首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Valuable agronomic traits are often present but inaccessible in the wild relatives of cultivated crop species. Utilization of wild germplasm depends on the production of fertile interspecific hybrids. Several unsuccessful attempts have been made to hybridize cultivated sorghum with its wild relatives to broaden its genetic base and enhance agronomic value. The successful approach used in this study employed the nuclear male sterility gene ms3 to generate a diploid fertile hybrid between the diploid cultivated sorghum (Sorghum bicolor (L) Pers.) and its weedy tetraploid wild relative Johnsongrass (Sorghum halepense (L.) Pers.). Eight sorghum plants were selected from a Nebraska stiff stalk collection that contains the male sterility gene ms3 and were used as the female parent. About 36,000 florets of male sterile sorghum were pollinated with Johnsongrass pollen to produce an average of one well-developed and 180 severely shriveled seed/18,000 crosses. The well-developed seed gave rise to a self-fertile diploid, while none of the shriveled seed were able to germinate. The F1 hybrid was confirmed by using cultivated sorghum SSR markers and was selfed to produce an F2 population. A sub-sample of 96 segregating F2 plants was examined with 36 sorghum polymorphic SSR markers. Thirty-four markers showed a normal 1:2:1 segregation ratio, evidence of normal recombination across the genome. Preliminary results showed that several desirable traits from Johnsongrass, including resistance to greenbug and chinch bug and adaptability to cold temperatures, were expressed in the resulting progenies. These observations suggest that speciation within the genus Sorghum, giving rise to widely divergent phenotypes, is effected largely by ploidy-maintained crossing barriers but apparently not by extensive genomic divergence.  相似文献   

2.
本研究以四倍体高粱与约翰逊草为材料,利用SSR分子标记和细胞遗传学方法分析了高粱与约翰逊草间的亲缘关系,SSR分析结果表明,高粱与约翰逊草的遗传背景差异较大,SSR差异位点和相似位点在连锁群上的分布具不平衡性;按照差异引物出现频率高低,将连锁群分为两类:高度差异区和低度差异区。细胞学分析结果表明:(1)双亲及杂交种都是不规则的四倍体遗传群体。(2)花粉母细胞减数分裂中期I,双亲及杂交种染色体配对以二价体和四价体为主,杂交种平均每个细胞二价体数为17.00,四倍体高粱为15.23、约翰逊草为15.83,四价体数分别为0.95,2.15和1.60个。但杂交种减数分裂过程中也出现一定数量的单价体,减数分裂会形成一定比例的非整倍配子。SSR检测结果与细胞学分析结果具有一致性,约翰逊草与高粱的染色体组间存在一定程度的同源性。二者杂交不能形成稳定遗传的双二倍体。  相似文献   

3.
Arachis batizocoi Krap. & Greg. is a suggested B genome donor to the cultivated peanut,A. hypogaea L. Until recently, only one accession of this species was available in U.S.A. germplasm collections for analyses and species variability had not been documented. The objective of this study was to determine the intraspecific variability ofA. batizocoi to better understand phylogenetic relationships in sect.Arachis. Five accessions of the species were used for morphological and cytological studies and then F1 intraspecific hybrids analyzed. Some variation was observed among accessions—for example, differences in seed size, plant height and branch length. The somatic chromosomes of accessions 9484, 30079, and 30082 were nearly identical, whereas, the karyotypes of accessions 30081 and 30097 have several distinct differences. For example, 30081 had significantly more asymmetrical chromosomes 2 and 6 and more median chromosomes 7 and 10, and 30097 had significantly more asymmetrical chromosomes 3 and 10 and more median chromosomes 1 and 5 than accessions 9484, 30079, and 30082. All F1 hybrids among accessions were highly fertile. Meiotic observations indicated that hybrids among accessions 9484, 30079, or 30082 had mostly bivalents. However, quadrivalents were observed when either 30081 or 30097 was crossed with the above three accessions and 30081 × 30097 had quadrivalents, hexavalents and octavalents. The presence of translocations is the most likely cause of multivalent formation inA. batizocoi hybrids. Cytological evolution via translocations has apparently been an important mechanism for differentiation in the species.Paper No. 12382 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643.  相似文献   

