首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
Coral reefs are one of the most important marine ecosystems, providing habitat for approximately a quarter of all marine organisms. Within the foundation of this ecosystem, reef-building corals form mutualistic symbioses with unicellular photosynthetic dinoflagellates of the genus Symbiodinium. Exposure to UV radiation (UVR) (280 to 400 nm) especially when combined with thermal stress has been recognized as an important abiotic factor leading to the loss of algal symbionts from coral tissue and/or a reduction in their pigment concentration and coral bleaching. UVR may damage biological macromolecules, increase the level of mutagenesis in cells, and destabilize the symbiosis between the coral host and their dinoflagellate symbionts. In nature, corals and other marine organisms are protected from harmful UVR through several important photoprotective mechanisms that include the synthesis of UV-absorbing compounds such as mycosporine-like amino acids (MAAs). MAAs are small (<400-Da), colorless, water-soluble compounds made of a cyclohexenone or cyclohexenimine chromophore that is bound to an amino acid residue or its imino alcohol. These secondary metabolites are natural biological sunscreens characterized by a maximum absorbance in the UVA and UVB ranges of 310 to 362 nm. In addition to their photoprotective role, MAAs act as antioxidants scavenging reactive oxygen species (ROS) and suppressing singlet oxygen-induced damage. It has been proposed that MAAs are synthesized during the first part of the shikimate pathway, and recently, it has been suggested that they are synthesized in the pentose phosphate pathway. The shikimate pathway is not found in animals, but in plants and microbes, it connects the metabolism of carbohydrates to the biosynthesis of aromatic compounds. However, both the complete enzymatic pathway of MAA synthesis and the extent of their regulation by environmental conditions are not known. This minireview discusses the current knowledge of MAA synthesis, illustrates the diversity of MAA functions, and opens new perspectives for future applications of MAAs in biotechnology.  相似文献   

2.
David Morse 《Protist》2019,170(4):397-403
There is increasing interest in the possibility of sexual recombination in dinoflagellates, especially those symbiotic with coral, since recombination may be able to augment genetic diversity and reduce levels of coral bleaching. Several previous studies have addressed this in Symbiodinium by querying sequence databanks with a list of 51 genes termed a meiosis detection toolkit. Here, we have constructed an expanded list of 307 genes involved in meiosis in budding yeast. We find the genes involved in the major regulatory steps in yeast meiosis are also found in dinoflagellates, as are many of the genes involved in recombination. In contrast, few genes involved in forming the synaptonemal complex or forming spores are conserved. We further note that the meiosis-related genes absent in dinoflagellates are also as a general rule absent from other protists in the closely related apicomplexa and the ciliates. We conclude the symbiotic dinoflagellates are as able to undergo meiosis as are other protists.  相似文献   

3.

Background

The success of tropical reef-building corals depends on the metabolic co-operation between the animal host and the photosynthetic performance of endosymbiotic algae residing within its cells. To examine the molecular response of the coral Acropora microphthalma to high levels of solar irradiance, a cDNA library was constructed by PCR-based suppression subtractive hybridisation (PCR-SSH) from mRNA obtained by transplantation of a colony from a depth of 12.7 m to near-surface solar irradiance, during which the coral became noticeably paler from loss of endosymbionts in sun-exposed tissues.

Methodology/Principal Findings

A novel approach to sequence annotation of the cDNA library gave genetic evidence for a hypothetical biosynthetic pathway branching from the shikimic acid pathway that leads to the formation of 4-deoxygadusol. This metabolite is a potent antioxidant and expected precursor of the UV-protective mycosporine-like amino acids (MAAs), which serve as sunscreens in coral phototrophic symbiosis. Empirical PCR based evidence further upholds the contention that the biosynthesis of these MAA sunscreens is a ‘shared metabolic adaptation’ between the symbiotic partners. Additionally, gene expression induced by enhanced solar irradiance reveals a cellular mechanism of light-induced coral bleaching that invokes a Ca2+-binding synaptotagmin-like regulator of SNARE protein assembly of phagosomal exocytosis, whereby algal partners are lost from the symbiosis.

