首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Size and Composition of Marek''s Disease Virus Deoxyribonucleic Acid   总被引:15,自引:12,他引:3       下载免费PDF全文
Deoxyribonucleic acid (DNA) extracted from purified nucleocapsids of Marek's disease herpesvirus (MDV) was cosedimented with T4 and with herpes simplex virus (HSV) DNA in neutral sucrose density gradients and with T4 DNA in alkaline sucrose density gradients. These experiments indicated that the intact MDV DNA had a sedimentation constant of 56S corresponding to a molecular weight of 1.2 x 10(8) daltons. In the alkaline gradients, the largest and most prominent band contains a DNA sedimenting at 70S corresponding to 6.0 x 10(7) daltons in molecular weight. The DNA is therefore double-stranded and not cross-linked. Isopycnic sedimentation of the MDV DNA molecules with SPO1, Micrococcus lysodeikticus, and HSV DNA gave a density of 1.705 g/cm(3) corresponding to 46 guanine plus cytosine moles per cent. Lastly, in hybridization tests the DNA hybridized with RNA of infected cells but not with that of uninfected cells supporting the conclusion that it is viral.  相似文献   

2.
Intermediate in adenovirus type 2 replication.   总被引:1,自引:1,他引:0       下载免费PDF全文
Replicating chromosomes, called intermediate DNA, have been extracted from the adenovirus replication complex. Compared to mature molecules, intermediate DNA had a greater buoyant density in CsCl gradients and ethidium bromide-cesium chloride gradients. Digestion of intermediate DNA with S1 endonuclease, but not with RNase, abolished the difference in densities. These properties suggest that replicating molecules contain extensive regions of parental single strands. Although intermediate DNA sedimented faster than marker viral DNA in neutral sucrose gradients, single strands longer than unit length could not be detected after alkaline denaturation. Integral size classes of nascent chains in intermediate DNA suggest a relationship between units of replication and the nucleoprotein structure of the virus chromosome. Adenovirus DNA was replicated at a rate of 0.7 x 10-6 daltons/min. Although newly synthesized molecules had the same sedimentation coefficient and buoyant density as mature chromosomes, they still contained single-strand interruptions. Complete joining of daughter strands required an additional 15 to 20 min.  相似文献   

3.
Some Properties of the PBP1 Transduction System in Bacillus pumilus   总被引:6,自引:1,他引:5  
Bacteriophage PBP1 is a flagella-specific virus that performs generalized transduction in strains of Bacillus pumilus. PBP1 is morphologically and serologically distinct from two other flagella-specific phages, PBS1 and SP-15, which perform generalized transduction in certain Bacillus species. The DNA extracted from PBP1 particles has a buoyant density of 1.690 g/cm(3) in cesium chloride gradients, a melting temperature of 86.1 C, and a sedimentation velocity of 47S in neutral sucrose gradients. Assuming the molecule is a linear duplex, PBP1 DNA has a molecular weight of approximately 76 x 10(6). In two strains of B. pumilus which are sensitive to both PBP1 and PBS1, co-transducible genetic markers are more tightly linked by PBS1 transduction than by PBP1 transduction. The size of the fragment of bacterial DNA carried by PBP1-transducing particles, inferred from transduction studies and sedimentation analysis of viral DNA, suggests that PBP1 may be useful for genetic studies of extrachromosomal DNA elements present in two strains of B. pumilus. Genetic exchange of chromosomally located genes between the plasmid(+) and plasmid(-)B. pumilus strains NRS 576 and NRRL B-3275 has been demonstrated by PBP1 transduction.  相似文献   

