首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rabbit articular cartilage slices were grown in organ culture for 9 weeks. Eightfold increases in the synthesis of both glycosaminoglycan and collagen were observed at 1 and 3 weeks, respectively. These levels of synthesis gradually declined in parallel to fourfold at 9 weeks. DNA synthesis was stimulated more than 30-fold at 3 weeks and then declined to sevenfold at 9 weeks. In contrast, the content of glycosaminoglycans and collagen per milligram of original wet slices did not vary significantly, while the number of cells increased 1.7-fold by the end of the study. The collagen phenotype of these cultures was determined by sodium dodecyl sulfate electrophoresis of recently synthesized, [3H]proline-labeled intact collagen chains and CNBr peptides. Throughout the study the major collagen synthesized was type II, ranging from 95 to 68% of the collagen synthesized at 0 and 5 weeks, respectively. Increases in the proportions of X2Y and type III collagen were first observed at 3 weeks in culture. The synthesis of type I collagen was detected only after 5 weeks in culture and never represented more than 11% of the total collagen synthesized. The synthesis of type I trimer could not be verified at any time. This study demonstrates that in vitro organ culture of articular cartilage slices allows chondrocytes to maintain the normal chondrocyte collagen phenotype of predominantly type II synthesis while stimulating their proliferation and matrix synthesis.  相似文献   

2.
The differentiated phenotype of rabbit articular chondrocytes can be characterized by the synthesis of high levels of cartilage specific proteoglycan and collagen (type II). Treatment of these cells in primary monolayer culture for periods of up to 18 days with 0.03 to 3.0 micrograms/ml retinoic acid (RA) resulted in suppression of colony formation, altered morphology, and decreased (eightfold) proteoglycan and collagen synthesis. With the exception of collagen synthesis, these changes were complete with all doses after 4 days of treatment. Collagen synthesis declined more slowly; it was dose dependent after 4 days and maximally inhibited by all doses by 9 days. Detailed analysis of the collagen phenotype was performed using SDS-PAGE of intact chains and 2-D CNBr peptide analysis. RA caused cessation of type II synthesis, and transient stimulation of type III and type I trimer collagen synthesis, without induction of type I collagen. Essentially identical results were obtained with retinol. The resultant collagen phenotype differed significantly from the type I-containing phenotype induced by subculture. Thus, suppression of this differentiated program did not elicit a common modulated phenotype. The results are discussed in the context of direct and indirect mechanisms of RA-dependent modulation of chondrocyte gene expression.  相似文献   

3.
Paul D. Benya  Joy D. Shaffer 《Cell》1982,30(1):215-224
The differentiated phenotype of rabbit articular chondrocytes consists primarily of type II collagen and cartilage-specific proteoglycan. During serial monolayer culture this phenotype is lost and replaced by a complex collagen phenotype consisting predominately of type I collagen and a low level of proteoglycan synthesis. Such dedifferentiated chondrocytes reexpress the differentiated phenotype during suspension culture in firm gels of 0.5% low Tm agarose. Approximately 80% of the cells survive this transition from the flattened morphology of anchorage-dependent culture to the spherical morphology of anchorage-independent culture and then deposit characteristic proteoglycan matrix domains. The rates of proteoglycan and collagen synthesis return to those of primary chondrocytes. Using SDS-polyacrylamide gel electrophoresis of intact collagen chains and two-dimensional cyanogen bromide peptide mapping, we demonstrated a complete return to the differentiated collagen phenotype. These results emphasize the primary role of cell shape in the modulation of the chondrocyte phenotype and demonstrate a reversible system for the study of gene expression.  相似文献   

