首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 768 毫秒
1.
A unique variant of glutathione independent formaldehyde dehydrogenase of Pseudomonas putida was obtained by random mutagenesis using the PCR-reaction. This YM042 mutant, S318G, was a cold-adapted formaldehyde dehyrogenase. The activity at 29 degrees C of the variant was 1.7-fold higher than that of the wild type. The K(m) values of the mutant at 37 degrees C were 0.40 mM for NAD(+) and 2.5 mM for formaldehyde, while those of the wild-type were 0.18 mM for NAD(+) and 2.1 mM for formaldehyde. The catalytic efficiency for formaldehyde was about 1.5-fold greater in the mutant than in the wild-type enzyme. The optimum pHs and temperatures of the mutant and the wild-type enzyme were 7.5, and 8.0 and 37 degrees C, and 47 degrees C, respectively. The thermal stability of the mutant was lower than that of the wild type.  相似文献   

2.
Introduction of a disulfide bond by site-directed mutagenesis was found to enhance the stability of subtilisin BPN' (EC 3.4.21.14) under a variety of conditions. The location of the new disulfide bond was selected with the aid of a computer program, which scored various sites according to the amount of distortion that an introduced disulfide linkage would create in a 1.3-A X-ray model of native subtilisin BPN'. Of the several amino acid pairs identified by this program as suitable candidates, Thr-22 and Ser-87 were selected by using the additional requirement that the individual cysteine substitutions occur at positions that exhibit some degree of variability in related subtilisin amino acid sequences. A subtilisin variant containing cysteine residues at positions 22 and 87 was created by site-directed mutagenesis and was shown to have an activity essentially equivalent to that of the wild-type enzyme. Differential scanning calorimetry experiments demonstrated the variant protein to have a melting temperature 3.1 degrees C higher than that of the wild-type protein and 5.8 degrees C higher than that of the reduced form (-SH HS-) of the variant protein. Kinetic experiments performed under a variety of conditions, including 8 M urea, showed that the Cys-22/Cys-87 disulfide variant undergoes thermal inactivation at half the rate of that of the wild-type enzyme. The increased thermal stability of this disulfide variant is consistent with a decrease in entropy for the unfolded state relative to the unfolded state that contains no cross-link, as would be predicted from the statistical thermodynamics of polymers.  相似文献   

3.
The reporter enzyme beta-glucuronidase was mutagenized and evolved for thermostability. After four cycles of screening the best variant was more active than the wild-type enzyme, and retained function at 70 degrees C, whereas the wild-type enzyme lost function at 65 degrees C. Variants derived from sequential mutagenesis were shuffled together, and re-screened for thermostability. The best variants retained activities at even higher temperatures (80 degrees C), but had specific activities that were now less than that of the wild-type enzyme. The mutations clustered near the tetramer interface of the enzyme, and many of the evolved variants showed much greater resistance to quaternary structure disruption at high temperatures, which is also a characteristic of naturally thermostable enzymes. Together, these results suggest a pathway for the evolution of thermostability in which enzymes initially become stable at high temperatures without loss of activity at low temperatures, while further evolution leads to enzymes that have kinetic parameters that are optimized for high temperatures.  相似文献   

4.
The thermostability of xylanase XynR8 from uncultured Neocallimastigales rumen fungal was improved by combining random point mutagenesis with site-directed mutagenesis guided by rational design, and a thermostable variant, XynR8_VNE, was identified. This variant contained three amino acid substitutions, I38V, D137N and G151E, and showed an increased melting temperature of 8.8?°C in comparison with the wild type. At 65?°C the wild-type enzyme lost all of its activity after treatment for 30?min, but XynR8_VNE retained about 65?% activity. To elucidate the mechanism of thermal stabilization, three-dimensional structures were predicted for XynR8 and its variant. We found that the tight packing density and new salt bridge caused by the substitutions may be responsible for the improved thermostability. These three substitutions are located in the N-terminus, cord and α-helix domains, respectively. Hence, the stability of these three domains may be crucial for the thermostability of family 11 xylanases.  相似文献   

