首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Summary G- and R-banded chromosome preparations from eight of twelve 46,XX males, with no evidence of mosaicism or a free Y chromosome, were distinguished in blind trials from preparations from normal 46,XX females by virtue of heteromorphism of the short arm of one X chromosome. Photographic measurements on X chromosomes and on chromosome pair 7 in cells from twelve 46,XX males, eight 46,XX females, and four 46,XY males revealed a significant increase in the size of the p arm of one X chromosome in the group of XX males, independently characterised as being heteromorphic for Xp. No such differences were observed between X chromosomes of normal males and females or between homologues of chromosome pair 7 in all groups. The heteromorphism in XX males is a consequence of an alteration in shape (banding profile) and length of the tip of the short arm of one X chromosome, and the difference in size of the two Xp arms in these 46,XXp+ males ranged from 0.4% to 22.9%. From various considerations, including the demonstration of a Y-specific DNA fragment in DNA digests from nuclei of one of three XX males tested, it is concluded that the Xp+ chromosome is a product of Xp-Yp exchange. These exchanges are assumed to originate at meiosis in the male parent and may involve an exchange of different amounts of material. The consequences of such unequal exchange are considered in terms of the inheritance of genes located on Yp and distal Xp. No obvious phenotypic difference was associated with the presence or absence of Xp+. Thus, some males diagnosed as 46,XX are mosaic for a cryptic Y-containing cell line, and there is now excellent evidence that maleness in others may be a consequence of an autosomal recessive gene. The present data imply that in around 70% of 46,XX males, maleness is a consequence of the inheritance of a paternal X-Y interchange product.  相似文献   

3.
Steroid sulfatase gene in XX males.   总被引:2,自引:0,他引:2       下载免费PDF全文
The human X and Y chromosomes pair and recombine at their distal short arms during male meiosis. Recent studies indicate that the majority of XX males arise as a result of an aberrant exchange between X and Y chromosomes such that the testis-determining factor gene (TDF) is transferred from a Y chromatid to an X chromatid. It has been shown that X-specific loci such as that coding for the red cell surface antigen, Xg, are sometimes lost from the X chromosome in this aberrant exchange. The steroid sulfatase functional gene (STS) maps to the distal short arm of the X chromosome proximal to XG. We have asked whether STS is affected in the aberrant X-Y interchange leading to XX males. DNA extracted from fibroblasts of seven XX males known to contain Y-specific sequences in their genomic DNA was tested for dosage of the STS gene by using a specific genomic probe. Densitometry of the autoradiograms showed that these XX males have two copies of the STS gene, suggesting that the breakpoint on the X chromosome in the aberrant X-Y interchange is distal to STS. To obtain more definitive evidence, cell hybrids were derived from the fusion of mouse cells, deficient in hypoxanthine phosphoribosyltransferase, and fibroblasts of the seven XX males. The X chromosomes in these patients could be distinguished from each other when one of three X-linked restriction-fragment-length polymorphisms was used. Hybrid clones retaining a human X chromosome containing Y-specific sequences in the absence of the normal X chromosome could be identified in six of the seven cases of XX males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Summary Two cases of 47,XXX males were studied, one of which has been published previously (Bigozzi et al. 1980). Analysis of X-linked restriction fragment length polymorphisms revealed that in this case, one X chromosome was of paternal and two were of maternal origin, whereas in the other case, two X chromosomes were of paternal and one of maternal origin. Southern blot analysis with Y-specific DNA probes demonstrated the presence of Y short arm sequences in both XXX males. In one case, the results obtained pointed to a paracentric inversion on Yp of the patient's father. In situ hybridization indicated that the Y-specific DNA sequences were localized on Xp22.3 in one of the three X chromosomes in both cases. The presence of Y DNA had no effect on random X inactivation. It is concluded that both XXX males originate from aberrant X-Y interchange during paternal meiosis, with coincident nondisjunction of the X chromosome during maternal meiosis in case 1, and during paternal meiosis II in case 2.  相似文献   