4.
Simian virus 40 (SV40) replicating chromosomes were extracted from nuclei of infected cells. The chromosomes in the extract were resolved on neutral sucrose gradients, and the extent of replication of the DNA in the chromosome peaks was determined. The extract, in combination with cytosol factors and the appropriate precursors, supports the continued replication of viral DNA. The products of the incubation were mature form I DNA and molecules (after deproteinization) with sedimentation coefficients, in neutral sucrose, of 22S and 29S. The results of our analysis of this system indicate the following. (i) The 22S molecule, which has been described by previous workers, is a relaxed, replicating molecule and is an artifact of the in vitro system. (ii) When the in vitro synthesis is performed at optimal ionic strength (150 mM potassium acetate), the artifactual 22S molecule does not appear. (iii) Late replicative intermediates do accumulate in vivo and in vitro. The major late form accumulated is 91% completed. (iv) The replicating chromosomes can be resolved into two distinct peaks on neutral sucrose gradients. The molecules in these peaks differ in extent of replication. (v) The nuclear extraction procedure preferentially extracts early replicating chromosomes. The relevance of these data to the problem of SV40 and cellular chromosome replication and termination is described.  相似文献   

5.
An enzyme complex was prepared from the cytoplasm of a continuous line of monocytic human leukemia cells isotopically labeled in culture. Such preparations carry out RNA dependent DNA synthesis using endogenous primers and templates and contain radioactive RNA and DNA. The endogenous [3H]-thymidine labeled DNA in these preparations was characterized by sedimentation in Cs2SO4 and neutral sucrose density gradients in conjunction with heat and alkali treatments and digestion with RNase. The resulting data support a view that a portion of the DNA is covalently linked to a larger piece of RNA in a molecule with a sedimentation coefficient of approximately 24S. This in turn may be hydrogen bonded to additional DNA in the native state.  相似文献   

6.
The size and molecular configuration of mycoplasmavirus MVL2 DNA are presented. The DNA was shown to be a covalently closed circular duplex molecule with a molecular weight of 7.4 X 10(6). In sucrose gradients at neutral pH, the form I and form II DNA molecules have sedimentation values of approximately 29S and 23S, respectively. Under alkaline conditions, the form I and form II have S values of 70 and 20, respectively.  相似文献   

7.
Replicating polyoma virus DNA, pulse-labeled with 3H-thymidine, was isolated from infected mouse embryo cells by velocity sedimentation in neutral sucrose and purified by benzoylated-naphthoylated DEAE-cellulose chromatography. Nascent strands, prepared by heat denaturation of purified replicative intermediate, banded at a slightly higher buoyant density in neutral cesium sulfate gradients than single strands derived from superhelical viral DNA. Treatment of nascent strands with a mixture of ribonucleases 1A and T1 shifted their buoyant density to that of single strands derived from superhelical viral DNA. These results indicate that an oligoribonucleotide component is covalently associated with replicating polyoma DNA strands.  相似文献   

8.
The molecular weight of native vaccinia deoxyribonucleic acid (DNA) is 1 to 1.17 times that of native T4 DNA. Sedimentation of denatured vaccinia DNA through alkaline sucrose gradients yields an apparent molecular weight greater than twice that of denatured T4 DNA, implying that the complementary strands of vaccinia DNA do not separate upon denaturation. When alkali-denatured vaccinia DNA is neutralized, it has the physical chemical properties of native DNA when tested by sedimentation through neutral sucrose gradients, banding in CsCl, and by hydroxylapatite chromatography. We conclude that almost all mature vaccinia DNA molecules contain a small number of naturally occurring cross-links.  相似文献   

9.
The vaccinia virus genome is a single, linear, duplex DNA molecule whose complementary strands are naturally cross-linked. The molecular weight has been determined by contour length measurements from electron micrographs to be 122 ± 2.2 × 106. Denaturation mapping techniques indicate that the nucleotide sequence arrangement of the DNA is unique. Two forms of cross-linked vaccinia DNA were observed in alkaline sucrose gradients. The relative S-values of the two cross-linked species were appropriate for a single-stranded circle and a linear single strand, each with a molecular weight twice that expected for an intact, linear, complementary strand of vaccinia DNA. The fraction of sheared vaccinia DNA able to “snap back” after denaturation suggested a minimum of two crosslinks per molecule. Full-length single-stranded circles were observed in the electron microscope after denaturation of vaccinia DNA. Partial denaturation produced single-stranded loops at the ends of all full-length molecules. Exposure of native vaccinia DNA to a single strand-specific endonuclease isolated from vaccinia virions caused disruption of the cross-links, as assayed by alkaline sedimentation, and produced free single-strand ends when partially denatured DNA was observed in the electron microscope. We conclude that vaccinia DNA contains two cross-links, one at or near (within 50 nucleotides) each end in a region of single-stranded DNA. Two models for the cross-links are presented.  相似文献   

