首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: In plants and photosynthetic bacteria, the tyrosine degradation pathway is crucial because homogentisate, a tyrosine degradation product, is a precursor for the biosynthesis of photosynthetic pigments, such as quinones or tocophenols. Homogentisate biosynthesis includes a decarboxylation step, a dioxygenation and a rearrangement of the pyruvate sidechain. This complex reaction is carried out by a single enzyme, the 4-hydroxyphenylpyruvate dioxygenase (HPPD), a non-heme iron dependent enzyme that is active as a homotetramer in bacteria and as a homodimer in plants. Moreover, in humans, a HPPD deficiency is found to be related to tyrosinemia, a rare hereditary disorder of tyrosine catabolism. RESULTS: We report here the crystal structure of Pseudomonas fluorescens HPPD refined to 2.4 A resolution (Rfree 27.6%; R factor 21.9%). The general topology of the protein comprises two barrel-shaped domains and is similar to the structures of Pseudomonas 2,3-dihydroxybiphenyl dioxygenase (DHBD) and Pseudomonas putida catechol 2,3-dioxygenase (MPC). Each structural domain contains two repeated betaalpha betabeta betaalpha modules. There is one non-heme iron atom per monomer liganded to the sidechains of His161, His240, Glu322 and one acetate molecule. CONCLUSIONS: The analysis of the HPPD structure and its superposition with the structures of DHBD and MPC highlight some important differences in the active sites of these enzymes. These comparisons also suggest that the pyruvate part of the HPPD substrate (4-hydroxyphenylpyruvate) and the O2 molecule would occupy the three free coordination sites of the catalytic iron atom. This substrate-enzyme model will aid the design of new inhibitors of the homogentisate biosynthesis reaction.  相似文献   

2.
Lignostilbene-alpha,beta-dioxygenase cleaves the olefinic double bond of phenolic stilbenes by a mechanism similar to that of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis. Several analogues of stilbene were designed and synthesized, and their efficacy as inhibitors of lignostilbene-alpha,beta-dioxygenase was examined. The compound (Z)-1-(4-hydroxyphenyl)-1-fluoro-2-phenylethene (2) was found to be a potent inhibitor of this enzyme with an IC(50) of 3 microM.  相似文献   

3.
The alpha-ketoglutate (alpha-KG)-dependent dioxygenases are a large class of mononuclear non-heme iron enzymes that require Fe(II), alpha-KG and dioxygen for catalysis, with the alpha-KG cosubstrate supplying the two additional electrons required for dioxygen activation. A sub-class of these enzymes exists in which the alpha-keto acid is covalently attached to the substrate, including (4-hydroxy)mandelate synthase (HmaS) and (4-hydroxyphenyl)pyruvate dioxygenase (HPPD) which utilize the same substrate but exhibit two different general reactivities (H-atom abstraction and electrophilic attack). Previous kinetic studies of Streptomyces avermitilis HPPD have shown that the substrate analog phenylpyruvate (PPA), which only differs from the normal substrate (4-hydroxyphenyl)pyruvate (HPP) by the absence of a para-hydroxyl group on the aromatic ring, does not induce a reaction with dioxygen. While an Fe(IV)O intermediate is proposed to be the reactive species in converting substrate to product, the key step utilizing O(2) to generate this species is the decarboxylation of the alpha-keto acid. It has been generally proposed that the two requirements for decarboxylation are bidentate coordination of the alpha-keto acid to Fe(II) and the presence of a 5C Fe(II) site for the O(2) reaction. Circular dichroism and magnetic circular dichroism studies have been performed and indicate that both enzyme complexes with PPA are similar with bidentate alpha-KG coordination and a 5C Fe(II) site. However, kinetic studies indicate that while HmaS reacts with PPA in a coupled reaction similar to the reaction with HPP, HPPD reacts with PPA in an uncoupled reaction at an approximately 10(5)-fold decreased rate compared to the reaction with HPP. A key difference is spectroscopically observed in the n-->pi( *) transition of the HPPD/Fe(II)/PPA complex which, based upon correlation to density functional theory calculations, is suggested to result from H-bonding between a nearby residue and the carboxylate group of the alpha-keto acid. Such an interaction would disfavor the decarboxylation reaction by stabilizing electron density on the carboxylate group such that the oxidative cleavage to yield CO(2) is disfavored.  相似文献   

