首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A precise knowledge of the role of subunits of the 19S complex and the PA28 regulator, which associate with the 20S proteasome and regulate its peptidase activities, may contribute to design new therapeutic approaches for preventing muscle wasting in human diseases. The proteasome is mainly responsible for the muscle wasting of tumor-bearing and unweighted rats. The expression of some ATPase (MSS1, P45) and non ATPase (P112-L, P31) subunits of the 19S complex, and of the two subunits of the PA28 regulator, was studied in such atrophying muscles. The mRNA levels for all studied subunits increased in unweighted rats, and analysis of MSS1 mRNA distribution profile in polyribosomes showed that this subunit entered active translation. By contrast, only the mRNA levels for MSS1 increased in the muscles from cancer rats. Thus, gene expression of the proteasome regulatory subunits depends on a given catabolic state. Torbafylline, a xanthine derivative which inhibits tumor necrosis factor production, prevented the activation of protein breakdown and the increased expression of 20S proteasome subunits in cancer rats, without reducing the elevated MSS1 mRNA levels. Thus, the increased expression of MSS1 is regulated independently of 20S proteasome subunits, and did not result in accelerated proteolysis.  相似文献   

2.
The 11S proteasome activator (PA28) binds to the 20S proteasome and increases its ability to degrade small peptides. Expression of PA28 subunits (α, β, γ) is induced by interferon-γ stimulation. Inflammation plays a role in the development of neointimal hyperplasia, and we have previously shown that nitric oxide (NO) reduces neointimal hyperplasia in animal models and 26S proteasome activity in rat aortic smooth muscle cells (RASMC). Here, we show that PA28 increased 26S proteasome activity in RASMC, as measured by a fluorogenic assay, and the NO donor S-nitroso N-acetylpenicillamine significantly inhibits this activation. This effect was abrogated by the reducing agents dithiothreitol and HgCl(2), suggesting that NO affects the activity of PA28 through S-nitrosylation. NO did not appear to affect PA28 levels or intracellular localization in RASMC in vitro. Three days following rat carotid artery balloon injury, levels of PA28α, β and γ subunits were decreased compared to uninjured control arteries (n=3/group) in vivo. The NO donor proline NONOate further decreased PA28α, β and γ levels by 1.9-, 2.3- and 3.4-fold, respectively, compared to uninjured control arteries. Fourteen days following arterial injury, levels of PA28α, β and γ subunits were increased throughout the arterial wall compared to uninjured control arteries, but were greatest for the α and β subunits. NO continued to decrease the levels of all three PA28 subunits throughout the arterial wall at this time point. Since the PA28 subunits are involved in the breakdown of peptides during inflammation, PA28 inhibition may be one mechanism by which NO inhibits neointimal hyperplasia.  相似文献   

3.
Analysis of Drosophila 26 S proteasome using RNA interference.   总被引:9,自引:0,他引:9  
We have utilized double-stranded RNA interference (RNAi) to examine the effects of reduced expression of individual subunits of the 26 S proteasome in Drosophila S2 cells. RNAi significantly decreased mRNA and protein levels of targeted subunits of both the core 20 S proteasome and the PA700 regulatory complex. Cells deficient in any of several 26 S proteasome subunits (e.g. d beta 5, dRpt1, dRpt2, dRpt5, dRpn2, and dRpn12) displayed decreased proteasome activity (as judged by hydrolysis of succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin), increased apoptosis, decreased cell proliferation without a specific block of the cell cycle, and accumulation of ubiquitinated cellular proteins. RNAi of many individual 26 S proteasome subunits promoted increased expression of many non-targeted subunits. This effect was not mimicked by chemical proteasome inhibitors such as lactacystin. Reduced expression of most targeted subunits disrupted the assembly of the 26 S proteasome. RNAi of six of eight targeted PA700 subunits disrupted that structure and caused accumulation of increased levels of uncapped 20 S proteasome. Notable exceptions included RNAi of dRpn10, a polyubiquitin binding subunit, and dUCH37, a ubiquitin isopeptidase. dRpn10-deficient cells showed a significant increase in succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin hydrolyzing activity of the 26 S proteasomes but accumulated polyubiquitinated proteins. d beta 5-Deficient cells had a phenotype similar to that of most PA700-deficient cells but also accumulated low molecular mass complexes containing subunits of the 20 S proteasome, probably representing unassembled precursors of the 20 S proteasomes. Cells deficient in several of the 26 S proteasome subunits were more resistant to otherwise toxic concentrations of various proteasome inhibitors. Our data suggest that those cells adapted to grow in conditions of impaired ubiquitin and proteasome-dependent protein degradation.  相似文献   