5.
L J Perry  R Wetzel 《Biochemistry》1986,25(3):733-739
We have introduced an intramolecular disulfide bond into T4 lysozyme and have shown this molecule to be significantly more stable than the wild-type molecule to irreversible thermal inactivation [Perry, L.J., & Wetzel, R. (1984) Science (Washington, D.C.) 226, 555-557]. Wild-type T4 lysozyme contains two free cysteines, at positions 54 and 97, and no disulfide bonds. By directed mutagenesis of the cloned T4 lysozyme gene, we replaced Ile-3 with Cys. Oxidation in vitro generated an intramolecular disulfide bond; proteolytic mapping showed this bond to connect Cys-3 to Cys-97. While this molecule exhibited substantially more stability against thermal inactivation than wild type, its stability was further enhanced by additional modification with thiol-specific reagents. This and other evidence suggest that at basic pH and elevated temperatures Cys-54 is involved in intermolecular thiol/disulfide interchange with the engineered disulfide, leading to inactive oligomers. Mutagenic replacement of Cys-54 with Thr or Val in the disulfide-cross-linked variant generated lysozymes exhibiting greatly enhanced stability toward irreversible thermal inactivation.  相似文献   

6.
The catalytic domain of a xylanase from the anaerobic fungus Neocallimastix patriciarum was made more alkalophilic through directed evolution using error-prone PCR. Transformants expressing the alkalophilic variant xylanases produced larger clear zones when overlaid with high pH, xylan-containing agar. Eight amino acid substitutions were identified in six selected mutant xylanases. Whereas the wild-type xylanase exhibited no activity at pH 8.5, the relative and specific activities of the six mutants were higher at pH 8.5 than at pH 6.0. Seven of the eight amino acid substitutions were assembled in one enzyme (xyn-CDBFV) by site-directed mutagenesis. Some or all of the seven mutations exerted positive and possibly synergistic effects on the alkalophilicity of the enzyme. The resulting composite mutant xylanase retained a greater proportion of its activity than did the wild type at pH above 7.0, maintaining 25% of its activity at pH 9.0, and its retention of activity at acid pH was no lower than that of the wild type. The composite xylanase (xyn-CDBFV) had a relatively high specific activity of 10128 micromol glucose x min(-1) x (mg protein)(-1) at pH 6.0. It was more thermostable at 60 degrees C and alkaline tolerant at pH 10.0 than the wild-type xylanase. These properties suggest that the composite mutant xylanase is a promising and suitable candidate for paper pulp bio-bleaching.  相似文献   

7.
Hecky J  Müller KM 《Biochemistry》2005,44(38):12640-12654
The choice of protein for use in technical and medical applications is limited by stability issues, making understanding and engineering of stability key. Here, enzyme destabilization by truncation was combined with directed evolution to create stable variants of TEM-1 beta-lactamase. This enzyme was chosen because of its implication in prodrug activation therapy, pathogen resistance to lactam antibiotics, and reporter enzyme bioassays. Removal of five N-terminal residues generated a mutant which did not confer antibiotic resistance at 37 degrees C. Accordingly, the half-life time in vitro was only 7 s at 40 degrees C. However, three cycles comprising random mutagenesis, DNA shuffling, and metabolic selection at 37 degrees C yielded mutants providing resistance levels significantly higher than that of the wild type. These mutants demonstrated increased thermoactivity and thermostability in time-resolved kinetics at various temperatures. Chemical denaturation revealed improved thermodynamic stabilities of a three-state unfolding pathway exceeding wild-type construct stability. Elongation of one optimized deletion mutant to full length increased its stability even further. Compared to that of the wild type, the temperature optimum was shifted from 35 to 50 degrees C, and the beginning of heat inactivation increased by 20 degrees C while full activity at low temperatures was maintained. We attribute these effects mainly to two independently acting boundary interface residue exchanges (M182T and A224V). Structural perturbation by terminal truncation, evolutionary compensation at physiological temperatures, and elongation is an efficient way to analyze and improve thermostability without the need for high-temperature selection, structural information, or homologous proteins.  相似文献   