Conclusions/Significance

Bioinformatics analyses of DNA sequences obtained by differential gene expression of a coral exposed to high solar irradiance has revealed the identification of putative genes encoding key steps of the MAA biosynthetic pathway. Revealed also by this treatment are genes that implicate exocytosis as a cellular process contributing to a breakdown in the metabolically essential partnership between the coral host and endosymbiotic algae, which manifests as coral bleaching.  相似文献   

4.
Coral reefs are threatened by increasing surface seawater temperatures resulting from climate change. Reef-building corals symbiotic with dinoflagellates in the genus Symbiodinium experience dramatic reductions in algal densities when exposed to temperatures above the long-term local summer average, leading to a phenomenon called coral bleaching. Although the temperature-dependent loss in photosynthetic function of the algal symbionts has been widely recognized as one of the early events leading to coral bleaching, there is considerable debate regarding the actual damage site. We have tested the relative thermal stability and composition of membranes in Symbiodinium exposed to high temperature. Our results show that melting curves of photosynthetic membranes from different symbiotic dinoflagellates substantiate a species-specific sensitivity to high temperature, while variations in fatty acid composition under high temperature rather suggest a complex process in which various modifications in lipid composition may be involved. Our results do not support the role of unsaturation of fatty acids of the thylakoid membrane as being mechanistically involved in bleaching nor as being a dependable tool for the diagnosis of thermal susceptibility of symbiotic reef corals.  相似文献   

5.
Coral reefs are highly dependent on the mutualistic symbiosis between reef-building corals and dinoflagellates from the genus Symbiodinium. These dinoflagellates spend part of their life cycle outside the coral host and in the majority of the cases have to re-infect corals each generation. While considerable insight has been gained about Symbiodinium in corals, little is known about the ecology and biology of Symbiodinium in other reef microhabitats. This study documents Symbiodinium associating with benthic macroalgae on the southern Great Barrier Reef, including some Symbiodinium that are genetically close to the symbiotic strains from reef-building corals. It is possible that some of these Symbiodinium were in hospite, associated to soritid foraminifera or ciliates; nevertheless, the presence of Symbiodinium C3 and C15 in macroalgal microhabitats may also suggest a potential link between communities of Symbiodinium associating with both coral hosts and macroalgae.  相似文献   

6.
Mycosporines and mycosporine-like amino acids (MAAs), including shinorine (mycosporine-glycine-serine) and porphyra-334 (mycosporine-glycine-threonine), are UV-absorbing compounds produced by cyanobacteria, fungi, and marine micro- and macroalgae. These MAAs have the ability to protect these organisms from damage by environmental UV radiation. Although no reports have described the production of MAAs and the corresponding genes involved in MAA biosynthesis from Gram-positive bacteria to date, genome mining of the Gram-positive bacterial database revealed that two microorganisms belonging to the order Actinomycetales, Actinosynnema mirum DSM 43827 and Pseudonocardia sp. strain P1, possess a gene cluster homologous to the biosynthetic gene clusters identified from cyanobacteria. When the two strains were grown in liquid culture, Pseudonocardia sp. accumulated a very small amount of MAA-like compound in a medium-dependent manner, whereas A. mirum did not produce MAAs under any culture conditions, indicating that the biosynthetic gene cluster of A. mirum was in a cryptic state in this microorganism. In order to characterize these biosynthetic gene clusters, each biosynthetic gene cluster was heterologously expressed in an engineered host, Streptomyces avermitilis SUKA22. Since the resultant transformants carrying the entire biosynthetic gene cluster controlled by an alternative promoter produced mainly shinorine, this is the first confirmation of a biosynthetic gene cluster for MAA from Gram-positive bacteria. Furthermore, S. avermitilis SUKA22 transformants carrying the biosynthetic gene cluster for MAA of A. mirum accumulated not only shinorine and porphyra-334 but also a novel MAA. Structure elucidation revealed that the novel MAA is mycosporine-glycine-alanine, which substitutes l-alanine for the l-serine of shinorine.  相似文献   

7.
8.
9.
A survey of 54 species of symbiotic cnidarians that included hydrozoan corals, anemones, gorgonians and scleractinian corals was conducted in the Mexican Caribbean for the presence of mycosporine-like amino acids (MAAs) in the host as well as the Symbiodinium fractions. The host fractions contained relatively simple MAA profiles, all harbouring between one and three MAAs, principally mycosporine-glycine followed by shinorine and porphyra-334 in smaller amounts. Symbiodinium populations were identified to sub-generic levels using PCR-DGGE analysis of the Internal Transcribed Spacer 2 (ITS2) region. Regardless of clade identity, all Symbiodinium extracts contained MAAs, in contrast to the pattern that has been found in cultures of Symbiodinium, where clade A symbionts produced MAAs whereas clade B, C, D, and E symbionts did not. Under natural conditions between one and four MAAs were identified in the symbiont fractions, mycosporine-glycine (λmax = 310 nm), shinorine (λmax = 334 nm), porphyra-334 (λmax = 334 nm) and palythine (λmax = 320 nm). One sample also contained mycosporine-2-glycine (λmax = 331 nm). These data suggest that Symbiodinium is restricted to producing five MAAs and there also appears to be a defined order of appearance of these MAAs: mycosporine-glycine followed by shinorine (in one case mycosporine-2-glycine), then porphyra-334 and palythine. Overall, mycosporine-glycine was found in highest concentrations in the host and symbiont extracts. This MAA, unlike many other MAAs, absorbs within the ultraviolet-B range (UVB, 280-320 nm) and is also known for moderate antioxidant properties thus potentially providing protection against the direct and indirect effects of UVR. No depth-dependent changes could be identified due to a high variability of MAA concentrations when all species were included in the analysis. The presence of at least one MAA in all symbiont and host fractions analyzed serves to highlight the importance of MAAs, and in particular the role of mycosporine-glycine, as photoprotectants in the coral reef environment.  相似文献   