4.
The ability to adapt to acute oxidative stress (e.g. H(2)O(2), peroxynitrite, menadione, and paraquat) through transient alterations in gene expression is an important component of cellular defense mechanisms. We show that such adaptation includes Nrf2-dependent increases in cellular capacity to degrade oxidized proteins that are attributable to increased expression of the 20 S proteasome and the Pa28αβ (11 S) proteasome regulator. Increased cellular levels of Nrf2, translocation of Nrf2 from the cytoplasm to the nucleus, and increased binding of Nrf2 to antioxidant response elements (AREs) or electrophile response elements (EpREs) in the 5'-untranslated region of the proteasome β5 subunit gene (demonstrated by chromatin immunoprecipitation (or ChIP) assay) are shown to be necessary requirements for increased proteasome/Pa28αβ levels, and for maximal increases in proteolytic capacity and stress resistance; Nrf2 siRNA and the Nrf2 inhibitor retinoic acid both block these adaptive changes and the Nrf2 inducers DL-sulforaphane, lipoic acid, and curcumin all replicate them without oxidant exposure. The immunoproteasome is also induced during oxidative stress adaptation, contributing to overall capacity to degrade oxidized proteins and stress resistance. Two of the three immunoproteasome subunit genes, however, contain no ARE/EpRE elements, and Nrf2 inducers, inhibitors, and siRNA all have minimal effects on immunoproteasome expression during adaptation to oxidative stress. Thus, immunoproteasome appears to be (at most) minimally regulated by the Nrf2 signal transduction pathway.  相似文献   

5.
The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-d-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression of the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G1 phase of cell cycling and decreased the proportion in the S/G2 phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G1 phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.  相似文献   

6.
The PA28 complexes (also termed REG or 11S complexes) are described as activators of the 20S proteasome, a major intracellular protease in eukaryotic cells. They bind to the ends of the barrel-shaped 20S proteasome, and activate its peptidase activities. The interferon γ inducible PA28αβ, made of the two related subunits PA28α and β, is under sustained investigation as it plays important roles in the production by the proteasome of class I antigen peptides. However, in vitro studies of this complex have been impaired by the difficulty of producing large amount of this protein, mainly due to the poor solubility of its β subunit when expressed in Escherichia coli. Here we describe the construction of a bicistronic vector, allowing simultaneous production of functional human PA28α and β subunits in E. coli. Co-expression of the two proteins allows efficient formation of active PA28αβ complexes, that remain soluble and can be easily purified by regular chromatographic procedures.  相似文献   

7.
The mechanisms controlling the switch between the pro-angiogenic and pro-inflammatory states of endothelial cells are still poorly understood. In this paper, we show that: (a) COX-2 expression induced by VEGF-A is NFAT2-dependent; and (b) the integrin profile in endothelial cells induced by the pro-angiogenic VEGF-A is distinct from that brought on by the inflammatory cytokine TNF-α. Two groups of integrin subunits specifically upregulated over time by both cytokines were identified using RT-PCR and Western Immunoblotting. The first group included α4, α5, α6, and β5 subunits that were upregulated by VEGF-A; the second group consisted of αV and β3 induced by TNF-α. Both cytokines significantly enhanced the expression of β1 and modulated α2 mRNA. In contrast to TNF-α, VEGF-A induction of integrin subunits depended on the activation of the calcineurin/NFAT pathway. Both calcineurin inhibitors (cyclosporineA and 11R-VIVIT) and downregulation of NFAT2 with specific siRNA decreased induction of integrin subunits. This process of induction could be increased by upregulation of NFAT2 by pBJ5-NFAT2 transfection. This suggests that NFAT2 mediates VEGF-induced upregulation of integrin subunit synthesis by providing a constant supply of newly synthesized “refreshed” mature integrin receptors, particularly α2β1, α5β1, α4β1, α6β1 and αVβ5, which are involved at different stages of angiogenesis.  相似文献   