8.
Sites for Cys substitutions to form a disulfide bond were chosen in subtilisin E from Bacillus subtilis, a cysteine-free bacterial serine protease, based on the structure of aqualysin I of Thermus aquaticus YT-1 (a thermophilic subtilisin-type protease containing two disulfide bonds). Cys residues were introduced at positions 61 (wild-type, Gly) and 98 (Ser) in subtilisin E by site-directed mutagenesis. The Cys-61/Cys-98 mutant subtilisin appeared to form a disulfide bond spontaneously in the expression system used and showed a catalytic efficiency equivalent to that of the wild-type enzyme for hydrolysis of a synthetic peptide substrate. The thermodynamic characteristics of these enzymes were examined in terms of enzyme autolysis (t1/2) and thermal stability (Tm). The half-life of the Cys-61/Cys-98 mutant was found to be 2-3 times longer than that of the wild-type enzyme. Similar results were obtained by differential scanning calorimetry. The disulfide mutant showed a Tm of 63.0 degrees C, which was 4.5 degrees C higher than that observed for the wild-type enzyme. Under reducing conditions, however, the characteristics of the mutant enzyme were found to revert to those of the wild-type enzyme. These results strongly suggest that the introduction of a disulfide bond by site-directed mutagenesis enhanced the thermostability of subtilisin E without changing the catalytic efficiency of the enzyme.  相似文献   

9.
The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues (Glu-50, Glu-62, and Asp-66) was changed to Asp and Gln or Asn and Glu by site-directed mutagenesis, respectively. The Asp-66-->Asn and Asp-66-->Glu mutation remarkably decreased kinetic parameters such as Vmax and kcat to approximately 1/1,000 those of the wild-type enzyme, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three Cys residues at positions 49, 72, and 211. The Cys-49-->Ser/Tyr and Cys-72-->Ser/Tyr mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However, the half-life of the Cys-211-->Ser/Tyr mutant enzyme was less than 10 min at 80 degrees C, while that of the wild-type enzyme was about 90 min. Moreover, the residual activity of Cys-211-->Ser/Tyr enzyme was substantially decreased by 8 M urea; and it lost all catalytic activity in 40% ethanol. These results show that the substitution of Cys with any amino acid residues at position 211 seems to affect the conformational stability of the chitosanase.  相似文献   

10.
Carnitine palmitoyltransferase (CPT) I catalyzes the conversion of long-chain fatty acyl-CoAs to acyl carnitines in the presence of l-carnitine, a rate-limiting step in the transport of long-chain fatty acids from the cytoplasm to the mitochondrial matrix. To determine the role of the 15 cysteine residues in the heart/skeletal muscle isoform of CPTI (M-CPTI) on catalytic activity and malonyl-CoA sensitivity, we constructed a 6-residue N-terminal, a 9-residue C-terminal, and a 15-residue cysteineless M-CPTI by cysteine-scanning mutagenesis. Both the 9-residue C-terminal mutant enzyme and the complete 15-residue cysteineless mutant enzyme are inactive but that the 6-residue N-terminal cysteineless mutant enzyme had activity and malonyl-CoA sensitivity similar to those of wild-type M-CPTI. Mutation of each of the 9 C-terminal cysteines to alanine or serine identified a single residue, Cys-305, to be important for catalysis. Substitution of Cys-305 with Ala in the wild-type enzyme inactivated M-CPTI, and a single change of Ala-305 to Cys in the 9-residue C-terminal cysteineless mutant resulted in an 8-residue C-terminal cysteineless mutant enzyme that had activity and malonyl-CoA sensitivity similar to those of the wild type, suggesting that Cys-305 is the residue involved in catalysis. Sequence alignments of CPTI with the acyltransferase family of enzymes in the GenBank led to the identification of a putative catalytic triad in CPTI consisting of residues Cys-305, Asp-454, and His-473. Based on the mutagenesis and substrate labeling studies, we propose a mechanism for the acyltransferase activity of CPTI that uses a catalytic triad composed of Cys-305, His-473, and Asp-454 with Cys-305 serving as a probable nucleophile, thus acting as a site for covalent attachment of the acyl molecule and formation of a stable acyl-enzyme intermediate. This would in turn allow carnitine to act as a second nucleophile and complete the acyl transfer reaction.  相似文献   

