首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 463 毫秒
1.
The role of the inositol lipid 5-phosphatase (SHIP2) in preadipocyte signaling is not known. Although overexpression of SHIP2 inhibited proliferation and (3)H-thymidine incorporation in 3T3-L1 preadipocytes, there was no effect on insulin-induced adipogenesis. Insulin promoted SHIP2 tyrosine phosphorylation in differentiated 3T3-L1 adipocytes, but did not do so in preadipocytes. The absence of SHIP2 tyrosine phosphorylation suggests a potential explanation for the isolated rise in PI(3,4,5)P3, without any changes in PI(3,4)P2, previously observed following insulin treatment of these cells. Lack of SHIP2 tyrosine phosphorylation by insulin was also observed in primary cultures of human abdominal subcutaneous preadipocytes. These cells also produced PI(3,4,5)P3, but not PI(3,4)P2, in response to insulin. Comparison of insulin vs. PDGF treatment on SHIP2 tyrosine phosphorylation in 3T3-L1 and human preadipocytes revealed that only PDGF, which stimulates the accumulation of PI(3,4,5)P3 as well as PI(3,4)P2, was active in this regard, and only PDGF promoted the association of 52 kDa form of Shc with SHIP2. Nevertheless, both insulin and PDGF were equally effective in translocating SHIP2 to the plasma membrane in 3T3-L1 preadipocytes. Lack of SHIP2 tyrosine phosphorylation may account for the insulin-specific inositol phospholipid pattern of accumulation in preadipocytes.  相似文献   

2.
Insulin increases muscle and fat cell glucose uptake by inducing the translocation of glucose transporter GLUT4 from intracellular compartments to the plasma membrane. Here, we have demonstrated that in 3T3-L1 adipocytes, DMSO at concentrations higher than 7.5% augmented cell surface GLUT4 levels in the absence and presence of insulin, but that at lower concentrations, DMSO only enhanced GLUT4 levels in insulin-stimulated cells. At a 5% concentration, DMSO also increased cell surface levels of the transferrin receptor and GLUT1. Glucose uptake experiments indicated that while DMSO enhanced cell surface glucose transporter levels, it also inhibited glucose transporter activity. Our studies further demonstrated that DMSO did not sensitize the adipocytes for insulin and that its effect on GLUT4 was readily reversible (t1/2∼12 min) and maintained in insulin-resistant adipocytes. An enhancement of insulin-induced GLUT4 translocation was not observed in 3T3-L1 preadipocytes and L6 myotubes, indicating cell specificity. DMSO did not enhance insulin signaling nor exocytosis of GLUT4 vesicles, but inhibited GLUT4 internalization. While other chemical chaperones (glycerol and 4-phenyl butyric acid) also acutely enhanced insulin-induced GLUT4 translocation, these effects were not mediated via changes in GLUT4 endocytosis. We conclude that DMSO is the first molecule to be described that instantaneously enhances insulin-induced increases in cell surface GLUT4 levels in adipocytes, at least in part through a reduction in GLUT4 endocytosis.  相似文献   

3.
The 3T3-L1 preadipocytes treated with insulin, dexamethasone and 3-methyl-1-isobutylxanthine (IBMX) two days before reaching monolayer undergo differentiation into adipocytes. Cell lysates were prepared from these cells under various conditions and analyzed by SDS-PAGE and transblot. Peroxidase-conjugated avidin used to detect endogenous proteins interacted strongly with a protein with an estimated molecular weight of 120 kDa, corresponding to pyruvate carboxylase, in the differentiated 3T3-L1 cells. On the other hand, this protein was not detected in undifferentiated 3T3-L1 cells.  相似文献   

4.
The isoflavone-derivative genistein is commonly applied as an inhibitor of tyrosine kinases. In this report we analyze the effect of genistein on insulin-stimulated glucose uptake in 3T3-L1 adipocytes. In these cells insulin-induced glucose uptake is primarily mediated by the GLUT4 glucose transporter. We observed that pre-treatment with genistein did not affect insulin-induced tyrosine kinase activity of the insulin receptor or activation of protein kinase B. On the other hand, genistein acted as a direct inhibitor of insulin-induced glucose uptake in 3T3-L1 adipocytes with an IC(50) of 20 microM. We conclude that apart from acting as a general tyrosine kinase inhibitor, genistein also affects the function of other proteins such as the GLUT4 transporter. These data suggest that caution must be applied when interpreting data on the involvement of tyrosine kinase activity in glucose uptake in 3T3-L1 adipocytes.  相似文献   