8.
Abstract: The γ-aminobutyric acidA (GABAA)/benzodiazepine (BZ) receptor is a pentamer composed of subunits belonging to several classes (α1–6, β1–4, γ1–4, δ, and ρ1 and ρ2). In situ hybridization, radioligand autoradiography, and immunocytochemistry were used to examine GABAA/BZ receptor α1, α6, β2, β3, and γ2 subunit expression in murine Purkinje, granule, and deep cerebellar neurons after in vivo ethanol exposure. Chronic ethanol treatment resulted in decreased α1 subunit mRNA expression in each cell type, whereas the expression of α6 and γ2 subunit mRNA levels increased; no changes were observed in the expression of β2 and β3 subunit mRNA. GABA and BZ agonist binding and antibody staining paralleled the changes in mRNA levels. Acute ethanol injection resulted in increased expression of α1 and β3 mRNAs, whereas levels of α6, β2, and γ2 mRNAs remained stable. Our results indicate that, in cerebellar neurons, the expression of specific GABAA/BZ receptor subunit mRNAs, polypeptides, and binding sites is independently regulated by in vivo administration of alcohol. The observed changes were not restricted to any one cerebellar cell type, because subunit expression in Purkinje, granule, and deep cerebellar cells was similarly affected.  相似文献   

9.
The expression of β4, α6, and β1 integrin subunits has been investigated on somein vitro andin vivo murine metastatic variants derived from Lewis lung carcinoma (3LL). By the use of monoclonal antibodies which recognizes different epitopes of α6, β1, and β4 subunits we demonstrate that α6 and β1 subunits are expressed in all metastatic variants of 3LL irrespective of their metastatic potential, whereas β4 subunit is expressed only in highly metastasizing cells of 3LL. Northern blots of different metastatic variants probed with β1 and β4 subunits demonstrate thata) significant amounts of β1 mRNA were detected in all metastatic variants of 3LL;b) mRNA corresponding to the described entire coding sequence of β4 subunit is expressed only on highly metastasizing cells of 3LL. We conclude that β4 subunit is specifically expressed in highly metastasizig cells of 3LL while is undetectable in lower metastasizing ones.  相似文献   

10.
It has been proposed that phenolic antioxidants such as probucol exert their anti-atherogenic effects through scavenging lipid-derived radicals. In this study the potential for genomics to reveal unanticipated pharmacological properties of phenolic antioxidants is explored. It was found that two anti-atherogenic compounds, BO-653 and probucol, inhibited the expression of three alpha-type proteasome subunits, PMSA2, PMSA3, and PMSA4 in human umbilical vein endothelial cells. Here we report that both BO-653 and probucol caused not only inhibition of the mRNA levels of these three subunits but also inhibition of both the gene expression and protein synthesis of the alpha-type subunit, PMSA1. Other subunit components of the proteasome such as the beta-type subunits (PMSB1, PMSB7), the ATPase subunit of 19 S (PMSC6), the non-ATPase subunit of 19 S (PMSD1), and PA28 (PMSE2) were not significantly affected by treatment with these compounds. The specific inhibition of alpha-type subunit expression in response to these antioxidants resulted in functional alterations of the proteasome with suppression of degradation of multiubiquitinated proteins and IkappaBalpha. These results suggest that certain compounds previously classified solely as antioxidants are able to exert potentially important modulatory effects on proteasome function.  相似文献   