4.
Primary monolayers of rabbit articular chondrocytes synthesize high levels of type II collagen and proteoglycan. This capacity was used as a marker for the expression of the differentiated phenotype. Such cells were treated with 1 microgram/ml retinoic acid (RA) for 10 d to produce a modulated collagen phenotype devoid of type II and consisting of predominantly type I trimer and type III collagen. After transfer to secondary culture in the presence of RA, the stability of the RA-modulated phenotype was investigated by culture in the absence of RA. Little reexpression of type II collagen synthesis occurred in this period unless cultures were treated with 3 X 10(-6) M dihydrocytochalasin B to modify microfilament structures. Reexpression of the differentiated phenotype began between days 6-8 and was essentially complete by day 14. Substantial reexpression occurred by day 8 without a detectable increase in cell rounding. Colony formation, characteristic of primary chondrocytes, was infrequent even after reexpression was complete. These data suggest that the integrity of microfilament cytoskeletal structures can be a source of regulatory signals that mechanistically appear to be more proximal to phenotypic change than the overt changes in cell shape that accompany reexpression of subculture-modulated chondrocytes in agarose culture.  相似文献   

5.
6.
The actions of interleukin 1 (IL1) and tumor necrosis factor alpha (TNF alpha) on several parameters of the collagen metabolism of rabbit articular chondrocytes were studied by comparing the responses of either differentiated chondrocytes in primoculture or dedifferentiated cells in late passage culture to human recombinant (hr) IL1 alpha, hr-TNF alpha and cytokine-enriched fractions of rabbit macrophage-conditioned media. In response to IL1 or TNF alpha, differentiated chondrocytes (i.e., producing the cartilage-specific collagens, types II and XI, but no type I), sharply reduced their synthesis of collagen, a reduction which involved both types II and XI collagens, without consistently changing their production of non-collagenous proteins; they also incorporated a smaller proportion of collagen into the matrix. Similar levels of response were obtained for hr-IL1 alpha at picomolar and for hr-TNF alpha at nanomolar concentrations. However, the action of TNF alpha, but not of IL1, was manifested only in the presence of serum. Simultaneously, IL1, but not TNF alpha, induced the chondrocyte production of procollagenase (a difference which contrasted with the similar levels of procollagenase induced by both cytokines in synovial and skin fibroblasts) but neither cytokine influenced the accumulation of the collagenase inhibitor TIMP. These effects were not affected by indomethacin and are thus unlikely to be prostaglandin-mediated. During their dedifferentiation in monolayer subcultures, chondrocytes became more sensitive to the procollagenase-inducing ability of IL1 and TNF alpha, but their response to TNF alpha was lower than to IL1. They also increased their production of TIMP, which remained unaffected by the cytokines. Simultaneously, they decreased their production of collagen and substituted progressively the synthesis of fibroblast-specific collagens, types I, III and V, for types II and XI. Acting on dedifferentiated cells, even in the presence of indomethacin, IL1 and TNF alpha further decreased the synthesis of collagen, reducing the production of both typical type I (i.e. [alpha 1(I)]2 x alpha 2(I) molecules) and type V collagens as well as their incorporation into the matrix, but increasing the synthesis of type III collagen. Therefore not only IL1, but also TNF alpha can exert profound influences on the collagen degradation and repair processes occurring in the pathology of articular cartilage.  相似文献   

7.
K Elima  E Vuorio 《FEBS letters》1989,258(2):195-198
Cell cultures were initiated from epiphyseal cartilages, diaphyseal periosteum, and muscle of 16-week human fetuses. Total RNAs isolated from these cultures were analyzed for the levels of mRNAs for major fibrillar collagens, two proteoglycan core proteins and osteonectin. In standard monolayer cultures the differentiated chondrocyte phenotype was replaced by a dedifferentiated one: the mRNA levels of cartilage-specific type II collagen decreased upon subculturing, while those of types I and III collagen, and the core proteins increased. When the cells were transferred to grow in agarose, redifferentiation (reappearance of type II collagen mRNA) occurred. Fibroblasts grown from periosteum and muscle were found to contain mRNAs for types I and III collagen and proteoglycan cores. When these cells were transferred to agarose they acquired a shape indistinguishable from chondrocytes, but no type II collagen mRNA was observed.  相似文献   