5.
The origin of 45,X males.   总被引:6,自引:2,他引:4       下载免费PDF全文
Maleness in association with the karyotype 45,X is a very rare and hitherto unexplained condition previously described in only four or five patients. This study was carried out to determine whether such males might actually possess Y-chromosomal material. Of the two 45,X males studied, one was found to be a low-grade mosaic with a 46,XY karyotype in less than 3% of fibroblasts; all lymphocytes karyotyped were 45,X. Fibroblast DNA from this individual was found to contain Y-specific repeated sequences in 1%-3% the amount observed in the father, consistent with mosaicism for a 46,XY cell line. No Y-specific repeated sequences were detected in the other patient, in whom all mitoses were 45,X. In neither patient were there detectable amounts of any of the single-copy Y-specific DNA sequences for which we tested. Studies of Xg blood groups and of X-linked restriction fragment length polymorphisms indicated that the single X chromosome was of maternal origin in both 45,X male probands. In contrast to the situation in XX males, we can exclude paternal X-Y interchange as the etiology in the cases described here. Our findings are compatible with mosaicism being the explanation of at least some "45,X" males.  相似文献   

6.
Summary Two loci on the short arm of the human Y chromosome have recently been described as candidates for the testis determining factor (TDF); namely, ZFY, and a locus distal to ZFY, near the pseudoautosomal boundary. We have previously reported on seven 46,XX true hermaphrodites and one 45,X mixed gonadal dysgenesis case all presenting with testicular tissue in their gonads in the apparent absence of Y-specific DNA sequences. A reanalysis of these cases shows them all to lack ZFY, but one 46,XX true hermaphrodite carries sequences next to the Y pseudoautosomal boundary. This case provides further evidence for assigning the TDF locus very close to the pseudoautosomal region on Yp.  相似文献   

7.
The etiology of maleness in XX men   总被引:19,自引:0,他引:19  
Summary Information relating to the etiology of human XX males is reviewed. The lesser body height and smaller tooth size in comparison with control males and first-degree male relatives could imply that the patients never had any Y chromosome. Neither reports of occasional mitoses with a Y chromosome, nor of the occurrence of Y chromatin in Sertoli cells are convincing enough to support the idea that low-grade or circumscribed mosaicism is a common etiologic factor. Reports of an increase in length of one of the X chromosomes in XX males are few and some are conflicting. Nor is there any evidence to support the idea of loss of material. However, absence of visible cytogenetic alteration does not rule out the possibility of translocations, exchanges or deletions.A few familial cases are known. Mendelian gene mutations may account for a number of instances of XX males, similar genes being well known in several animal species. The existing geographical differences in the prevalence of human XX males could be explained by differences in gene frequency. But if gene mutation were a common cause of XX maleness there would be more familial cases.Any hypothesis explaining the etiology of XX males should take into account the following facts. There are at least 4 examples of XX males who have inherited the Xg allele carried by their fathers, and at least 9 of such males who have not. The frequency of the Xg phenotype among XX males is far closer to that of males than to that of females, while the absence of any color-blind XX males (among 40 tested) resembles the distribution in females. Furthermore, H-Y antigen is present in XX males, often at a strength intermediate between that in normal males and females. Finally, in a pedigree comprising three independently ascertained XX males, the mothers of all three are H-Y antigen-positive, and the pattern of inheritance of the antigen in two of them precludes X-chromosomal transmission.Many of the data are consistent with the hypothesis that XX males arise through interchange of the testic-determining gene on the Y chromosome and a portion of the X chromosome containing the Xg gene. However, actual evidence in favor of this hypothesis is still lacking, and the H-Y antigen data are not easy to explain. In contrast, if recent hypotheses on the mechanisms controlling the expression of H-Y antigen are confirmed, a gene exerting negative control on testis determination would be located near the end of of the short arm of the X chromosome. This putative gene is believed not to be inactivated in normal females, for at least two other genes located in the same region, i.e. Xg and steroid sulfatase, are not. Deletion or inactivation of these loci would explain how XX males arise and would be consistent with most, but not all, the facts.There is yet no single hypothesis that by itself can explain all the facts accumulated about XX males. While mosaicism appears very unlikely in most cases, Mendelian gene mutation, translocation, X-Y interchange, a minute deletion or preferential inactivation of an X chromosome, or part thereof, remain possible. The etiology of XX maleness may well be heterogeneous.  相似文献   