5.
Activation of p85/p110 type phosphatidylinositol kinase is essential for aspects of insulin-induced glucose metabolism, including translocation of GLUT4 to the cell surface and glycogen synthesis. The enzyme exists as a heterodimer containing a regulatory subunit (e.g. p85alpha) and one of two widely distributed isoforms of the p110 catalytic subunit: p110alpha or p110beta. In the present study, we compared the two isoforms in the regulation of insulin action. During differentiation of 3T3-L1 cells into adipocytes, p110beta was up-regulated approximately 10-fold, whereas expression of p110alpha was unaltered. The effects of the increased p110 expression were further assessed by expressing epitope tagged p110beta and p110alpha in 3T3-L1 cells using adenovirus transduction systems, respectively. In vitro, the basal lipid kinase activity of p110beta was lower than that of p110alpha. When p110alpha and p110beta were overexpressed in 3T3-L1 adipocytes, exposing cells to insulin induced each of the subunits to form complexes with p85alpha and tyrosine-phosphorylated IRS-1 with similar efficiency. However, whereas the kinase activity of p110beta, either endogenous or exogeneous, was markedly enhanced by insulin stimulation, only very small increases of the activity of p110alpha were observed. Interestingly, overexpression of p110beta increased insulin-induced glucose uptake by 3T3-L1 cells without significantly affecting basal glucose transport, whereas overexpression of p110alpha increased both basal and insulin-stimulated glucose uptake. Finally, microinjection of anti-p110beta neutralizing antibody into 3T3-L1 adipocytes abolished insulin-induced translocation of GLUT4 to the cell surface almost completely, whereas anti-p110alpha neutralizing antibody did only slightly. Together, these findings suggest that p110beta plays a crucial role in cellular activities evoked acutely by insulin.  相似文献   

6.
Non-esterified fatty acids are thought to be one of the causes for insulin resistance. However, the molecular mechanism of fatty acid-induced insulin resistance is not clearly known. In this study, we first examined the effect of palmitate on insulin signaling in 3T3-L1 adipocytes. We found that 1h treatment with 1 mmol/l palmitate had no effect on insulin binding, tyrosine phosphorylation of insulin receptors, 185 kDa proteins and Shc, and PI3 kinase activity in 3T3-L1 adipocytes. Then, the effects of palmitate on MAP kinase activity and glucose uptake in fully differentiated 3T3-L1 adipocytes were compared with those in poorly differentiated 3T3-L1 cells and in HIRc-B cells. Palmitate treatment had no effect on MAP kinase activity in fully differentiated 3T3-L1 adipocytes, while it inhibited MAP kinase in poorly differentiated 3T3-L1 cells and HIRc-B cells. Glucose transport in 3T3-L1 adipocytes treated with palmitate for 1 h, 4 h and 16 h was higher than that in control cells, but palmitate treatment caused a rightward shift of the insulin-dose responsive curve for glucose uptake in HIRc-B cells. Palmitate treatment did not significantly affect basal and insulin-stimulated GLUT4 translocation. When the cells were treated with PD98059, a specific MEK inhibitor, insulin-stimulated glucose uptake was not affected in 3T3-L1 adipocytes, while it was almost completely inhibited in HIRc-B cells. These results suggest the primary effect of palmitate on adipocytes may not involve insulin resistance of adipocytes themselves.  相似文献   

7.
Upon differentiation induction of 3T3-L1 preadipocytes by a hormone mixture containing 1-isobutyl-3-methylxanthine, dexamethasone, and insulin, the preadipocytes undergo approximately 2 rounds of mitotic clonal expansion, which just precedes the adipogenic gene expression program and has been thought to be an essential early step for differentiation initiation. By inducing 3T3-L1 preadipocytes with each individual hormone, it was determined that the mitotic clonal expansion was induced only by insulin and not by 1-isobutyl-3-methylxanthine or dexamethasone. Cell number counting and fluorescence-activated cell-sorting analysis indicated that a significant fraction of 3T3-L1 preadipocytes differentiated into adipocytes without mitotic clonal expansion when induced with the combination of 1-isobutyl-3-methylxanthine and dexamethasone. Furthermore, when normally induced 3T3-L1 preadipocytes were treated with PD98059 (an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1) to block the activation of extracellular signal-regulated kinase (Erk) 1 and Erk2, the mitotic clonal expansion was blocked, but adipocyte differentiation was not affected. These observations were confirmed by bromodeoxyuridine labeling. The differentiated adipocytes induced with 1-isobutyl-3-methylxanthine and dexamethasone or standard hormone mixture plus PD98059 were not labeled by bromodeoxyuridine. Thus, it is evident that 3T3-L1 preadipocytes could differentiate into adipocytes without DNA synthesis and mitotic clonal expansion. Our results also suggested that activation of Erk1 and Erk2 is essential to but not sufficient for induction of mitotic clonal expansion.  相似文献   