4.
North American Elymus canadensis L., 2n = 28, and Asian Agropyron libanoticum Hack., 2n = 14, crossed with ease and yielded vigorous but sterile F1 hybrids, 2n = 21. Chromosome pairing in the hybrids averaged 9.47I, 5.38II, and 0.26III in 150 metaphase-I cells. One genome of E. canadensis is more or less homologous with the A. libanoticum genome. Treatment of the F1 hybrids with colchicine produced 42-chromosome amphiploids, C0, which were advanced through two seed generations, C1 and C2. More than half of the metaphase-I cells in the C0 amphiploids contained 21II; and average associations were 1.09I, 20.16II, 0.07III, and 0.09IV in 116 cells. Meiosis became increasingly irregular beyond metaphase-I; nevertheless, the C0 amphiploids produced 68% stainable pollen and averaged 0.75 seed per spikelet. Multivalent frequencies increased in advanced generations, and the C2 amphiploids averaged 1.11I, 19.00II, 0.23III, and 0.55IV in 100 metaphase-I cells. Meiosis was essentially regular in the C1 and C2 amphiploids beyond metaphase I, and the C2 amphiploids averaged 73% stainable pollen and 2.28 seeds per spikelet. The amphiploids have an excellent chance of developing into a meiotically stable, fertile, new species. Forage characteristics of the amphiploids indicate that they have considerable economic potential as a forage grass.  相似文献   

5.
Three intergeneric hybrids were produced between a cold-tolerant wild species, Erucastrum abyssinicum and three cultivated species of Brassica, B. juncea, B. carinata and B. oleracea, through ovary culture. The hybrids were characterized by morphology, cytology and DNA analysis. Amphiploidy was induced in all the F1 hybrids through colchicine treatment. Stable amphiploids and backcross progenies were obtained from two of the crosses, E. abyssinicum x B. juncea and E. abyssinicum x B. carinata. The amphiploid, E. abyssinicum x B. juncea was successfully used as a bridge species to produce hybrids with B. napus, B. campestris and B. nigra. These hybrids and backcross progenies provide useful genetic variability for the improvement of crop brassicas.  相似文献   

6.
Simple sequence repeats (SSRs), also known as microsatellites, are highly variable DNA sequences that can be used as markers for the genetic analysis of plants. Three approaches were followed for the development of PCR primers for the amplification of DNA fragments containing SSRs from sorghum [Sorghum bicolor (L.) Moench]: a search for sorghum SSRs in public DNA databases; the use of SSR-specific primers developed in the Poaceae species maize (Zea mays L.) and seashore paspalum grass (Paspalum vaginatum Swartz); and the screening of sorghum genomic libraries by hybridization with SSR oligonucleotides. A total of 49 sorghum SSR-specific PCR primer pairs (two designed from GenBank SSR-containing sequences and 47 from the sequences of genomic clones) were screened on a panel of 17 sorghum and one maize accession. Ten primer pairs from paspalum and 90 from maize were also screened for polymorphism in sorghum. Length polymorphisms among amplification products were detected with 15 of these primer pairs, yielding diversity values ranging from 0.2 to 0.8 with an average diversity of 0.56. These primer pairs are now available for use as markers in crop improvement and conservation efforts.  相似文献   