4.
Six substrate analogs of 4-hydroxyphenylpyruvate, specifically pentafluorophenylpyruvate, 4-hydroxytetrafluorophenylpyruvate,2-thienylpyruvate, 3-thienylpyruvate, thiophenol oxalate, and p-thiocresoloxalate were synthesized and their interactions with porcine liver 4-hydroxyphenylpyruvate dioxygenase investigated. Both pentafluorophenylpyruvate and thiophenol oxalate are competitive inhibitors of the enzyme with KI values of 14 and 150 μM, respectively, but p-thiocresol oxalate has no effect on the enzymic activity. The other three substrate analogs are both substrates and mechanism-based inactivators of the enzyme with the following kinetic characteristics (compound, Km, Vmax, kinact, K′, partition ratio) at pH 6.0, 37°C, and an air atmosphere: 4-hydroxytetrafluorophenylpyruvate, 50 μM, 1.9 mkat/kg, 1.5/min, 70 μM 4.2; 2-thienylpyruvate, 500 μM, 7.8 mkat/kg, 0.6/min, 400 μM, 41; 3-thienylpymvate, 250 μM, 2 9 mkat/kg, 0.6/min, 300 μM, 22. When inactivated, the dioxygenase was found to contain per mole of active enzyme, 0.78 mol of label from 3-thienyl-3[3H]pyruvate and 0.85 mol of label from 4-hydroxytetrafluorophenyl-3 [3H]pyruvate. The product formed from the enzyme-catalyzed oxidation of 3-thienylpyruvate was determined to be 3-carboxymethyl-3-thiolene-2-one. The implication of these results to the mechanism of the dioxygenase is considered,  相似文献   

5.
4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of 4-hydroxyphenylpyruvate (HPP) into homogentisate. HPPD is the molecular target of very effective synthetic herbicides. HPPD inhibitors may also be useful in treating life-threatening tyrosinemia type I and are currently in trials for treatment of Parkinson disease. The reaction mechanism of this key enzyme in both plants and animals has not yet been fully elucidated. In this study, using site-directed mutagenesis supported by quantum mechanical/molecular mechanical theoretical calculations, we investigated the role of catalytic residues potentially interacting with the substrate/intermediates. These results highlight the following: (i) the central role of Gln-272, Gln-286, and Gln-358 in HPP binding and the first nucleophilic attack; (ii) the important movement of the aromatic ring of HPP during the reaction, and (iii) the key role played by Asn-261 and Ser-246 in C1 hydroxylation and the final ortho-rearrangement steps (numbering according to the Arabidopsis HPPD crystal structure 1SQD). Furthermore, this study reveals that the last step of the catalytic reaction, the 1,2 shift of the acetate side chain, which was believed to be unique to the HPPD activity, is also catalyzed by a structurally unrelated enzyme.  相似文献   

6.
(4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) catalyzes the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate (HG). This reaction involves decarboxylation, substituent migration, and aromatic oxygenation in a single catalytic cycle. HPPD is a unique member of the alpha-keto acid dependent oxygenases that require Fe(II) and an alpha-keto acid substrate to oxygenate or oxidize an organic molecule. We have examined the reaction coordinate of HPPD from Streptomyces avermitilis using rapid mixing pre-steady-state methods in conjunction with steady-state kinetic analyses. Acid quench reactions and product analysis of homogentisate indicate that HPPD as isolated is fully active and that experiments limited in dioxygen concentration with respect to that of the enzyme do involve a single turnover. These experiments indicate that during the course of one turnover the concentration of homogentisate is stoichiometric with enzyme concentration by approximately 200 ms, well before the completion of the catalytic cycle. Subsequent single turnover reactions were monitored spectrophotometrically under pseudo-first-order and matched concentration reactant conditions. Three spectrophotometrically distinct intermediates are observed to accumulate. The first of these is a relatively strongly absorbing species with maxima at 380 and 480 nm that forms with a rate constant (k(1)) of 7.4 x 10(4) M(-)(1) s(-)(1) and then decays to a second intermediate with a rate constant (k(2)) of 74 s(-)(1). The rate constant for the decay of the second intermediate (k(3)) is 13 s(-)(1) and is concomitant with the formation of the product, homogentisate, based on rapid quench and pre-steady-state fluorescence measurements. The rate constant for this process decreases to 7.6 s(-)(1) when deuterons are substituted for protons in the aromatic ring of the substrate. The release of product from the enzyme is rate limiting and occurs at 1.6 s(-)(1). This final event exhibits a kinetic isotope effect of 2 with deuterium oxide as the solvent, consistent with a solvent isotope effect on V(max) of 2.6 observed in steady-state experiments.  相似文献   