10.
Symbiodinium encompasses a diverse clade of dinoflagellates that are ecologically important as symbionts of corals and other marine organisms. Despite decades of study, cytological evidence of sex (karyogamy and meiosis) has not been demonstrated in Symbiodinium, although molecular population genetic patterns support the occurrence of sexual recombination. Here, we provide additional support for sex in Symbiodinium by uncovering six meiosis‐specific and 25 meiosis‐related genes in three published genomes. Cryptic sex may be occurring in Symbiodinium's seldom‐seen free‐living state while being inactive in the symbiotic state.  相似文献   

11.
Although mycosporine-like amino acids (MAAs) have been extensively investigated in reef-building corals, the sources of these MAAs and the process of their interconversion remain a topic of interest. Here we examined ontogenetic change in the abundance of MAAs in planula larvae of the spawning scleractinian coral Goniastrea retiformis in the absence of zooxanthellae and other dietary input. In order to examine the potential contribution of prokaryotes in the synthesis of MAAs in animal tissue, one group of larvae were treated with the antibiotic rifampicin. High concentrations of MAAs (mycosporine-glycine, shinorine, palythinol, asterina-330), were present in the asymbiotic eggs and adults; however, no MAAs were present in the endosymbiotic zooxanthellae. We documented a steady decline in the total MAA concentrations through time in larvae treated with rifampicin; however, in the absence of antibiotic there was a significant increase in the concentration of MAAs, driven by a sharp increase in the abundance of shinorine and palythinol between day 3 and 7. Our results suggest that MAA synthesis and conversion in G. retiformis larvae occurred in the absence of symbiotic zooxanthellae, and indicate a possible contribution of prokaryotes associated with the animal tissue to these processes.  相似文献   

12.
13.
The abundance and distribution of free-living dinoflagellates in the genus Symbiodinium have important implications for the ecology of coral reefs, determining both the symbionts available to newly recruited corals and symbiont types available for uptake by adult corals during environmental stress. However, little is known about where symbiotic dinoflagellates reside outside the host, due to the difficulty of capturing and detecting unicellular organisms in the marine environment. This study presents a successful protocol for sampling Symbiodinium from both the benthos and the water column. Comparisons of two detection methods for enumerating Symbiodinium indicated that conventional microscope analysis is accurate and more efficient when estimating Symbiodinium densities in sediment samples, while an automated particle counter (FlowCAM) was more efficient in detecting cells in the water column where densities are low. Symbiodinium densities were found to be relatively high (1000–4000 cells/mL) in sediment samples and much lower (up to 80 cells/mL) in the water column, indicating that the free-living form resides mainly in the benthos. Symbiodinium densities were found to be highly variable spatially, differing significantly between two reef locations. Within sites, elevated densities of Symbiodinium along reef margins combined with significant decreases in densities one meter away from the reef, suggest that cells aggregate within the reef habitat.  相似文献   