7.
Summary Pearl millet, Pennisetum americanum L. Leeke-napiergrass, Pennisetum purpureum Schum. amphiploids (2n=42) were crossed with pearl millet X Pennisetum squamulatum Fresen. interspecific hybrids (2n=41) to study the potential of germplasm transfer from wild Pennisetum species to pearl millet. These two interspecific hybrids were highly cross-compatible and more than two thousand trispecific progenies were produced from 17 double crosses. All doublecross hybrids were perennial and showed a wide range of morphological variations intermediate to both parents in vegetative and inflorescence characteristics. Some crosses resulted in sublethal progenies. Chromosomes paired mainly as bivalents (¯x15.88) or remained as univalents. At metaphase I, trivalents, quadrivalents, an occasional hexavalent and a high frequency of bivalents indicated some homeology among the genomes of the three species. Delayed separation of bivalents, unequal segregation of multivalents, lagging chromosomes, and chromatin bridges were observed at anaphase I. Although approximately 93% of the double-cross hybrids were male-sterile, pollen stainability in male-fertile plants ranged up to 94%. Seed set ranged from 0 to 37 seed per inflorescence in 71 plants under open-pollinated conditions. Apomictic embryo sac development was observed in double-cross progenies when crosses involved a pearl millet x P. squamulatum apomictic hybrid as pollen parent. These new double-cross hybrids may serve as bridging hybrids to transfer genes controlling apomixis and other plant characteristics from the wild Pennisetum species to pearl millet.  相似文献   

8.
Shyam Prakash 《Genetica》1973,44(2):249-263
Commonly cultivated mustard, Brassica juncea Coss, is an amphidiploid having in its genetic system the full 20-chromosome A genome (Brassica campestris) and the 16-chromosome B genome (Brassica nigra). Considerable natural variability exists under the A genome. These variations have been exploited for the artificial synthesis of B. juncea in order to breed improved mustard. The different combinations were studied both in their F1's and advanced amphidiploid generations in respect of their morphology, meiotic behaviour and fertility. Amphidiploids from leafy and rapiferous groups were generally bushy having arboreal habit. Some combinations from the leafy group result in types with luxuriant vegetative growth and can be used for fodder purposes. The amphiploids of ssp. rapifera did not give a swollen and enlarged root like the mother parent. None of the combinations from these two groups was promising in respect of oil and seed yield. Amphidiploids from the oleiferous group were both high seed and oil yielders and thus provide evidence that it formed one of the constituent parental species in the formation of oil yielding B. juncea.  相似文献   

9.
Interrelationships between H. vulgare (2x=14) and H. bulbosum (2x=14; 4x=28) were estimated on the basis of the karyotypes and the pairing behaviour of the chromosomes in diploid, triploid and tetraploid hybrids obtained with the aid of embryo culture. — A comparison of the karyotypes of the two species revealed similarities as well as differences. It was concluded that at least 4 or more of the chromosomes were similar in morphology and probably closely related. — Diploid and tetraploid hybrids are rarely obtained and their chromosome numbers tend to be unstable whereas triploid hybrids (1 vulgare + 2 bulbosum genomes) were stable and relatively easy to produce. In the diploid hybrid only 40% of the meiotic cells contained 14 chromosomes while the numbers ranged from 7 to 16 in other cells. All hybrids exhibited pairing between the chromosomes of the two species. Diploid hybrids had a mean of 5.0 and a maximum of 7 bivalents per cell in those cells having 14 chromosomes. Triploid hybrids from crosses between 2x H. vulgare and 4x H. bulbosum exhibited a mean of 1.5 and a maximum of 5 trivalents per cell. In a hexaploid sector found following colchicine treatment of a triploid the mean frequencies of chromosome associations per cell were: 5.5I+8.0II+0.7III+3.7IV+0.3V+0.4VI. One unstable 27 chromosome hybrid obtained from crosses between the autotetraploid forms had a mean of 1.1 and a maximum of 4 quadrivalents per cell. The chromosome associations observed in these hybrids are consistent and are taken as evidence of homoeologous pairing between the chromosomes of the two species. Interspecific hybridization between these two species also reveals that chromosome stable hybrids are only obtained when the genomes are present in a ratio of 1 vulgare2 bulbosum. Based upon the results obtained, the possibility of transferring genetic characters from H. bulbosum into cultivated barley is discussed.  相似文献   