10.
Simian virus 40 (SV40) nucleoprotein complexes were extracted from nuclei of infected monkey cells and fractionated on neutral sucrose density gradients. Complexes which contained replicating SV40 DNA (95S) separated well from those containing closed circular supercoiled viral DNA (75S). DNA polymerase activity was associated with the replicating nucleoprotein complexes but not with the slower sedimenting complexes. This DNA polymerase activity coprecipitated with the nucleoprotein complexes in the presence of MgCl2 and remained associated with the 95S complexes. This DNA polymerase activity has been identified as primarily DNA polymerase alpha on the basis of its sedimentation behavior, optimum salt concentration, and sensitivity to N-ethylmaleimide. DNA polymerase gamma activity was also detected in the complexes, but DNA polymerase beta was not associated with the complexes.  相似文献   

11.
Purified simian virus 40 (SV40) virions, grown in primary African green monkey kidney cells labeled prior to infection with (3)H-thymidine, contain a variable quantity of (3)H-labeled deoxyribonucleic acid (DNA). This DNA is resistant to deoxyribonuclease, sediments at 250S, and is enclosed in a particle that can be precipitated with SV40-specific antiserum. DNA-DNA hybridization experiments demonstrate that this (3)H-labeled component in purified SV40 virions is cellular DNA. When this (3)H-labeled DNA is released from purified virus with sodium dodecyl sulfate, it has an average sedimentation constant of 14S. Sedimentation through neutral and alkaline sucrose gradients shows that this 14S DNA is composed of a collection of different sizes of DNA molecules that sediment between 11 and 15S. As a result of this size heterogeneity, SV40 virions containing cellular DNA (pseudovirions) have a variable DNA to capsid protein ratio and exhibit a spectrum of buoyant densities in a CsCl equilibrium gradient. Pseudovirions are enriched, relative to true virions, on the lighter density side of infectious SV40 virus banded to equilibrium in a CsCl gradient. Little or no cellular DNA was found in purified SV40 virus preparations grown in BSC-1 or CV-1 cells.  相似文献   

12.
Kilham rat virus (KRV) contains linear, single-stranded DNA in the virion. The fate of radioactive viral DNA was followed after infection of monolayer cells. Within 60 min after infection of cells, 28 to 42% of the parental viral DNA is converted to a new form. This new DNA form is believed to be double stranded and linear on the basis of its sedimentation in neutral and alkaline sucrose gradients, elution from hydroxyapatite columns, its buoyant density in equilibrium CsCl density gradients, and appearance in the electron microscope. The double-stranded linear KRV DNA may be analogous to the replicative form of certain bacteriophages, including phiX174, which contain single-stranded circular genomes.  相似文献   

13.
Characterization of the Kilham Rat Virus   总被引:12,自引:12,他引:0       下载免费PDF全文
Kilham rat virus (KRV) was found to grow in a rat nephroma cell line and to form plaques on secondary rat embryo monolayers. The virus was purified by enzymatic treatment and isopycnic cesium chloride sedimentation. KRV bands at a density of 1.41 g/cm(3) in cesium chloride. It contains about 26.5% deoxyribonucleic acid (DNA). The sedimentation coefficient S(20,w) in sucrose gradients was 122 corresponding to a molecular weight of 6.6 x 10(6) daltons. The reaction of formaldehyde with the KRV virion suggests that the DNA in situ is single-stranded. DNA extracted from KRV had a buoyant density of 1.715 g/cm(3) in cesium chloride. The S(20,w) was determined in sucrose gradients to be 16, and the molecular weight was calculated to be approximately 1.7 x 10(6) daltons. The base composition of the DNA is 26.7% adenine, 30.8% thymine, 20.0% guanine, and 22.5% cytosine. On the basis of its noncomplementary nucleotide ratio, melting curve, and the reaction with formaldehyde, the DNA of KRV is believed to be single-stranded.  相似文献   