8.
In this study we describe the collagen pattern synthesized by differentiating fetal human chondrocytes in vitro and correlate type X collagen synthesis with an intracellular increase of calcium and with matrix calcification. We show that type II collagen producing fetal human epiphyseal chondrocytes differentiate in suspension culture over agarose into hypertrophic cells in the absence of ascorbate, in contrast to chicken chondrocytes which have been shown to require ascorbate for hypertrophic differentiation. Analysis of the collagen synthesis by metabolic labeling and immunoprecipitation as well as by immunofluorescence double staining with anti type I, II or X collagen antibodies revealed that type X collagen synthesis was initiated during the third week. After 4 weeks culture over agarose we identified cells staining for both type I and X collagen, indicating further differentiation of chondrocytes to a new type of 'post-hypertrophic' cell. This cell type, descending from a type X collagen producing chondrocyte, is different from the previously described 'dedifferentiated' or 'modulated' types I and III collagen producing cell derived from a type II collagen producing chondrocyte. The appearance of type I collagen synthesis in agarose cultures was confirmed by metabolic labeling and immunoprecipitation and challenges the current view that the chondrocyte phenotype is stable in suspension cultures. An increase in the intracellular calcium concentration from 100 to 250 nM was measured about one week after onset of type X collagen synthesis. First calcium deposits were detected by alizarine red S staining in type X collagen positive cell nodules after 4 weeks, again in the absence of ascorbate. From these observations we conclude a sequence of events ultimately leading to matrix calcification in chondrocyte nodules in vitro that begins with chondrocyte hypertrophy and the initiation of type X collagen synthesis, followed by the increase of intracellular calcium, the deposition of calcium mineral, and finally by the onset of type I collagen synthesis.  相似文献   

9.
The myc oncogene is expressed by proliferating quail embryo chondrocytes (QEC) grown as adherent cells and is repressed in QEC maintained in suspension culture. To investigate the interference of myc expression during chondrocyte differentiation, QEC were infected with a retrovirus carrying the v-myc oncogene (QEC-v-myc). Uninfected or helper virus-infected QEC were used as control. In adherent culture, QEC-v-myc displayed a chondrocytic phenotype and synthesized type II collagen and Ch21 protein, while control chondrocytes synthesized type I and type II collagen with no Ch21 protein detected as long as the attachment to the plastic was kept. In suspension culture, QEC-v-myc readily aggregated and within 1 week the cell aggregates released small single cells; still they secreted only type II collagen and Ch21 protein. In the same conditions control cell aggregates released hypertrophic chondrocytes producing type II and type X collagens and Ch21 protein. In the appropriate culture conditions, QEC-v-myc reconstituted a tissue defined as nonhypertrophic, noncalcifying cartilage by the high cellularity, the low levels of alkaline phosphatase enzymatic activity, and the absence of type X collagen synthesis and of calcium deposition. We conclude that the constitutive expression of the v-myc oncogene keeps chondrocytes in stage I (active proliferation and synthesis of type II collagen) and prevents these cells from reconstituting hypertrophic calcifying cartilage.  相似文献   

10.
This study compares the collagen types present in rabbit ear cartilage with those synthesized by dissociated chondrocytes in cell culture. The cartilage was first extracted with 4M-guanidinium chloride to remove proteoglycans. This step also extracted type I collagen. After pepsin solubilization of the residue, three additional, genetically distinct collagen types could be separated by fractional salt precipitation. On SDS (sodium dodecyl sulphate)/polyacrylamide-gel electrophoresis they were identified as type II collagen, (1 alpha, 2 alpha, 3 alpha) collagen and M-collagen fragments, a collagen pattern identical with that found in hyaline cartilage. Types I, II, (1 alpha, 2 alpha, 3 alpha) and M-collagen fragments represent 20, 75, 3.5, and 1% respectively of the total collagen. In frozen sections of ear cartilage, type II collagen was located by immunofluorescence staining in the extracellular matrix, whereas type I collagen was closely associated with the chondrocytes. Within 24h after release from elastic cartilage by enzymic digestion, auricular chondrocytes began to synthesize type III collagen, in addition to the above-mentioned collagens. This was shown after labelling of freshly dissociated chondrocytes with [3H]proline 1 day after plating, fractionation of the pepsin-treated collagens from medium and cell layer by NaCl precipitation, and analysis of the fractions by CM(carboxymethyl)-cellulose chromatography and SDS/polyacrylamide-gel electrophoresis. The 0.8 M-NaCl precipitate of cell-layer extracts consisted predominantly of type II collagen. The 0.8 M-NaCl precipitate obtained from the medium contained type I, II, and III collagen. In the supernatant of the 0.8 M-NaCl precipitation remained, both in the cell extract and medium, predominantly 1 alpha-, 2 alpha-, and 3 alpha-chains and M-collagen fragments. These results indicate that auricular chondrocytes are similar to chondrocytes from hyaline cartilage in that they produce, with the exception of type I collagen, the same collagen types in vivo, but change their cellular phenotype more rapidly after transfer to monolayer culture, as indicated by the prompt onset of type III collagen synthesis.  相似文献   