11.
The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations were previously generated using random mutagenesis and identified by high-temperature screening as imparting improved thermal stability to the beta-D-glucosidase enzyme. Analysis of the substrate-saturation curves obtained by ITC for the wild-type enzyme and the nine thermally stabilized mutants revealed that the wild type and all the mutants were subject to binding of a second substrate molecule. Furthermore, the "inhibited" enzyme-substrate complexes were shown to retain catalytic activity. In the case of three of the BglC mutants (N178I, N317Y/L444F, and N317Y/L444F/A433V), binding of a second substrate molecule resulted in improved cellobiose turnover rates at lower substrate concentrations. No correlation between denaturation temperatures of the mutants and activity on cellobiose at 25 degrees C was evident. However, one particular mutant, BglC S319C, was significantly improved in both thermal tolerance and cellobiase activity with respect to those of the wild-type BglC. The triple mutant, N317Y/L444F/A433V, had a 5 degrees C increase in denaturation temperature while maintaining activity levels similar to that of the wild type at higher substrate concentrations. ITC provided a highly sensitive and nondestructive means to continuously monitor the reaction of BglC with cellobiose, resulting in abundant data sets that could be rigorously analyzed by fitting to known enzyme kinetics models. One distinct advantage of using data from the ITC was the empirical validation of the pseudo steady state assumption, a necessary condition for obtaining solutions to the proposed mechanisms.  相似文献   

12.
Directed evolution by error-prone PCR was applied to stabilize the cold-active lipase from Pseudomonas fragi (PFL). PFL displays high activity at 10 degrees C, but it is highly unstable even at moderate temperatures. After two rounds of evolution, a variant was generated with a 5-fold increase in half-life at 42 degrees C and a shift of 10 degrees C in the temperature optimum, nevertheless retaining cold-activity. The evolved lipase displayed specific activity higher than the wild type enzyme in the temperature range 29-42 degrees C. Biophysical measurements did not indicate any obvious difference between the improved variant and the wild type enzyme in terms of loss of secondary structure upon heat treatment, nor a shift in the apparent melting temperature.  相似文献   

13.
High-M(r) thioredoxin reductase from the malaria parasite Plasmodium falciparum (PfTrxR) contains three redox active centers (FAD, Cys-88/Cys-93, and Cys-535/Cys-540) that are in redox communication. The catalytic mechanism of PfTrxR, which involves dithiol-disulfide interchanges requiring acid-base catalysis, was studied by steady-state kinetics, spectral analyses of anaerobic static titrations, and rapid kinetics analysis of wild-type enzyme and variants involving the His-509-Glu-514 dyad as the presumed acid-base catalyst. The dyad is conserved in all members of the enzyme family. Substitution of His-509 with glutamine and Glu-514 with alanine led to TrxR with only 0.5 and 7% of wild type activity, respectively, thus demonstrating the crucial roles of these residues for enzymatic activity. The H509Q variant had rate constants in both the reductive and oxidative half-reactions that were dramatically less than those of wild-type enzyme, and no thiolateflavin charge-transfer complex was observed. Glu-514 was shown to be involved in dithiol-disulfide interchange between the Cys-88/Cys-93 and Cys-535/Cys-540 pairs. In addition, Glu-514 appears to greatly enhance the role of His-509 in acid-base catalysis. It can be concluded that the His-509-Glu-514 dyad, in analogy to those in related oxidoreductases, acts as the acid-base catalyst in PfTrxR.  相似文献   

14.
The thermostability of the endo-beta-1,4-xylanase from Thermomyces lanuginosus (xynA) was improved by directed evolution using error-prone PCR. Transformants expressing the variant xylanases were first selected on 0.4% Remazol Brilliant Blue-xylan and then exposed to 80 degrees C. Whereas the wild type XynA lost 90% activity after 10 min at 80 degrees C, five mutants displayed both higher stabilities and activities than XynA. Four mutants were subjected to further mutagenesis to improve the stability and activity of the xylanase. Subsequent screening revealed three mutants with enhanced thermostability. Mutant 2B7-10 retained 71% of its activity after treatment at 80 degrees C for 60 min and had a half-life of 215 min at 70 degrees C, which is higher than that attained by XynA. Sequence analysis of second generation mutants revealed that mutations were not concentrated in any particular region of the protein and exhibited much variation. The best mutant obtained from this study was variant 2B7-10, which had a single substitution (Y58F) in beta-sheet A of the protein, which is the hydrophilic, solvent-accessible outer surface of the enzyme. Most of the mutants obtained in this study displayed a compromise between stability and activity, the only exception being mutant 2B7-10. This variant showed increased activity and thermostability.  相似文献   