8.
Summary By in situ hybridization, Y-specific DNA sequences were localized on Xp22.3-Xpter of one of the two X chromosomes in all of eleven XX males studied. In nine of the cases the presence of the Y-specific DNA did not affect random X inactivation in fibroblasts. Fibroblasts of the other two cases showed a preferential inactivation of the Y DNA-carrying X chromosome. In only one of these two exceptions blood lymphocytes could also be studied, and here, random inactivation of the Y DNA-carrying X chromosome occurred. Furthermore, the gene dosage of steroid sulfatase (STS) was examined by Southern blot analysis. In ten of the cases including the one showing random X-inactivation in lymphocytes but not in fibroblasts, a double dosage of the STS gene is present. The remaining case with non-random inactivation shows a single STS gene dosage. This case was reported previously to have STS enzyme activity in the male range. It is assumed that, as a consequence of an unequal X-Y interchange, a deletion of X-specific DNA sequences may result in the preferential inactivation of the Y DNA-carrying X chromosome.  相似文献   

9.
Summary XX maleness is the most common condition in which testes develop in the absence of a cytogenetically detectable Y chromosome. Using molecular techniques, it is possible to detect Yp sequences in the majority of XX males. In this study, we could detect Y-specific sequences, including the sex-determining region of the Y chromosome (SRY), using fluorescence in situ hybridization. In 5 out of 6 previously unpublished XX males, SRY was translocated onto the terminal part of an X chromosome. This is the first report in which translocation of an SRY-bearing fragment to an X chromosome in XX males could be directly demonstrated.  相似文献   

10.
A repeated DNA element (STIR) interspersed in Xp22.3 and on the Y chromosome has been used as a tag to isolate seven single-copy probes from the human sex chromosomes. The seven probes detect X-specific loci located in Xp22.3. Using a panel of X-chromosomal deletions from X-Y interchange sex reversals (XX males and XY females), these X-specific loci and some additional ones were mapped to four contiguous intervals of Xp22.3, proximal to the pseudoautosomal region and distal to STS. The construction of this deletion map of the terminal part of the human X chromosome can serve as a starting point for a long-range physical map of Xp22.3 and for a more accurate mapping of genetic diseases located in Xp22.3.  相似文献   

11.
We have used bivariate flow karyotype analysis to quantify aberrant X chromosome size in 11 XX males. With one exception, the patients could be grouped into those with an X homologue difference greater than normal (Group A, n = 3) and into those whose X homologue difference could not be distinguished from female controls (Group B, n = 7). The range of sizes of the aberrant X chromosome in Y-sequence positive patients agrees with the variable nature of the X-Y interchange in these individuals as determined by the use of Y-specific DNA probes and Southern blotting analysis. In one patient it was possible to sort separately the normal and the X-Y interchanged homologues for dot blot analysis. The presence of Y sequences and an increased dose of the zinc finger gene, ZFY, were detected in the X-Y interchanged homologue. In preliminary studies of 5 male and 6 female controls, it was noted that a consistent difference between the two X homologues in females was found which could not be totally explained by errors of the fitting procedure. We suggest that this difference could be due to X inactivation and that the two X homologues in females might be distinguishable.  相似文献   

12.
Accidental recombination between the differential segments of the X and Y chromosomes in man occasionally allows transfer of Y-linked sequences to the X chromosome leading to testis differentiation in so-called XX males. Loss of the same sequences by X-Y interchange allows female differentiation in a small proportion of individuals with XY gonadal dysgenesis. A candidate gene responsible for primary sex determination has recently been cloned from within this part of the Y chromosome by Page and his colleagues. The observation that a homologue of this gene is present on the short arm of the X chromosome and is subject to X-inactivation, raises the intriguing possibility that sex determination in man is a quantitative trait. Males have two active doses of the gonad determining gene, and females have one dose. This hypothesis has been tested in a series of XX males, XY females and XX true hermaphrodites by using a genomic probe, CMPXY1, obtained by probing a Y-specific DNA library with synthetic oligonucleotides based on the predicted amino-acid sequence of the sex-determining protein. The findings in most cases are consistent with the hypothesis of homologous gonad-determining genes, GDX and GDY, carried by the X and Y chromosomes respectively. It is postulated that in sporadic or familial XX true hermaphrodites one of the GDX loci escapes X-inactivation because of mutation or chromosomal rearrangement, resulting in mosaicism for testis and ovary-determining cell lines in somatic cells. Y-negative XX males belong to the same clinical spectrum as XX true hermaphrodites, and gonadal dysgenesis in some XY females may be due to sporadic or familial mutations of GDX.  相似文献   