11.
To further the understanding of functional α6α5*-nicotinic acetylcholine receptors (nAChR; the asterisk (*) indicates known or possible presence of other subunits), we have heterologously expressed in oocytes different, mouse or human, nAChR subunit combinations. Coexpression with wild-type α5 subunits or chimeric α5/β3 subunits (in which the human α5 subunit N-terminal, extracellular domain is linked to the remaining domains of the human β3 subunit) almost completely abolishes the very small amount of function seen for α6β4*-nAChR and does not induce function of α6β2*-nAChR. Coexpression with human α5(V9)'(S) subunits bearing a valine 290 to serine mutation in the 9' position of the second transmembrane domain does not rescue the function of α6β4*-nAChR or induce function of α6β2*-nAChR. However, coexpression with mutant chimeric α5/β3(V9)'(S) subunits has a gain-of-function effect (higher functional expression and agonist sensitivity and spontaneous opening inhibited by mecamylamine) on α6β4*-nAChR. Moreover, N143D + M145V mutations in the α6 subunit N-terminal domain enable α5/β3(V9)'(S) subunits to have a gain-of-function effect on α6β2*-nAChR. nAChR containing chimeric α6/α3 subunits plus either β2 or β4 subunits have some function that is modulated in the presence of α5 or α5/β3 subunits. Coexpression with α5/β3(V9)'(S) subunits has a gain-of-function effect more pronounced than that in the presence of α5(V9)'(S) subunits. Gain-of-function effects are dependent, sometimes subtly, on the nature and apparently the extracellular, cytoplasmic, and/or transmembrane domain topology of partner subunits. These studies yield insight into assembly of functional α6α5*-nAChR and provide tools for development of α6*-nAChR-selective ligands that could be important in the treatment of nicotine dependence, and perhaps other neurological diseases.  相似文献   

12.
13.
PA700, the 19 S regulatory subcomplex of the 26 S proteasome, contains a heterohexameric ring of AAA subunits (Rpt1 to -6) that forms the binding interface with a heteroheptameric ring of α subunits (α1 to -7) of the 20 S proteasome. Binding of these subcomplexes is mediated by interactions of C termini of certain Rpt subunits with cognate binding sites on the 20 S proteasome. Binding of two Rpt subunits (Rpt2 and Rpt5) depends on their last three residues, which share an HbYX motif (where Hb is a hydrophobic amino acid) and open substrate access gates in the center of the α ring. The relative roles of other Rpt subunits for proteasome binding and activation remain poorly understood. Here we demonstrate that the C-terminal HbYX motif of Rpt3 binds to the 20 S proteasome but does not promote proteasome gating. Binding requires the last three residues and occurs at a dedicated site on the proteasome. A C-terminal peptide of Rpt3 blocked ATP-dependent in vitro assembly of 26 S proteasome from PA700 and 20 S proteasome. In HEK293 cells, wild-type Rpt3, but not Rpt3 lacking the HbYX motif was incorporated into 26 S proteasome. These results indicate that the C terminus of Rpt3 was required for cellular assembly of this subunit into 26 S proteasome. Mutant Rpt3 was assembled into intact PA700. This result indicates that intact PA700 can be assembled independently of association with 20 S proteasome and thus may be a direct precursor for 26 S proteasome assembly under normal conditions. These results provide new insights to the non-equivalent roles of Rpt subunits in 26 S proteasome function and identify specific roles for Rpt3.  相似文献   

14.
The proteasome is the main proteolytic enzyme that functions in the ubiquitin-proteasome system. The 26S proteasome has multi-subunit protease complexes consisting of 20S subunits composed of four seven-numbered rings with two outer rings containing α subunits and two central rings composed of β subunits, and 19S caps of 6 ATPase and 11 non-ATPase subunits; however, it is unclear how these subunits are regulated and the 26S proteasomes assembled. To verify whether each subunit’s mRNA expression is associated with the mRNA expression of other proteasome subunits, we carried out expression analysis of 34 proteasome subunits mRNA on peripheral blood from 75 subjects. The expression of proteasome subunits mRNA was comparable in each individual of the studied population and the mRNA expression has been investigated in each 20S or 19S proteasome. Our results suggest that each type of subunit is regulated by respectively common factors, and that the 20S and 19S proteasomes are regulated by different systems.  相似文献   