14.
The X-ray resistance of logarithmic phase cells of Escherichia coli K-12 is enhanced threefold by growth in rich medium versus minimal medium (N. J. Sargentini, W. P. Diver, and K. C. Smith, Radiat. Res. 93, 364-380, 1983). In this work, X-ray-induced DNA strand breaks were assayed by sedimentation in alkaline and neutral sucrose gradients to correlate the enhanced survival of rich-medium-grown cells with an enhanced capacity for DNA repair. While rich-medium-grown cells showed no enhanced capacity for repairing DNA single-strand breaks in buffer, i.e., fast, polA-dependent repair, they did show an enhanced capacity to repair both single-strand and double-strand breaks in growth medium, i.e., slow, recA-dependent repair. This enhanced capacity for DNA repair in rich-medium-grown cells was inhibited by rifampicin post-treatment, indicating the requirement for de novo RNA synthesis. Kinetic studies indicated that the repair of DNA double-strand breaks was a complex process. Relative to the sedimentation rate in neutral sucrose gradients of nonirradiated DNA, the sedimentation rate of X-irradiated DNA first changed from slow to very fast. Based on alkaline sucrose gradient sedimentation studies, all the strand breaks had been repaired during the formation of the very fast sedimenting DNA. With continued incubation, the sedimentation rate of the DNA on neutral sucrose gradients decreased to the normal rate.  相似文献   

15.
A cell-free system for the study of viral DNA replications was developed by the isolation of a nuclear membrane fraction "DNA replication complex" from adenovirus 2-infected human KB cells late after infection. This complex which possesses both DNA polymerase activity and a virus-specific endonuclease synthesizes exclusively virus-specific DNA sequences in vitro by a semiconservative mechanism. Analysis by rate zonal sedimentation in alkaline sucrose gradients showed that the products of the reaction are small DNA chains approximately 6 to 9 S, presumably "Okazaki intermediates," that are not sealed under our in vitro conditions. Analysis by rate zonal sedimentation in neutral sucrose gradients showed that labeled viral DNA fragments are hydrogen bonded to viral 18 S DNA segments, 0.25 the size of the linear, viral 31 S DNA genome. The 18 S DNA is probably a specific cleavage product of the viral endonuclease found in the replication complex and could represent intermediates in viral DNA replication or degradation products.  相似文献   

16.
Infectious DNA from adeno-associated satellite virus (ASV) has been isolated from cells coinfected with a temperature-sensitive mutant of herpes simplex virus (HSV) type 1 in the absence of contaminating HSV DNA. This satellite virus DNA does not appear to differ in its physical, chemical and biological properties from DNA isolated directly from virions or from cells co-infected with adenovirus. The DNA is double-stranded with a buoyant density of 1.718 gm/cm3. It sediments at 16S in both neutral and alkaline sucrose gradients. Single-stranded DNA from alkaline sucrose gradients has a modal length of 1.5 μm and demonstrates evidence of internal redundancies in the electron microscope.  相似文献   

17.
In vitro cultured bovine liver cells were labelled with radioactive thymidine and dissolved in 0.5% sodium dodecyl sulphate. Centrifugation of the lysate through sucrose gradients in a zonal rotor revealed a slowly sedimenting fraction of preferentially pulse labelled DNA. The DNA of this zone was further analysed by chromatography on hydroxy-apatite, banding in CsCl density gradients, and sedimentation in neutral and alkaline sucrose gradients. It contained besides small amounts of fragmented bulk DNA, single-stranded nascent DNA and single-stranded pre-labelled DNA which could be separated from each other by using BrdU as a density label. The density labelling also revealed small amounts of nascent-nascent DNA duplexes. The slowly sedimenting fraction was practically absent from cell lysates which were prepared in 2 M NaCl - 50 microgram/ml pronase. The results suggest that nascent single-strands and nascent-nascent duplexes are released from the forks of replicating DNA by branch migration. Pre-labelled single strands may be released by the same branch migration. Pre-labelled single strands may be released by the same mechanism, but the in vivo structure from which they originate has yet to be elucidated.  相似文献   