8.
AimsTo investigate the effect of vanillin, a dietary component, on adipocyte differentiation and the mechanism involved in the process using 3T3-L1 murine preadipocytes.Main methodsThe effect of vanillin on adipocyte differentiation was detected by Oil Red O analysis. The activation of extracellular signal regulated kinase 42/44 (ERK 42/44), Akt, expression of the key regulator of adipocyte differentiation peroxisome proliferators-activated receptor (PPARγ) and its target gene glucose transporter 4 (GLUT4) were detected by western blotting. Glucose uptake assay was used to determine the insulin sensitivity of adipocytes differentiated by vanillin treatment. To confirm the role of ERK 42/44 and Akt, Oil Red O analysis was performed with cells differentiated in the presence or absence of ERK inhibitor U0126 or Akt kinase 1/2 inhibitor.Key findingsVanillin induced adipocyte differentiation in 3T3-L1 cells in a dose dependent manner and also increased the expression levels of PPARγ and its target gene GLUT4. The adipocytes differentiated by vanillin exhibited insulin sensitivity as demonstrated by a significant increase in glucose uptake. Vanillin treatment activated the phosphorylation of ERK 42/44 during the initial phase of adipocyte differentiation but there was no significant change in the Akt phosphorylation status.SignificanceThe data show that vanillin induces adipocyte differentiation in 3T3-L1 cells by activating ERK42/44 and these adipocytes are insulin sensitive in nature.  相似文献   

9.
体外培养3T3-L1细胞分化模型,研究不同浓度胰岛素及慢性胰岛素刺激对3T3-L1脂肪细胞中极低密度脂蛋白受体(VLDLR)基因表达的影响.在不同浓度胰岛素及胰岛素慢性刺激的干预下,用半定量RT-PCR检测细胞VLDLR mRNA水平的变化.微量化GOD-PAP法检测培养基中残存的葡萄糖.在细胞诱导分化过程中,胰岛素浓度的增高促进VLDLR的表达;胰岛素慢性刺激下,VLDLR表达因浓度差异呈现不同变化.研究结果表明,胰岛素的浓度及慢性刺激对3T3-L1脂肪细胞的成熟和VLDLR基因的表达有显著作用,而胰岛素抵抗明显减低成熟脂肪细胞VLDLR的表达.  相似文献   

10.
The novel class II phosphoinositide (PI) 3-kinases are characterized by the presence of a C-terminal C2 domain, but little is known about their regulation. We find insulin causes a rapid 2-3-fold increase in the activity of PI 3-kinase C2alpha (PI3K-C2alpha) in CHO-IR cells, 3T3-L1 adipocytes, and fully differentiated L5L6 myotubes. No insulin-induced activation of PI3K-C2alpha was observed in cell types known to have low responsiveness to insulin including HEK 293 cells, 3T3-L1 preadipocytes, and undifferentiated L5L6 myoblasts. The mechanism of activation of PI3K-C2alpha by insulin differs from that of class Ia PI 3-kinases in that insulin stimulation did not cause PI3K-C2alpha to associate with IRS-1 or insulin receptor. PI3K-C2alpha existed as a doublet, and insulin stimulation caused a redistribution from the lower molecular weight band to the higher molecular weight band, suggesting phosphorylation-induced bandshift. Consistent with this, in vitro phosphatase treatment reduced the intensity of the upper band back to that seen in unstimulated cells. This suggests that insulin-induced phosphorylation could play a role in regulation of the activity of PI3K-C2alpha. The finding that insulin activates PI3K-C2alpha in cell types known to possess a wide range of responses to insulin suggests that PI3K-C2alpha is a novel component of insulin-stimulated signaling cascades.  相似文献   