15.
16.
17.
Abstract: The GABAA receptor is a heterooligomeric protein complex composed of multiple receptor subunits. Developmental changes in the pattern of expression of 11 GABAA receptor subunits in individual rat embryonic hippocampal neurons on days 1–21 in culture and acutely dissociated hippocampal neurons from postnatal day (PND) 5 rat pups were investigated using the technique of single-cell mRNA amplification. We demonstrate that multiple GABAA receptor subunits are expressed within individual hippocampal neurons, with most cells simultaneously expressing α1, α2, α5, β1, and γ2 mRNAs. Further, relative expression of several GABAA receptor subunit mRNAs changes significantly in embryonic hippocampal neurons during in vitro development, with the relative abundance (compared with β-actin) of α1, α5, and γ2 mRNAs increasing 2.3-, 2.7-, and 3.8-fold, respectively, from days 1 to 14, and β1 increasing 5-fold from days 1 to 21. In situ hybridization with antisense digoxigenin-labeled α1, β1, and γ2 RNA probes demonstrates a similar increase in expression of subunit mRNAs as embryonic hippocampal neurons mature in vitro. Relative abundances of α1, β1, and γ2 subunit mRNAs in acutely dissociated PND 5 hippocampal neurons are also significantly greater than in embryonic day 17 neurons on day 1 in vitro and exceed the peak values seen in cultured neurons on days 14–21, suggesting that GABAA receptor subunit mRNA expression within individual hippocampal neurons follows a similar, if somewhat delayed, developmental pattern in vitro compared with in vivo. These findings suggest that embryonic hippocampal neuronal culture provides a useful model in which to study the developmental regulation of GABAA receptor expression and that developmental changes in GABAA receptor subunit expression may underlie some of the differences in functional properties of GABAA receptors in neonatal and mature hippocampal neurons.  相似文献   

18.
19.
Thirty novel triaryl compounds were designed and synthesized based on the known proteasome inhibitor PI-1840. Most of them showed significant inhibition against the β5c subunit of human 20S proteasome, and five of them exhibited IC50 values at the sub-micromolar level, which were comparable to or even more potent than PI-1840. The most active two (1c and 1d) showed IC50 values of 0.12 and 0.18 μM against the β5c subunit, respectively, while they displayed no obvious inhibition against the β2c, β1c and β5i subunits. Molecular docking provided informative clues for the subunit selectivity. The potent and subunit selective proteasome inhibitors identified herein represent new chemical templates for further molecular optimization.  相似文献   

20.
The S fimbrial adhesin (Sfa) enables Escherichia coli to attach to sialic acid-containing receptor molecules of eukaryotic cells. As previously reported, the genetic determinant coding for the Sfa of an E. coli O6 strain was cloned, the gene coding for the major fimbrial subunit was identified and sequenced and the S specific adhesin was detected. Here we present evidence that in addition to the major subunit protein SfaA three other minor subunit proteins, SfaG (17 kD), SfaS (14 kD) and SfaH (31 kD) can be isolated from the S-specific fimbrial adhesin complex. The genes coding for these minor subunits were identified, mutagenized separately and sequenced. Using haemagglutination tests, electron-microscopy and quantitative ELISA assays with monoclonal anti-SfaA and anti-SfaS antibodies the functions of the minor subunits were determined. It was determined that SfaS is identical to the S-specific adhesin, which also plays a role in determination of the degree of fimbriation of the cell. The minor subunit SfaH also had some influence on the level of fimbriation of the cell, while SfaG is necessary for full expression of S-specific binding. It was further shown that the amino-terminal protein sequence of the isolated SfaS protein was identical to the protein sequence calculated from the DNA sequence of the sfaS gene locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号