10.
Microsatellites have emerged as an important system of molecular markers. We evaluated the potential of microsatellites for use in genetic studies of peach [Prunus persica (L.) Batsch]. Microsatellite loci in peach were identified by screening a pUC8 genomic library, a λZAPII leaf cDNA library, as well as through database searches. Primer sequences for the microsatellite loci were tested from the related Rosaceae species apple (Malus×domestica) and sour cherry (Prunus cerasus L.). The genomic library was screened for CT, CA and AGG repeats, while the cDNA library was screened for (CT)n- and (CA)n-containing clones. Estimates of microsatellite frequencies were determined from the genomic library screening, and indicate that CT repeats occur every 100 kb, CA repeats every 420 kb, and AGG repeats every 700 kb in the peach genome. Microsatellite- containing clones were sequenced, and specific PCR primers were designed to amplify the microsatellite- containing regions from genomic DNA. The level of microsatellite polymorphism was evaluated among 28 scion peach cultivars which displayed one to four alleles per primer pair. Five microsatellites were found to segregate in intraspecific peach-mapping crosses. In addition, these microsatellite markers were tested for their utility in cross-species amplification for use in comparative mapping both within the Rosaceae, and with the un- related species Arabidopsis thaliana L. Received: 18 June 1999 / Accepted: 6 December 1999  相似文献   

11.
Fertility in first‐generation hybrids of roach, Rutilus rutilus, and silver bream, Blicca bjoerkna, was investigated. Sperm and egg production of hybrids at first sexual maturity were examined. Eggs from female hybrids were artificially fertilized with the sperm of a corresponding hybrid male; a hybrid male from the reciprocal crossbreeding; a parental species male R. rutilus; and a parental species male B. bjoerkna. The results revealed that gametogenesis was normal in female hybrids. However, in male hybrids, a low efficiency of gametogenesis was observed. The semen of male hybrids was extremely dilute, with spermatozoa concentration lower than that in parental species. Nevertheless, these F1 hybrids (males and females) from reciprocal crossbreeding were fertile. F2 and backcross generations were produced, but F2 crosses from the female hybrid and corresponding hybrid male displayed a drastically slower hatching rate. Also higher proportions of deformed embryos were hatched than in other post‐F1‐generation crosses.  相似文献   

12.
Distribution of rDNA loci in the genus Glycine Willd.   总被引:2,自引:0,他引:2  
The objective of this study was to examine the distribution of rDNA loci in the genus Glycine Willd. by fluorescent in situ hybridization (FISH) using the internal transcribed spacer (ITS) region of nuclear ribosomal DNA as a probe. The hybridized rDNA probe produced two distinct yellow signals on reddish chromosomes representing two NORs in 16 diploid (2n=40) species. Aneudiploid (2n=38) and aneutetraploid (2n=78) Glycine tomentella Hayata also exhibited two rDNA sites. However, the probe hybridized with four chromosomes as evidenced by four signals in two diploid species (Glycine curvata Tind. and Glycine cyrtoloba Tind.) and tetraploid (2n=80) G. tabacina (Labill.) Benth. and G. tomentella. Synthesized amphiploids (2n=80) of Glycine canescens F. J. Herm. (2n=40) and the 40-chromosome G. tomentella also showed four signals. This study demonstrates that the distribution of the rDNA gene in the 16 Glycine species studied is highly conserved and that silence of the rDNA locus may be attributed to amphiplasty during diploidization and speciation. Received: 10 October 2000 / Accepted: 6 December 2000  相似文献   