11.
Chondrocytes cultivated in monolayer rapidly divide and lose their morphological and biochemical characteristics, whereas they maintain their phenotype for long periods of time when they are cultivated in alginate beads. Because cartilage has a low cellularity and is difficult to obtain in large quantities, the number of available cells often becomes a limiting factor in studies of chondrocyte biology. Therefore, we explored the possibility of restoring the differentiated properties of chondrocytes by cultivating them in alginate beads after two multiplication passages in monolayer. This resulted in the reexpression of the two main markers of differentiated chondrocytes: Aggrecan and type II collagen gene expression was strongly reinduced from day 4 after alginate inclusion and paralleled protein expression. However, 2 weeks were necessary for total suppression of type I and III collagen synthesis, indicators of a modulated phenotype. Interleukin-1β, a cytokine that is present in the synovial fluid of rheumatoid arthritis patients, induces many metabolic changes on the chondrocyte biology. Compared with cells in primary culture, the production of nitric oxide and 92-kDa gelatinase in response to interleukin-1β was impaired in cells at passage 2 in monolayer but was fully recovered after their culture in alginate beads for 2 weeks. This suggests that the effects of interleukin-1β on cartilage depend on the differentiation state of chondrocytes. This makes the culture in alginate beads a relevant model for the study of chondrocyte biology in the presence of interleukin-1β and other mediators of cartilage destruction in rheumatoid arthritis and osteoarthrosis. J. Cell. Physiol. 176:303–313, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
13.
Expression of the human chondrocyte phenotype in vitro   总被引:9,自引:0,他引:9  
Summary We report a culture scheme in which human epiphyseal chondrocytes lose their differentiated phenotype in monolayer and subsequently reexpress the phenotype in an agarose gel. The scheme is based on a method using rabbit chondrocytes. Culture in monolayer allowed small quantities of cells to be amplified and provided a starting point to study expression of the differentiated human chondrocyte phenotype. The cells cultured in monolayer produced type I procollagen, fibronectin, and small noncartilaginous proteoglycans. Subsequent culture in agarose was associated with the acquisition of typical chondrocyte ultrastructural features and the synthesis of type II collagen and cartilage-specific proteoglycans. The switch from the nonchondrocyte to the differented chondrocyte phenotype occurred under these conditions between 1 and 2 wk of agarose culture and was not necessarily homogeneous throughout a culture. This culture technique will facilitate direct investigation of human disorders of cartilage that have been addressed in the past by alternative approaches. This research is supported in part by research grants from the National Institutes of Health, (HD 20691) Bethesda, MD, and Shriners of North America (15953).  相似文献   

14.
The dedifferentiation of chondrocytes in culture is classically associated with a transition from a rounded to a spread morphology. However, the loss of chondroitin sulfate proteoglycan (CSPG) and type II collagen gene expression (markers of the differentiated chondrocyte) does not occur for all polygonal or fibroblast-like cells at the same stage of culture. Furthermore, it has been demonstrated that retinoic acid-dedifferentiated chondrocytes can reexpress type II collagen if treated by the microfilament disruptive drug dihydrocytochalasin B, without a return to the spherical shape. In the present study, we have investigated by fluorescent double-staining whether the synthesis of both CSPG and type II collagen by dedifferentiating chick chondrocytes in low density cultures is dependent on a type of actin organization. We report that the synthesis of CSPG and type II collagen synthesis is coincident with the presence of a faint microfibrillar actin architecture but is absent in chondrocytes showing well defined actin cables. This correlation was observed independently of the shapes exhibited by the cells. Moreover, type I collagen (marker of the dedifferentiated chondrocyte) is synthesized mainly in cells showing large actin cables. This study, performed in the absence of drugs, suggests that actin organization, rather than changes in cell shape, is involved in modulating the chondrogenic phenotype in vitro.  相似文献   