15.
We used directed evolution to convert Bacillus subtilis subtilisin E into an enzyme functionally equivalent to its thermophilic homolog thermitase from Thermoactinomyces vulgaris. Five generations of random mutagenesis, recombination and screening created subtilisin E 5-3H5, whose half-life at 83 degrees C (3.5 min) and temperature optimum for activity (Topt, 76 degrees C) are identical with those of thermitase. The Topt of the evolved enzyme is 17 degrees C higher and its half-life at 65 degrees C is >200 times that of wild-type subtilisin E. In addition, 5-3H5 is more active towards the hydrolysis of succinyl-Ala-Ala-Pro-Phe-p-nitroanilide than wild-type at all temperatures from 10 to 90 degrees C. Thermitase differs from subtilisin E at 157 amino acid positions. However, only eight amino acid substitutions were sufficient to convert subtilisin E into an enzyme equally thermostable. The eight substitutions, which include known stabilizing mutations (N218S, N76D) and also several not previously reported, are distributed over the surface of the enzyme. Only two (N218S, N181D) are found in thermitase. Directed evolution provides a powerful tool to unveil mechanisms of thermal adaptation and is an effective and efficient approach to increasing thermostability without compromising enzyme activity.  相似文献   

16.
A heat-stable raw-starch-digesting amylase (RSDA) was generated through PCR-based site-directed mutagenesis. At 65 degrees C, the half-life of this mutant RSDA, which, compared with the wild-type RSDA, lacks amino acids R178 and G179, was increased 20-fold. While the wild type was inactivated completely at pH 3.0, the mutant RSDA still retained 41% of its enzymatic activity. The enhancement of RSDA thermostability was demonstrated to be via a Ca(2+)-independent mechanism.  相似文献   

17.
Directed evolution study of temperature adaptation in a psychrophilic enzyme   总被引:10,自引:0,他引:10  
We have used laboratory evolution methods to enhance the thermostability and activity of the psychrophilic protease subtilisin S41, with the goal of investigating the mechanisms by which this enzyme can adapt to different selection pressures. A combined strategy of random mutagenesis, saturation mutagenesis and in vitro recombination (DNA shuffling) was used to generate mutant libraries, which were screened to identify enzymes that acquired greater thermostability without sacrificing low-temperature activity. The half-life of seven-amino acid substitution variant 3-2G7 at 60 degrees C is approximately 500 times that of wild-type and far surpasses those of homologous mesophilic subtilisins. The dependence of half-life on calcium concentration indicates that enhanced calcium binding is largely responsible for the increased stability. The temperature optimum of the activity of 3-2G7 is shifted upward by approximately 10 degrees C. Unlike natural thermophilic enzymes, however, the activity of 3-2G7 at low temperatures was not compromised. The catalytic efficiency, k(cat)/K(M), was enhanced approximately threefold over a wide temperature range (10 to 60 degrees C). The activation energy for catalysis, determined by the temperature dependence of k(cat)/K(M) in the range 15 to 35 degrees C, is nearly identical to wild-type and close to half that of its highly similar mesophilic homolog, subtilisin SSII, indicating that the evolved S41 enzyme retained its psychrophilic character in spite of its dramatically increased thermostability. These results demonstrate that it is possible to increase activity at low temperatures and stability at high temperatures simultaneously. The fact that enzymes displaying both properties are not found in nature most likely reflects the effects of evolution, rather than any intrinsic physical-chemical limitations on proteins.  相似文献   