11.
Evidence has accumulated that some of the angiotensin II AT1 receptor antagonists have insulin-sensitizing property. We thus examined the effect of telmisartan on insulin action using 3T3-L1 adipocytes. With standard differentiation inducers, a higher dose of telmisartan effectively facilitated differentiation of 3T3-L1 preadipocytes. Treatment of both differentiating adipocytes and fully differentiated adipocytes with telmisartan caused a dose-dependent increase in mRNA levels for PPARgamma target genes such as aP2 and adiponectin. By contrast, telmisartan attenuated 11beta-hydroxysteroid dehydrogenase type 1 mRNA level in differentiated adipocytes. Of note, we demonstrated for the first time that telmisartan augmented GLUT4 protein expression and 2-deoxy glucose uptake both in basal and insulin-stimulated state of adipocytes, which may contribute, at least partly, to its insulin-sensitizing ability.  相似文献   

12.
Chronic inflammation is associated with obesity and insulin resistance; however, the underlying mechanisms are not fully understood. Pattern recognition receptors Toll-like receptors and nucleotide-oligomerization domain-containing proteins play critical roles in innate immune response. Here, we report that activation of nucleotide binding oligomerization domain-containing protein-1 (NOD1) in adipocytes induces proinflammatory response and impairs insulin signaling and insulin-induced glucose uptake. NOD1 and NOD2 mRNA are markedly increased in differentiated murine 3T3-L1 adipocytes and human primary adipocyte culture upon adipocyte conversion. Moreover, NOD1 mRNA is markedly increased only in the fat tissues in diet-induced obese mice, but not in genetically obese ob/ob mice. Stimulation of NOD1 with a synthetic ligand Tri-DAP induces proinflammatory chemokine MCP-1, RANTES, and cytokine TNF-α and MIP-2 (human IL-8 homolog) and IL-6 mRNA expression in 3T3-L1 adipocytes in a time- and dose-dependent manner. Similar proinflammatory profiles are observed in human primary adipocyte culture stimulated with Tri-DAP. Furthermore, NOD1 activation suppresses insulin signaling, as revealed by attenuated tyrosine phosphorylation and increased inhibitory serine phosphorylation, of IRS-1 and attenuated phosphorylation of Akt and downstream target GSK3α/3β, resulting in decreased insulin-induced glucose uptake in 3T3-L1 adipocytes. Together, our results suggest that NOD1 may play an important role in adipose inflammation and insulin resistance in diet-induced obesity.  相似文献   

13.
M Nakata  S Shioda  Y Oka  I Maruyama  T Yada 《Peptides》1999,20(8):943-948
Pituitary adenylate cyclase-activating polypeptide (PACAP) is localized in pancreatic nerve fibers and islets and potently augments glucose-induced insulin secretion. The present study explored a possible extra-pancreatic action of PACAP. The specific PACAP receptor (PAC1 receptor) was expressed in the rat fat tissue and 3T3-LI adipocytes. PACAP-38 (10 nM) significantly enhanced insulin-induced 2-deoxyglucose uptake by 3T3-L1 adipocytes. Insulin-stimulated phosphatidylinositol 3-kinase activity was further increased by PACAP-38, whereas the tyrosine-phosphorylation of insulin receptor beta-subunit and insulin receptor substrate-1 was unaltered by PACAP-38. These results reveal that PACAP-38 enhances insulin-induced glucose uptake, an effect probably mediated by insulin-stimulated phosphatidyl-inositol 3-kinase, and that PACAP potentiates not only insulin secretion, but also insulin action in adipocytes.  相似文献   