15.
The distribution of type I, II, IX, XI and X collagens in and close to areas of asbestoid (amianthoid) fibers in thyroid cartilages of various ages was investigated in this study. Asbestoid fibers were first detected in thyroid cartilage from a 3-year-old male child. Areas of asbestoid fibers functionally appear to serve as guide rails for vascularization of thyroid cartilage. Alcian blue staining in the presence of 0.3 M MgCl2 revealed a loss of glycosaminoglycans in areas of asbestoid fibers. In addition, the fibers reacted positively with antibodies against collagen types II, IX and XI, but showed no staining with antibodies to collagen types I and X. Territorial matrix of adjacent chondrocytes showed the same staining pattern. In addition to staining for type II, IX and XI collagens, asbestoid fibers showed strong immunostaining for type I collagen after puberty but not for type X collagen. However, groups of chondrocytes within areas of asbestoid fibers reacted strongly with antibodies to type X collagen, suggesting that this collagen plays an important role in matrix of highly differentiated chondrocytes. The finding that these type X collagen-positive chondrocytes also revealed immunostaining for type I collagen confirms previous studies showing that hypertrophic chondrocytes can further differentiate into cells that are characterized by the synthesis of type X and I collagens.  相似文献   

16.
Single cells from enzymatically dissociated chick embryo tibiae have been cloned and expanded in fresh or conditioned culture media. A cloning efficiency of approximately 13% was obtained using medium conditioned by dedifferentiated chondrocytes. A cloning efficiency of only 1.4% was obtained when conditioned medium from hypertrophic chondrocytes was used, and efficiencies of essentially 0 were found with fresh medium or medium conditioned by J2-3T3 mouse fibroblasts. Cell clones were selected by morphological criteria and clones showing a dedifferentiated phenotype (fibroblast-like) were further characterized. Out of 38 clones analyzed, 17 were able to differentiate to the hypertrophic chondrocyte stage and reconstitute hypertrophic cartilage when placed in the appropriate culture conditions. Cells from these clones expressed the typical markers of chondrocyte differentiation, i.e., type II and type X collagens. Clones not undergoing differentiation continued to express only type I collagen. Hypertrophic chondrocytes from differentiating clones were analyzed at the single cell level by immunofluorescence; all the cells were positive for type X collagen, while approximately 50% of them showed positivity for type II collagen.  相似文献   

17.
Cultured human articular and costal chondrocytes were used as a model system to examine the effects of recombinant gamma-interferon (IFN-gamma) on synthesis of procollagens, the steady state levels of types I and II procollagen mRNAs, and the expression of major histocompatibility complex class II (Ia-like) antigens on the cell surface. Adult articular chondrocytes synthesized mainly type II collagen during weeks 1-3 of primary culture, whereas types I and III collagens were also produced after longer incubation and predominated after the first subculture. Juvenile costal chondrocytes synthesized no detectable alpha 2(I) collagen chains until after week 1 of primary culture; type II collagen was the predominant species even after weeks of culture. The relative amounts of types I and II collagens synthesized were reflected in the levels of alpha 1(I), alpha 2(I), and alpha 1(II) procollagen mRNAs. In articular chondrocytes, the levels of alpha 1(I) procollagen mRNA were disproportionately low (alpha 1(I)/alpha 2(I) less than 1.0) compared with costal chondrocytes (alpha 1 (I)/alpha 2(I) approximately 2). Recombinant IFN-gamma (0.1-100 units/ml) inhibited synthesis of type II as well as types I and III collagens associated with suppression of the levels of alpha 1(I), alpha 2(I), and alpha 1(II) procollagen mRNAs. IFN-gamma suppressed the levels of alpha 1(I) and alpha 1(II) procollagen mRNAs to a greater extent than alpha 2(I) procollagen mRNA in articular but not in costal chondrocytes. Human leukocyte interferon (IFN-alpha) at 1000 units/ml suppressed collagen synthesis and procollagen mRNA levels to a similar extent as IFN-gamma at 1.0 unit/ml. In addition, IFN-gamma but not IFN-alpha induced the expression of HLA-DR antigens on intact cells. The lymphokine IFN-gamma could, therefore, have a role in suppressing cartilage matrix synthesis in vivo under conditions in which the chondrocytes are in proximity to T lymphocytes and their products.  相似文献   