13.
The breeding value of tetraploid F1 hybrids between tetrasomic tetraploid S. tuberosum and the disomic tetraploid wild species S. acaule was examined. The F1 hybrids showed a tuber yield and appearance comparable to those of their cultivated parent, indicating a potential as acceptable breeding stocks despite the 50% contribution to their pedigree from wild S. acaule. The cytological behavior of the tetraploid F1 hybrids was examined to determine the probability of recombination for the introgression of S. acaule genes. The majority of the meiotic configurations at metaphase I was bivalents and univalents with mean frequencies of 17.6 and 9.9, respectively. Further, a low frequency of trivalents and quadrivalents was observed. An acceptable low level of meiotic irregularities were observed at the later stages of microsporogenesis, and a reasonable level of pollen stainability was obtained. Therefore, these hybrids could likely be employed for further introgression. From the cytological observations, the following speculations were drawn: (1) some genomic differentiation exists between the S. acaule genomes, (2) at least one of the S. acaule genomes may be homoeologous to the S. tuberosum genomes, (3) intergenomic recombination would likely occur due to the nature of the genomic constitution of the hybrids, and (4) the nature of sesquiploidy of the hybrids may facilitate efficient introgression and establishment of unique aneuploid and euploid recombinant genetic stocks.  相似文献   

14.
Summary The results of intensive meiotic studies, particularly of the karyology and chromosomal homology at the pachytene stage, in the sweet potato (Ipomoea batatas L.), which is a hexaploid (2 n = 90), have thrown considerable light on its origin and genome relationships. Using suitable criteria, such as relative length of chromosomes, centromere position, chromomere pattern, absence of light staining segments in one of the arms, presence of telochromomere etc., 40 of the 45 haploid chromosome complement at pachytene were identified and assigned to 19 chromosomal types. Among these types, eight were present singly; in six of the types, chromosomes were present in duplicate, and in two types, in triplicate. The occurrence of higher multivalent chromosomal associations such as hexavalents and pentavalents, in addition to the quadrivalents already reported, was recorded for the first time at the pachytene and metaphase I stages. The hexavalents at pachytene were resolved into three distinct types based on the morphology of the participating chromosomes. A maximum number of nine quadrivalents at the metaphase I stage and four in the incompletely analyzed pachytene nuclei were recorded. The constituent chromosomes of three of the quadrivalents at pachytene stage were identified. From these observations, it is suggested that (i) the three parental genomes are partly homologous (ii) two of the genomes show closer homology to one another than to the third and (iii) the three genomes differ with respect to one or more of the eight chromosomal types occurring singly. The available information rules out an autopolyploid origin for sweet potato and suggests that the parental genomes are from closely related taxa. The advantages are emphasized of pursuing similar studies in other American Ipomoea species to unravel their relationship with the sweet potato. Among other meiotic irregularities, a translocated chromosome and a chromosome carrying inversion were detected at the pachytene stage and the possible role they may play in varietal differentiation is discussed.  相似文献   

15.
The genus Glycine is composed of two subgenera, Glycine and Soja. Soja includes the cultivated soybean, G. max, and its wild annual counterpart G. soja, while Glycine includes seven wild perennial species. Hybridization was carried out within and between wild perennial species of the subgenus Glycine. The success rate (pods set/flowers crossed) was 11% for intraspecific and 8% for interspecific crosses. A total of 220 F1 hybrids was examined morphologically and cytologically where possible. Hybrids within G. canescens (2n = 40) and G. latifolia (2n = 40) were fertile as expected. Glycine clandestina (2n = 40) was morphologically separable into at least three groups, which produced fertile hybrids within each group. One cross between two groups gave vegetatively vigorous but sterile hybrids. The majority of crosses within G. tabacina (2n = 80) were fertile, except that extremely narrow-leaved forms gave sterile hybrids in combination with more usual forms. Sterility was also encountered in G. tomentella when aneuploids (2n = 78) from New South Wales, Australia, were crossed with tetraploids (2n = 80) from either Queensland, Australia, or Taiwan; crosses between the latter two populations resulted in seedling lethality. Cytological behavior of sterile hybrids followed a similar pattern, whether at the diploid or tetraploid level. The frequency of chromosome pairing was approximately half that expected if genomes showed full pairing homology. Bivalent disjunction at anaphase I was usually followed by precocious division of the majority of univalents. Telophase I and II were characterized by lagging chromosomes and micronuclei, so that resulting pollen was misshapen and sterile. Chromosome pairing data from sterile intraspecific hybrids at the tetraploid level may indicate a polyphyletic origin of tetraploids, whereby different diploid populations were involved in their formation. Similarly, chromosome pairing in sterile intraspecific diploid hybrids may indicate that the various diploid groups arose independently of one another. Both 40- and 80-chromosome forms are fully diploidized, however, and if they are of ancient origin, divergence since that time could have resulted in the chromosomal differentiation which becomes apparent when intraspecific hybridization is effected. Diploid (2n = 40) interspecific hybrids G. falcata × G. canescens, and G. falcata × G. tomentella grew poorly and did not reach flowering stage. Diploid (2n = 40) crosses between G. latifolia and G. tomentella produced inviable seedlings. Tetraploid (2n = 80) hybrids between G. tomentella and G. tabacina were vegetatively vigorous but sterile owing to low chromosome pairing at meiosis, indicating little pairing homology between the two species. Diploid hybrids between G. canescens and G. clandestina, however, showed almost complete chromosome pairing at diakinesis and partial fertility. Although morphologically distinct, these two species have not diverged sufficiently to prevent hybridization and possible gene exchange through recombination. Self compatibility, perennial growth habit, and geographic isolation have favored divergence among Glycine populations to the point that gene exchange appears no longer possible in many cases. Internal isolating mechanisms have been shown to operate at various levels of plant development from hybrid lethality at seedling stage, to failure of seed-set in sterile but vegetatively vigorous hybrids.  相似文献   