18.
We have studied the possible role, in a plant glutamine synthetase (GS), of the different cysteinyl residues present in this enzyme. For this purpose we carried out the site-directed mutagenesis of the cDNA for α-GS polypeptide from Phaseolus vulgaris in the positions corresponding to Cys-92, Cys-159, and Cys-179, followed by heterologous expression in E. coli and enzymatic characterisation of WT and mutant proteins. The results show that neither Cys-92 nor Cys-179 residues were essential for enzyme activity, but the replacement of Cys-159 by alanine or serine strongly affects the quaternary structure and function of the GS enzyme molecule, resulting in a complete loss of enzymatic activity. Other studies using sulfhydryl specific reagents such as pHMB (p-hydroxymercuribenzoate) or DTNB (5,5′-dithiobis-2-nitrobenzoate) confirmed that the profound inhibition produced is associated with an important alteration of the quaternary structure of GS, and suggest that Cys-159 might be the residue responsible for the enzyme inhibition. All these results suggest that the Cys-159 residue is essential for the enzyme structure. The results are also consistent with previous reports based on classical biochemistry studies indicating the presence of essential cysteinyl residues for the enzyme activity of higher plant GS.  相似文献   

19.
In order to elucidate the role of particular amino acid residues in the catalytic activity and conformational stability of human aldolases A and B [EC 4.1.2.13], the cDNAs encoding these isoenzyme were modified using oligonucleotide-directed, site-specific mutagenesis. The Cys-72 and/or Cys-338 of aldolase A were replaced by Ala and the COOH-terminal Tyr of aldolases A and B was replaced by Ser. The three mutant aldolases A thus prepared, A-C72A, A-C338A, and A-C72,338A, were indistinguishable from the wild-type enzyme with respect to general catalytic properties, while the replacement of Tyr-363 by Ser in aldolase A (A-Y363S) resulted in decreases of the Vmax of the fructose-1, 6-bisphosphate (FDP) cleavage reaction, activity ratio of FDP/fructose-1-phosphate (F1P), and the Km values for FDP and F1P. The wild-type and all the mutant aldolase A proteins exhibited similar thermal stabilities. In contrast, the mutant aldolase A proteins were more stable than the wild-type enzyme against tryptic and alpha-chymotryptic digestions. Based upon these results it is concluded that the strictly conserved Tyr-363 of human aldolase A is required for the catalytic function with FDP as the substrate, while neither Cys-72 nor Cys-338 directly takes part in the catalytic function although the two Cys residues may be involved in maintaining the correct spatial conformation of aldolase A. Replacement of Tyr-363 by Ser in human aldolase B lowered the Km value for FDP appreciably and also diminished the stability against elevated temperatures and tryptic digestion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Serotonin transporter (SERT) contains a single reactive external cysteine residue at position 109 (Chen, J. G., Liu-Chen, S., and Rudnick, G. (1997) Biochemistry 36, 1479-1486) and seven predicted cytoplasmic cysteines. A mutant of rat SERT (X8C) in which those eight cysteine residues were replaced by other amino acids retained approximately 32% of wild type transport activity and approximately 56% of wild type binding activity. In contrast to wild-type SERT or the C109A mutant, X8C was resistant to inhibition of high affinity cocaine analog binding by the cysteine reagent 2-(aminoethyl)methanethiosulfonate hydrobromide (MTSEA) in membrane preparations from transfected cells. Each predicted cytoplasmic cysteine residue was reintroduced, one at a time, into the X8C template. Reintroduction of Cys-357, located in the third intracellular loop, restored MTSEA sensitivity similar to that of C109A. Replacement of only Cys-109 and Cys-357 was sufficient to prevent MTSEA sensitivity. Thus, Cys-357 was the sole cytoplasmic determinant of MTSEA sensitivity in SERT. Both serotonin and cocaine protected SERT from inactivation by MTSEA at Cys-357. This protection was apparently mediated through a conformational change following ligand binding. Although both ligands bind in the absence of Na(+) and at 4 degrees C, their ability to protect Cys-357 required Na(+) and was prevented at 4 degrees C. The accessibility of Cys-357 to MTSEA inactivation was increased by monovalent cations. The K(+) ion, which is believed to serve as a countertransport substrate for SERT, was the most effective ion for increasing Cys-357 reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号