14.
K Lange  U Brandt 《FEBS letters》1990,276(1-2):39-41
The recent demonstration of a large cell surface-derived pool of insulin-sensitive glucose transporters, presumably concentrated in the microvilli of 3T3-L1 adipocytes, induced the assumption that in differentiated adipocytes, newly inserted plasma membrane areas may display restricted lateral mobility, thereby preventing diffusion of integral membrane proteins out of these areas into the adjoining plasma membrane. In order to test this assumption, the cell surface distributions of the two glucose transporter species expressed by 3T3-L1 cells were determined using specific antisera against the HepG2/erythrocyte transporter, GluT1, which is synthesized in both fibroblasts and adipocytes, and the adipocyte/muscle-specific transporter, GluT4, expressed for the first time 3-4 days after induction of adipose conversion. GluT1 was shown to be localized in the plasma membrane of both 3T3-L1 preadipocytes and adipocytes, whereas GluT4 was almost entirely restricted to the low density surface-derived vesicle (LDSV) fraction of 3T3-L1 adipocytes most likely consisting of microvilli-derived vesicles. In contrast to the minor portion of GluT4 found in the adipocyte plasma membrane fraction, equal amounts of the GluT1 protein were detected in both the plasma membrane and the LDSV fractions of adipocytes. Both transporter species were present in the microsomal and the LDSV fractions of adipocytes. The observed distribution of the two transporter species is in accordance with the postulated restriction of the lateral mobility in plasma membrane areas formed by newly inserted transgolgi vesicles of differentiated adipocytes.  相似文献   

15.
The insulin-induced translocation of low density lipoprotein receptor-related protein 1 (LRP1) from intracellular membranes to the cell surface in 3T3-L1 adipocytes was differentiation-dependent and did not occur in 3T3-L1 fibroblasts. Prompted by findings that the plasma membrane of 3T3-L1 adipocytes was rich in caveolae, we determined whether LRP1 became caveolae-associated upon insulin stimulation. The caveolae domain was isolated by the well characterized detergent solubilization and sucrose density ultracentrifugation methodology. Under basal conditions, only a trace amount of LRP1 was caveolae-associated despite the markedly elevated caveolin-1 and caveolae after adipocytic cell differentiation. Upon insulin treatment, the amount of LRP1 associated with caveolae was increased by 4-fold within 10 min, which was blocked completely by pretreatment with wortmannin prior to insulin. The caveolar localization of LRP1 in adipocytes was specific to insulin; treatment with platelet-derived growth factor-bb isoform did not promote but rather decreased caveolar localization of LRP1 below basal levels. The insulin-induced caveolar localization of LRP1 was also observed in 3T3-L1 fibroblasts where translocation of LRP1 from intracellular membranes to the cell surface was absent, suggesting that association of LRP1 with caveolae was achieved, at least in part, through lateral transmigration along the plane of plasma membranes. Immunocytochemistry studies revealed partial co-localization of LRP1 (either endogenous LRP1 or an epitope-tagged minireceptor) with caveolin-1 in cells treated with insulin, which was confirmed by co-immunoprecipitation of LRP1 with caveolin-1 in cells treated with insulin but not platelet-derived growth factor-bb. These results suggest that the localization of LRP1 to caveolae responds selectively to extracellular signals.  相似文献   

16.
17.
Murine 3T3-L1 fibroblasts enter a differentiation program subsequent to prolonged maintenance in the confluent state and develop into adipocytes. The hormone sensitivity of adenylate cyclase and the physiological responsiveness to insulin were compared in 3T3-L1 preadipocytes and adipocytes. The following observations, comprising several distinct categories of hormone responsiveness, were made. (a) (2.5 micronM) isoproterenol stimulated adenylate cyclase 15-fold in adipocyte homogenates, but only 2.5-fold in preadipocyte preparations, suggesting a considerable magnification in beta-adrenergic responsiveness during development. (b) A totally new control element, adrenocorticotropic hormone responsiveness, was incorporated into the adenylate cyclase system of the adipocytes. (c) Sensitivity to prostaglandin E1 was observed in both preadipocytes and adipocytes, but no change in responsiveness could be detected in the differentiated cells. (d) Glucagon-sensitive adenylate cyclase could not be detected in either preadipocytes or adipocytes. (e) Both preadipocytes and adipocytes possess considerable insulin binding activity, but near physiological levels of insulin stimulate the conversion of glucose to CO2 and lipid only in the differentiated cells.  相似文献   