16.
When a crop hybridizes with a wild relative, the potential for stable transmission to the wild of any crop gene is directly related to the frequency of crop–wild homoeologous pairing for the chromosomal region where it is located within the crop genome. Pairing pattern at metaphase I (MI) has been examined in durum wheat × Aegilops geniculata interspecific hybrids (2n=4x=ABUgMg) by means of a genomic in-situ hybridization procedure that resulted in simultaneous discrimination of A, B and wild genomes. The level of MI pairing in the hybrids varied greatly depending on the crop genotype. However, their pattern of homoeologous association was very similar, with a frequency of wheat–wild association close to 60% in all genotype combinations. A–wild represented 80–85% of wheat–wild associations which supports that, on average, A genome sequences are much more likely to be transferred to this wild relative following interspecific hybridization and backcrossing. Combination of genomic DNA probes and the ribosomal pTa71 probe has allowed to determine the MI pairing behaviour of the major NOR-bearing chromosomes in these hybrids (1B, 6B, 1Ug and 5Ug), in addition to wheat chromosome 4A which could be identified with the sole use of genomic probes. The MI pairing pattern of the wild chromosome arms individually examined has confirmed a higher chance of gene escape from the wheat A genome. However, a wide variation regarding the amount of wheat–wild MI pairing among the specific wheat chromosome regions under analysis suggests that the study should be extended to other homoeologous groups.  相似文献   

17.
Butternut (Juglans cinerea L.) is a temperate deciduous hardwood native to the eastern USA and southern Canada valued for its nuts and wood. Butternut’s survival is threatened by butternut canker, a disease caused by the exotic fungus Sirococcus clavigignenti-juglandacearum Nair, Kostichka & Kuntz. Field observations indicate that trees commonly called buartnut (a hybrid of butternut and its close congener Japanese walnut (Juglans ailantifolia × J. cinerea)) may be more resistant to butternut canker than is either parental species. Hybrids are difficult to distinguish morphologically from butternuts, and scientists have expressed concern over the possibility of range-wide genetic invasion by Japanese walnut via hybridization with butternut. We used pair-wise combinations of 40 random primers to screen bulked DNA pools of butternut, Japanese walnut, and buartnuts to identify genomic regions unique to Japanese walnut. We ultimately identified one ITS region marker, one chloroplast marker, one mitochondrial marker, and six nuclear markers. The utility of the markers for identifying hybrids was tested and verified using more than 190 genotypes. The markers will be used to identify buartnut hybrids based on the presence of introgressed genomic fragments inherited from Japanese walnut. We confirmed that hybrids have a complex genetic history and present features of the parental species in all possible combinations. These results will assist in the identification and testing of (non-hybrid) butternut for breeding and reintroduction of the species to its former habitats.  相似文献   