18.
Characterization of Aleutian disease virus as a parvovirus.   总被引:32,自引:26,他引:6       下载免费PDF全文
We characterized a strain of Aleutian disease virus adapted to growth in Crandall feline kidney cells at 31.8 degrees C. When purified from infected cells, Aleutian disease virus had a density in CsCl of 1.42 to 1.44 g/ml and was 24 to 26 nm in diameter. [3H]thymidine could be incorporated into the viral genome, and the viral DNA was then studied. In alkaline sucrose gradients, Aleutian disease virus DNA was a single species that cosedimented at 15.5S with single-stranded DNA from adeno-associated virus. When the DNA was analyzed on neutral sucrose gradients, a single species was again observed, which sedimented at 21S and was clearly distinct from 16S duplex adeno-associated virus DNA. A similar result was obtained even after incubation under annealing conditions, implying that the bulk of Aleutian disease virus virions contained a single non-complementary strand with a molecular weight of about 1.4 X 10(6). In addition, two major virus-associated polypeptides with molecular weights of 89,100 and 77,600 were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of virus purified from infected cultures labeled with [35S]methionine. These data suggest that Aleutian disease virus is a nondefective parvovirus.  相似文献   

19.
The sedimentation of DNA-nuclear protein complexes in 1.9 M salt-neutral sucrose gradients (nucleoid sedimentation) was used to examine the effects of the DNA intercalator 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) on mouse leukemia cell DNA. Mild detergent cell lysis and neutral pH make nucleoid sedimentation an extremely gentle, but sensitive, method to detect DNA scission. DNA breaks reduce the compaction of nucleoids and slow their sedimentation. Nucleoids from m-AMSA-treated cells sedimented as did those from untreated cells, indicating no detectable m-AMSA-dependent alterations in compaction despite an apparent underlying DNA break frequency of approximately 3 per 10(6) nucleotides, as measured by alkaline elution with proteinase. Mild proteinase digestion of cell lysates prior to nucleoid sedimentation unmasked some, but not all, of the underlying breaks. The frequency of DNA-protein cross-links in nucleoids from cells treated with m-AMSA was comparable to the single-strand break frequency produced by m-AMSA in whole cells. These results indicate that m-AMSA-induced DNA-protein cross-links conceal DNA breaks so as to prevent swiveling around the breaks within the nucleoids. This unique sort of DNA scission is consistent with the involvement of topoisomerases in the DNA breaks elicited by intercalators in mammalian cells.  相似文献   

20.
HEp-2 cells were infected with herpes simplex virus type 1 and labeled with [3H]thymidine and 14C-amino acids. Infected cells or nuclei prepared from them were extracted with Triton X-100 and NaCl, utilizing a method recently described, and the low-speed supernatant (extract) was partially purified by sedimentation on sucrose gradients. A nucleoprotein complex which sedimented as a wide peak around 200S was identified. The nucleoprotein complex contained viral DNA, which banded at the expected density in CsCl isopycnic gradients and was intact after measurements taken on electron microscopic photographic enlargements. The autoradiographic pattern of 14C-labeled proteins after electrophoresis showed that only a few of the virus-specific polypeptides were present in the nucleoprotein complexes, in particular, VP5, VP12, VP15.2, VP19, and VP24. Cellular histones were absent. The extracts and the nucleoprotein complexes were centrifuged to equilibrium in metrizamide density gradients without prefixation. Electron microscopic direct visualization of the nucleoprotein complexes after sucrose or metrizamide purification revealed that the proteins were preferentially associated with one end of the DNA molecule and formed large irregular terminal thickenings or capsid-like transparent shells enclosing polyglobular cores. No nucleosomes were observed on herpes simplex virus nucleoprotein complexes. The same type of complex was detected after phosphonoacetic acid addition, and grossly altered nucleocapsids were formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号