13.
We have used pulsed-field gel electrophoresis to study the short arm of the Y chromosome by using a pseudoautosomal probe (MIC2Y) and adjacent Y-specific sequences 27a and 47z (DSXY5) in XX males and XY females, in order to detect chromosomal breakpoints which may have given rise to these individuals. The preliminary published long-range restriction map was used as a basis for this study. Our data confirm the reported fragment sizes and resolve some discrepancies. In addition, the recently cloned ZFY locus, pDP1007, the putative sex-determining locus, has been used to extend this long-range restriction map on Yp. Thus far, the X and Y copy of this sequence appear to have conserved GC islands around this locus, since it is found on a 280-kb fragment in males and females by using SacII, BssHII, NarI, and NotI. Only two Y-specific sequences of 50 and 70 kb have been detected at the pulsed-field level by using SfiI and NaeI, respectively. No translocation breakpoints have been detected in any of the patients studied. One XX male, GM1889, however, does not have any of the Y-specific fragments detected using conventional or pulsed-field gel electrophoresis. This is one of the few typical XX males who therefore does not have the ZFY copy of the TDF clone. Since all the other XX males hybridized to 47z, which is centromeric to ZFY, a series of DNA loci that are centromeric to 47z need to be studied in order to detect chromosomal breakpoints.  相似文献   

14.
A number of patients with paradoxical sex chromosome complements (so-called XY females, XX and XO males) have been investigated with a series of 19 Yp and 4 Yq DNA probes to establish which region of the Y is essential for male sexual differentiation. Of the 23 XX males, 18 possessed one or more Yp probe sequences with only 5 lacking such sequences. Of 9 XY females examined, only one showed evidence of a deletion in Yp occurring either as a result of X-Y interchange or interstitial deletion. This suggests that the majority of XY females are not commonly deleted for those Y sequences which are found to be transferred to the X in XX males. The DNA of two XO males both contained different portions of the Y. From a comparison of the patterns of Yp sequences in these patients, it has been possible to elaborate a model of Yp in terms of the order of probe sequences and to suggest a location for the testis determining region in distal Yp.  相似文献   

15.
A 2-year-old boy was found to have a 47,XXX karyotype. Restriction-fragment-length-polymorphism analysis showed that, of his three X chromosomes, one is of paternal and two are of maternal origin. The results of Y-DNA hybridization were reminiscent of those in XX males in two respects. First, hybridization to Southern transfers revealed the presence in this XXX male of sequences derived from the Y-chromosomal short arm. Second, in situ hybridization showed that this Y DNA was located on the tip of the X-chromosomal short arm. We conclude that this XXX male resulted from the coincidence of X-X nondisjunction during maternal meiosis and aberrant X-Y interchange either during or prior to paternal meiosis.  相似文献   

16.
A deletion map of Yq11 has been constructed by analyzing 23 individuals bearing structural abnormalities (isochromosomes, terminal deletions and X;Y, Y;X, or A;Y translocations) in the long arm of the Y chromosome. Twenty-two Yq-specific loci were detected using 14 DNA probes, ordered in 11 deletion intervals, and correlated with the cytogenetic map of the chromosome. The breakpoints of seven translocations involving Xp22 and Yq11 were mapped. The results obtained from at least five translocations suggest that these abnormal chromosomes may result from aberrant interchanges between X-Y homologous regions. The use of probes detecting Yq11 and Xp22.3 homologous sequences allowed us to compare the order of loci within these two chromosomal regions. The data suggest that at least three physically and temporary distinct rearrangements (pericentric inversion of pseudoautosomal sequences and/or X-Y transpositions and duplications) have occurred during evolution and account for the present organization of this region of the human Y chromosome. The correlation between the patient' phenotypes and the extent of their Yq11 deletions permits the tentative assignment of a locus involved in human spermatogenesis to a specific interval within Yq11.23.  相似文献   