18.
In the developing chick embryo tibia type X collagen is synthesized by chondrocytes from regions of hypertrophy and not by chondrocytes from other regions (Capasso, O., G. Tajana, and R. Cancedda, 1984, Mol. Cell. Biol. 4:1163-1168; Schmid, T. M., and T. F. Linsenmayer, 1985, Dev. Biol. 107:375-381). To investigate further the relationship between differentiation of endochondral chondrocytes and type X collagen synthesis we have developed a novel culture system for chondrocytes from 29-31-stage chick embryo tibiae. At the beginning of the culture these chondrocytes are small and synthesize type II and not type X collagen, but when grown on agarose-coated dishes they further differentiate into hypertrophic chondrocytes that synthesize type X collagen. The synthesis of type X collagen has been monitored in cultured cells by analysis of labeled collagens and in vitro translation of mRNAs. When the freshly dissociated chondrocytes are plated in anchorage-permissive dishes, most of the cells attach and dedifferentiate, as revealed by their fibroblastic morphology. Dedifferentiated chondrocytes, after several passages, can still reexpress the differentiated phenotype and continue their development to hypertrophic, type X collagen-synthesizing chondrocytes. Hypertrophic chondrocytes, when plated in anchorage permissive dishes, attach, maintaining the differentiated phenotype, and continue the synthesis of type X collagen.  相似文献   

19.
This work describes an approach to monitor chondrogenesis of stage-24 chick limb mesodermal cells in vitro by analyzing the onset of type II collagen synthesis with carboxymethyl-cellulose chromatography, immunofluorescence, and radioimmunoassay. This procedure allowed specific and quantitative determination of chondrocytes in the presence of fibroblasts and myoblasts, both of which synthesize type I collagen. Chondrogenesis was studied in high-density cell preparations on tissue culture plastic dishes and on agar base. It was found that stage-24 limb mesenchymal cells initially synthesized only type I collagen. With the onset of chondrogenesis, a gradual transition to type II collagen synthesis was observed. In cell aggregates formed over agar, type II collagen synthesis started after 1 day in culture and reached levels of 80-90 percent of the total collagen synthesis at 6-8 days. At that time, the cells in the center of the aggregates had acquired the typical chondrocyte phenotype and stained only with type II collagen antibodies, whereas the peripheral cells had developed into a "perichondrium" and stained with type I and type II collagen antibodies. On plastic dishes plated with 5 X 10(6) cells per 35mm dish, cartilage nodules developed after 4-6 days, but the type II collagen synthesis only reached levels of 10-20 percent of the total collagen. The majority of the cells differentiated into fibroblasts and myoblasts and synthesized type I collagen. These studies demonstrate that analysis of cell specific types of collagen provides a useful method for detailing the specific events in the differentiation of mesenchymal cells in vitro.  相似文献   

20.
In osteoarthritic cartilage, chondrocytes are able to present heterogeneous cellular reactions with expression and synthesis of the (pro)collagen types characteristic of prechondrocytes (type IIA), hypertrophic chondrocytes (type X), as well as differentiated (types IIB, IX, XI, VI) and dedifferentiated (types I, III) chondrocytes. The expression of type IIA procollagen in human osteoarthritic cartilage support the assumption that OA chondrocytes reverse their phenotype towards a chondroprogenitor phenotype. Recently, we have shown that dedifferentiation of mouse chondrocytes induced by subculture was associated with the alternative splicing of type II procollagen pre-mRNA with a switch from the IIB to the IIA form. In this context, we demonstrated that BMP-2 favours expression of type IIB whereas TGF-beta1 potentiates expression of type IIA induced by subculture. These data reveal the specific capability of BMP-2 to reverse the program of chondrocyte dedifferentiation. This interesting feature needs to be tested with human chondrocytes since cell amplification is required for the currently used autologous chondrocyte transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号