14.
15.
The shikimate pathway, including seven enzymatic steps for production of chorismate via shikimate from phosphoenolpyruvate and erythrose-4-phosphate, is common in various organisms for the biosynthesis of not only aromatic amino acids but also most biogenic benzene derivatives. 3-Amino-4-hydroxybenzoic acid (3,4-AHBA) is a benzene derivative serving as a precursor for several secondary metabolites produced by Streptomyces, including grixazone produced by Streptomyces griseus. Our study on the biosynthesis pathway of grixazone led to identification of the biosynthesis pathway of 3,4-AHBA from two primary metabolites. Two genes, griI and griH, within the grixazone biosynthesis gene cluster were found to be responsible for the biosynthesis of 3,4-AHBA; the two genes conferred the in vivo production of 3,4-AHBA even on Escherichia coli. In vitro analysis showed that GriI catalyzed aldol condensation between two primary metabolites, l-aspartate-4-semialdehyde and dihydroxyacetone phosphate, to form a 7-carbon product, 2-amino-4,5-dihydroxy-6-one-heptanoic acid-7-phosphate, which was subsequently converted to 3,4-AHBA by GriH. The latter reaction required Mn(2+) ion but not any cofactors involved in reduction or oxidation. This pathway is independent of the shikimate pathway, representing a novel, simple enzyme system responsible for the synthesis of a benzene ring from the C(3) and C(4) primary metabolites.  相似文献   

16.
The molecular structure of the carotenoid lactoside P457, (3S,5R,6R,3′S,5′R,6′S)‐13′‐cis‐5,6‐epoxy‐3′,5′‐dihydroxy‐3‐(β‐d ‐galactosyl‐(1→4)‐β‐d ‐glucosyl)oxy‐6′,7′‐didehydro‐5,6,7,8,5′,6′‐hexahydro‐β,β‐caroten‐20‐al, was confirmed by spectroscopic methods using Symbiodinium sp. strain NBRC 104787 cells isolated from a sea anemone. Among various algae, cyanobacteria, land plants, and marine invertebrates, the distribution of this unique diglycosyl carotenoid was restricted to free‐living peridinin‐containing dinoflagellates and marine invertebrates that harbor peridinin‐containing zooxanthellae. Neoxanthin appeared to be a common precursor for biosynthesis of peridinin and P457, although neoxanthin was not found in peridinin‐containing dinoflagellates. Fucoxanthin‐containing dinoflagellates did not possess peridinin or P457; green dinoflagellates, which contain chlorophyll a and b, did not contain peridinin, fucoxanthin, or P457; and no unicellular algae containing both peridinin and P457, other than peridinin‐containing dinoflagellates, have been observed. Therefore, the biosynthetic pathways for peridinin and P457 may have been coestablished during the evolution of dinoflagellates after the host heterotrophic eukaryotic microorganism formed a symbiotic association with red alga that does not contain peridinin or P457.  相似文献   

17.
18.
19.
Transketolase, one of the enzymes in the nonoxidative branch of the pentose phosphate pathway, operates to shuttle ribose 5-phosphate and glycolytic intermediates together with transaldolase, and might be involved in the availability of ribose 5-phosphate, a precursor of nucleotide biosynthesis. The tkt and tal genes encoding transketolase and transaldolase, respectively, were cloned from the typical nucleotide- and nucleoside-producing organism Corynebacterium ammoniagenes by a PCR approach using oligonucleotide primers derived from conserved regions of each amino acid sequence from other organisms. Enzymatic and molecular analyses revealed that the two genes were clustered on the genome together with the glucose 6-phosphate dehydrogenase gene (zwf). The effect of transketolase modifications on the production of inosine and 5'-xanthylic acid was investigated in industrial strains of C. ammoniagenes. Multiple copies of plasmid-borne tkt caused about tenfold increases in transketolase activity and resulted in 10-20% decreased yields of products relative to the parents. In contrast, site-specific disruption of tkt enabled both producers to accumulate 10-30% more products concurrently with a complete loss of transketolase activity and the expected phenotype of shikimate auxotrophy. These results indicate that transketolase normally shunts ribose 5-phosphate back into glycolysis in these biosynthetic processes and interception of this shunt allows cells to redirect carbon flux through the oxidative pentose pathway from the intermediate towards the purine-nucleotide pathway.  相似文献   

20.
Ultraviolet-absorbing chemicals are useful in cosmetics and skin care to prevent UV-induced skin damage. We demonstrate here that heterologous production of shinorine, which shows broad absorption maxima in the UV-A and UV-B region. A shinorine producing Corynebacterium glutamicum strain was constructed by expressing four genes from Actinosynnema mirum DSM 43827, which are responsible for the biosynthesis of shinorine from sedoheptulose-7-phosphate in the pentose phosphate pathway. Deletion of transaldolase encoding gene improved shinorine production by 5.2-fold. Among the other genes in pentose phosphate pathway, overexpression of 6-phosphogluconate dehydrogenase encoding gene further increased shinorine production by 60% (19.1 mg/L). The genetic engineering of the pentose phosphate pathway in C. glutamicum improved shinorine production by 8.3-fold in total, and could be applied to produce the other chemicals derived from sedoheptulose-7-phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号