17.
Klinefelter syndrome is the most common genetic cause of severe male factor infertility. Cytogenetic evaluation of metaphase chromosomes generally has a long turnaround time. We describe a reliable molecular genetic method that can be completed in 2 working days to identify the presence of any extra X chromosomes. The quantitative fluorescent (QF) 5-plex PCR includes the amplification of amelogenin, which is present on both sex chromosomes in a biallelic form, a polymorphic short tandem repeat (STR) on the pseudoautosomal region of X and Y (X22), two polymorphic X-specific STRs (DXS6803, DXS6809), and a Y-specific marker (SY134), in a single tube. The presence of an extra X chromosome is recognized either by a supernumerary peak or an increased peak area based on criteria we have developed. The application of the method on 200 patients resulted in the identification of 14 patients (7%) with Klinefelter syndrome or a variant form (2 SRY-positive 46,XX men), as well as an additional patient with 47,XYY karyotype. The QF-PCR method, along with Y chromosome microdeletion testing, can be used as a first-step genetic analysis in azoospermic or severely oligozoospermic patients for the rapid identification of sex chromosome aneuploidies.  相似文献   

18.
A deletion map of the human Y chromosome based on DNA hybridization.   总被引:65,自引:11,他引:54       下载免费PDF全文
The genomes of 27 individuals (19 XX males, two XX hermaphrodites, and six persons with microscopically detectable anomalies of the Y chromosome) were analyzed by hybridization for the presence or absence of 23 Y-specific DNA restriction fragments. Y-specific DNA was detected in 12 of the XX males and in all six individuals with microscopic anomalies. The results are consistent with each of these individuals carrying a single contiguous portion of the Y chromosome; that is, the results suggest a deletion map of the Y chromosome, in which each of the 23 Y-specific restriction fragments tested can be assigned to one of seven intervals. We have established the polarity of this map with respect to the long and short arms of the Y chromosome. On the short arm, there is a large cluster of sequences homologous to the X chromosome. The testis determinant(s) map to one of the intervals on the short arm.  相似文献   

19.
Summary We have used two repeated DNA fragments (3.4 and 2.1 kb) released from Y chromosome DNA by digestion with the restriction endonuclease Hae III to analyze potential Y chromosome/autosome translocations. Two female patients were studied who each had an abnormal chromosome 22 with extra quinacrine fluorescent material on the short arm. The origin of the 22p+ chromosomes was uncertain after standard cytologic examinations. Analysis of one patient's DNA with the Y-specific repeated DNA probes revealed the presence of both the 3.4 and 2.1 kb Y-specific fragments. Thus, in this patient, the additional material was from the Y chromosome. Analysis of the second patient's DNA for Y-specific repeated DNA was negative, indicating that the extra chromosomal segment was not from the long arm of the Y chromosome. These two cases demonstrate that repeated DNA can distinguish between similar appearing aberrant chromosomes and may be useful in karyotypic and prenatal diagnosis.  相似文献   

20.
Four cases of XX patients with testis development are reported. The aim of this study was to describe their clinical features and to see if there was any relationship between phenotypes and the presence of Y material. Several human Y-derived sequences including the SRY probe were used to analyze the DNA of the patients. Yp material including the pseudo-autosomal region and SRY was detected. The cases reported in this study confirm that XX true hermaphrodites cannot be distinguished from XX males on the basis of their genotypes. There is no relationship between clinical and anatomical phenotypes and the presence of Y material. SRY does not warrant a complete and normal testis differentiation. Although similar in some features with Klinefelter's syndrome patients, XX males exhibit specific clinical manifestations due to the lack of Y-specific genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号