18.
Prolonged use of glucocorticoids induces pronounced insulin resistance in vivo. In vitro, treatment of 3T3-L1 adipocytes with dexamethasone for 48 h reduces the maximal level of insulin- and stress (arsenite)-induced glucose uptake by approximately 50%. Although phosphatidylinositol 3-kinase signaling was slightly attenuated, phosphorylation of its downstream effectors such as protein kinase B and protein kinase C-lambda remained intact. Nor was any effect of dexamethasone treatment observed on insulin- or arsenite-induced translocation of glucose transporter 4 (GLUT4) toward the plasma membrane. However, for a maximal response to either arsenite- or insulin-induced glucose uptake in these cells, functional p38 MAPK signaling is required. Dexamethasone treatment markedly attenuated p38 MAPK phosphorylation coincident with an up-regulation of the MAPK phosphatases MKP-1 and MKP-4. Employing lentivirus-mediated ectopic expression in fully differentiated 3T3-L1 adipocytes demonstrated a differential effect of these phosphatases: whereas MKP-1 was a more potent inhibitor of insulin-induced glucose uptake, MKP-4 more efficiently inhibited arsenite-induced glucose uptake. This coincided with the effects of these phosphatases on p38 MAPK phosphorylation, i.e. MKP-1 and MKP-4 attenuated p38 MAPK phosphorylation by insulin and arsenite, respectively. Taken together, these data provide evidence that in 3T3-L1 adipocytes dexamethasone inhibits the activation of the GLUT4 in the plasma membrane by a p38 MAPK-dependent process, rather than in a defect in GLUT4 translocation per se.  相似文献   

19.
Skeletal muscle cells and adipose cells have a close relationship in developmental lineage. Our previous study has shown that the heterokaryons between quail myoblasts and undifferentiated 3T3-L1 cells (preadipocytes) normally differentiated into myotubes, whereas the heterokaryons between myoblasts and differentiated 3T3-L1 cells (adipocytes) failed myogenic differentiation. These results suggest differences between preadipocytes and adipocytes. The purpose of this study was to clarify whether preadipocytes have flexibility in differentiation before terminal adipose differentiation. Presumptive quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells) and mouse 3T3-L1 cells (either preadipocytes or adipocytes) were co-cultured for 48 h under conditions allowing myogenic differentiation. On co-culture between myoblasts and undifferentiated 3T3-L1 cells, heterokaryotic myotubes formed spontaneously, but not on co-culture with differentiated 3T3-L1 cells. In addition, the heterokaryotic myotubes expressed mouse myogenin derived from the 3T3-L1 cell gene. Our previous study indicated that the fusion sensitivity of differentiating myoblasts change with decreasing cholesterol of the cell membrane during myoblast fusion. Thus we compared the level of membrane cholesterol between undifferentiated and differentiated 3T3-L1 cells. The result showed that the level of membrane cholesterol in 3T3-L1 cells increases during adipose differentiation. Corresponding to the increase in membrane cholesterol content, differentiated 3T3-L1 cells had lower sensitivity to HVJ (Sendai virus)-mediated cell fusion than undifferentiated 3T3-L1 cells. This study demonstrated that 3T3-L1 cells at an undifferentiated state have a capacity for spontaneous fusion with differentiating myoblasts following myogenic differentiation, and that the capacity is lost after terminal adipose differentiation.  相似文献   

20.
PTEN is a tumor suppressor with sequence homology to protein-tyrosine phosphatases and the cytoskeleton protein tensin. PTEN is capable of dephosphorylating phosphatidylinositol 3,4, 5-trisphosphate in vitro and down-regulating its levels in insulin-stimulated 293 cells. To study the role of PTEN in insulin signaling, we overexpressed PTEN in 3T3-L1 adipocytes approximately 30-fold above uninfected or control virus (green fluorescent protein)-infected cells, using an adenovirus gene transfer system. PTEN overexpression inhibited insulin-induced 2-deoxy-glucose uptake by 36%, GLUT4 translocation by 35%, and membrane ruffling by 50%, all of which are phosphatidylinositol 3-kinase-dependent processes, compared with uninfected cells or cells infected with control virus. Microinjection of an anti-PTEN antibody increased basal and insulin stimulated GLUT4 translocation, suggesting that inhibition of endogenous PTEN function led to an increase in intracellular phosphatidylinositol 3,4,5-trisphosphate levels, which stimulates GLUT4 translocation. Further, insulin-induced phosphorylation of downstream targets Akt and p70S6 kinase were also inhibited significantly by overexpression of PTEN, whereas tyrosine phosphorylation of the insulin receptor and IRS-1 or the phosphorylation of mitogen-activated protein kinase were not affected, suggesting that the Ras/mitogen-activated protein kinase pathway remains fully functional. Thus, we conclude that PTEN may regulate phosphatidylinositol 3-kinase-dependent insulin signaling pathways in 3T3-L1 adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号