows that only a single 60-kD protein is reactive with the antibodies in brain, heart, kidney, liver, pancreas, pituitary, spleen, skeletal muscle, and adrenal gland. Immunogold labeling of tissues embedded in the acrylic resin LR Gold shows strong labeling of mitochondria in all tissues. However, in the anterior pitutary and in pancreatic acinar cells, Hsp60 also localizes in secretory granules. The labeled granules in the pituitary and pancreas were determined to be growth hormone granules and zymogen granules, respectively, using antibodies to growth hormone and carboxypeptidase A. Immunogold labeling of Hsp60 in all compartments was prevented by preadsorption of the antibodies with recombinant Hsp60. Biochemically purified zymogen granules free of mitochondrial contamination are shown by Western blot analysis to contain Hsp60, confirming the morphological localization results in pancreatic acinar cells. In kidney distal tubule cells, low Hsp60 reactivity is associated with infoldings of the basal plasma membrane. In comparison, the plasma membrane in kidney proximal tubule cells and in other tissues examined showed only background labeling. These findings raise interesting questions concerning translocation mechanisms and the cellular roles of Hsp60.  相似文献   

19.
Previous experiments demonstrated the existence of at least two pools of secretory proteins in the exocrine pancreas. We have measured the specific activities of amylase released under resting conditions and of amylase in the zymogen granules. Specific activity of resting secretion was twice that found under stimulated conditions or in zymogen granules. Secretory proteins were pulse-labeled and amylase was measured after precipitation of the enzyme with glycogen. Pancreatic juice collected at 45-50 min post-pulse contained 10-25-times the amylase activity found in zymogen granules. These results confirm the existence of at least two distinct pools of secretory proteins in the exocrine pancreas and suggest the existence of an intracellular route of secretory proteins which would bypass the zymogen granule compartment.  相似文献   

20.
We examined the role of glycosphingolipid- and cholesterol-enriched microdomains, or rafts, in the sorting of digestive enzymes into zymogen granules destined for apical secretion and in granule formation. Isolated membranes of zymogen granules from pancreatic acinar cells showed an enrichment in cholesterol and sphingomyelin and formed detergent-insoluble glycolipid-enriched complexes. These complexes floated to the lighter fractions of sucrose density gradients and contained the glycosylphosphatidylinositol (GPI)-anchored glycoprotein GP-2, the lectin ZG16p, and sulfated matrix proteoglycans. Morphological and pulse-chase studies with isolated pancreatic lobules revealed that after inhibition of GPI-anchor biosynthesis by mannosamine or the fungal metabolite YW 3548, granule formation was impaired leading to an accumulation of newly synthesized proteins in the Golgi apparatus and the rough endoplasmic reticulum. Furthermore, the membrane attachment of matrix proteoglycans was diminished. After cholesterol depletion or inhibition of glycosphingolipid synthesis by fumonisin B1, the formation of zymogen granules as well as the formation of detergent-insoluble complexes was reduced. In addition, cholesterol depletion led to constitutive secretion of newly synthesized proteins, e.g. amylase, indicating that zymogens were missorted. Together, these data provide first evidence that in polarized acinar cells of the exocrine pancreas GPI-anchored proteins, e.g. GP-2, and cholesterol-sphingolipid-enriched microdomains are required for granule formation as well as for regulated secretion of zymogens and may function as sorting platforms for secretory proteins destined for apical delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号