18.
Summary Triticales (XTriticosecale Wittmack) at three ploidy levels (8x, 6x, 4x, x=7) were crossed with diploid rye (Secale cereale L.) to produce a solitary hypopentaploid hybrid (2n=32), and a number of tetraploid (2n=4x=28) and triploid (2n=3x=21) hybrids. The hybrids exhibited a morphology which was intermediate between the parents. The number of bivalents ranged from 1–7 (4.65 per cell) in hypopentaploid, from 2–12 (7.13 per cell) in tetraploid and from 4–9 (6.84 per cell) in triploid hybrids. In 4x and 3x hybrids, trivalents and quadrivalents were also observed at low frequencies (range 0–1; mean 0.01–0.03 per cell). Chiasmata frequency was highest in triploid hybrids (12.44 per cell), lowest in hypopentaploid (5.37 per cell) and intermediate in tetraploids (10.54 per cell). More than 711 were found in 39.7% pollen mother cells (PMC's) in the 4x hybrids and in 5.0% PMCs in 3x hybrids. It is concluded that an increase in the relative proportion of wheat chromosomes in the hybrids had a slight suppression effect on homologous as well as homoeologous pairing of rye chromosomes. Contrary to this, the relative increase in rye complement promoted homoeologous pairing between wheat chromosomes. In triploid hybrids, the chiasmata frequency as well as the c value were the highest, suggesting that in tetraploid hybrids rye chromosomes had a reduced pairing (low frequency of ring bivalents).  相似文献   

19.
 Results are reported on the production and characterization of somatic hybrids between Allium ampeloprasum and A. cepa. Both symmetric and asymmetric protoplast fusions were carried out using a polyethylene-based mass fusion protocol. Asymmetric fusions were performed using gamma ray-treated donor protoplasts of A. cepa and iodoacetamide-treated A. ampeloprasum protoplasts. However, the use of gamma irradiation to eliminate or inactivate the donor DNA of A. cepa proved to be detrimental to the development of fusion calli, and thus it was not possible to obtain hybrids from asymmetric fusions. The symmetric fusions yielded a high number of hybrid calli and regenerated plants. The analysis of the nuclear DNA composition using interspecific variation of rDNA revealed that most of the regenerated plants were hybrids. Flow cytometric analysis of nuclear DNA showed that these hybrid plants contained a lower DNA content than the sum of the DNA amounts of the parental species, suggesting that they were aneuploid. A shortage of chromosomes in the hybrids was confirmed by genomic in situ hybridization. Chromosome counts in metaphase cells of six hybrids revealed that these plants lacked 2–7 leek chromosomes. One hybrid showed also the loss of onion chromosomes. The hybrids had an intermediate phenotype in leaf morphology. The application of these somatic hybrids in breeding is discussed. Received: 7 April 1997 / Accepted: 10 September 1997  相似文献   

20.
Summary Two hybrid embryos of intergeneric origin between Triticum aestivum cv Fukuho (2n=6x=42, AABBDD) and Psathyrostachys juncea (2n=2x=14, NN) were successfully rescued. One hybrid plant had the expected chromosome number of 28 (ABDN), whereas the second plant had 35 chromosomes. The average meiotic chromosome pairing in the 35-chromosome hybrid was 21.87 univalents + 6.38 bivalents + 0.11 trivalents + 0.009 quadrivalents, which indicates that two copies of the N genome were present. Chromosome pairing in the 28-chromosome hybrid was low (1.35 bivalents), and pointed out the lack of homology between the wheat genomes and the P. juncea genome. These new hybrids showed some necrosis and chlorosis, which caused severe floral abortion in the plant that had 35 chromosomes. These problems became gradually less severe after 18 months.Contrib. no. 372  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号