7.
Burkholderia cepacia R34 mineralizes 2,4-dinitrotoluene via an oxidative pathway. The initial steps in the degradative pathway lead to formation of 2,4,5-trihydroxytoluene, which serves as the substrate for the ring cleavage dioxygenase. The trihydroxylated substrate differs from the usual substituted catechols found in pathways for aromatic compound degradation. To determine whether the characteristics of the trihydroxytoluene oxygenase reflect the unusual ring cleavage substrate of the 2,4-dinitrotoluene pathway, the gene encoding trihydroxytoluene oxygenase (dntD) was cloned and sequenced, and ring cleavage activity determined from recombinant bacteria carrying the cloned gene. The findings were compared to the trihydroxytoluene oxygenase from Burkholderia sp. strain DNT and to other previously described ring cleavage dioxygenases. The comparison revealed that only 60% identity was shared by the two trihydroxytoluene oxygenases, but the amino acid residues involved in cofactor binding, catalysis, and protein folding were conserved in the DntD sequence. The enzyme catalyzed meta-fission of trihydroxytoluene as well as the substrate analogues 1,2,4-benzenetriol, catechol, 3-methylcatechol, 4-methylcatechol, 3-chlorocatechol, 4-chlorocatechol and 2,3-dihydroxybiphenyl. However, results from enzyme assays indicated a strong preference for trihydroxytoluene, implying that it was the native substrate for the enzyme. The apparent enzyme specificity, its similarity to the trihydroxytoluene oxygenase from Burkholderia sp. strain DNT, and the distant genetic relationship to other ring cleavage enzymes suggest that dntD evolved expressly to carry out trihydroxytoluene transformation.  相似文献   

8.
Various 3-cyclopropanecarbonyloxy-2-cyclohexen-1-one 1 derivatives have been synthesized and tested as inhibitors of 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) from pig liver. The inhibition results indicated that well-positioned dicarbonyl groups as well as the cyclopropyl group of 1 were essential for potent inhibition. Substitution at the 2-position of the ring system has a significant effect on inhibitor potency, while the 5-position can undergo substantial variations and retain inhibitor potency. In the compounds examined, 2-chloro substituted 12 is the best inhibitor of all with IC(50) of 15 nM, the rest of the synthesized analogues were less potent inhibitors than the parent compound.  相似文献   

9.
Several rationally designed analogs of 3-fluoro-2-oxo-3-phenylpropionic acid were chemically synthesized, and the reactions of the hydrate form of these compounds with 4-hydroxyphenylpyruvate dioxygenase from pig liver as inhibitors were examined. Compounds 14a and 14b were found to be potent competitive inhibitors of the enzyme with Ki values of 10 and 22 microM, respectively.  相似文献   

10.
The catalytic efficiency (kcat/Km) of Escherichia coli flavin pyruvate oxidase can be stimulated 450-fold either by the addition of lipid activators or by limited proteolytic hydrolysis. Previous studies have shown that a functional lipid binding site is a mandatory prerequisite for the in vivo functioning of this enzyme (Grabau, C., and Cronan, J. E., Jr. (1986) Biochemistry 25, 3748-3751). The effect of activation on the transient state kinetics of partial reactions in the overall oxidative conversion of pyruvate to acetate and CO2 has now been examined. The rate of decarboxylation of pyruvate to form CO2 and hydroxyethylthiamin pyrophosphate for both activated and unactivated forms of the enzyme is identical within experimental error. The decarboxylation step was measured using substrate concentrations of the enzyme in the absence of an electron acceptor. The pseudo-first order rate constant for the decarboxylation step is 60-80 s-1. The rate of oxidation of hydroxyethylthiamin pyrophosphate and concomitant enzyme-bound flavin reduction was analyzed by stopped-flow methods utilizing synthetic hydroxyethylthiamin pyrophosphate. The pseudo-first order rate for this step with unactivated enzyme was 2.85 s-1 and increased 145-fold for lipid-activated enzyme to 413 s-1 and 61-fold for the proteolytically activated enzyme to 173 s-1. The analysis of a third reaction step, the reoxidation of enzyme-bound FADH, was also investigated by stopped-flow techniques utilizing ferricyanide as the electron acceptor. The rate of oxidation of enzyme.FADH is very fast for both unactivated (1041 s-1) and activated enzyme (645 s-1). The data indicate that the FAD reduction step is the rate-limiting step in the overall reaction for unactivated enzyme. Alternatively, the rate-limiting step in the overall reaction with the activated enzyme shifts to one of the partial steps in the decarboxylation reaction.  相似文献   

11.
Phenylpyruvate decarboxylase (PPDC) of Azospirillum brasilense, involved in the biosynthesis of the plant hormone indole-3-acetic acid and the antimicrobial compound phenylacetic acid, is a thiamine diphosphate-dependent enzyme that catalyses the nonoxidative decarboxylation of indole- and phenylpyruvate. Analogous to yeast pyruvate decarboxylases, PPDC is subject to allosteric substrate activation, showing sigmoidal v versus [S] plots. The present paper reports the crystal structure of this enzyme determined at 1.5 A resolution. The subunit architecture of PPDC is characteristic for other members of the pyruvate oxidase family, with each subunit consisting of three domains with an open alpha/beta topology. An active site loop, bearing the catalytic residues His112 and His113, could not be modelled due to flexibility. The biological tetramer is best described as an asymmetric dimer of dimers. A cysteine residue that has been suggested as the site for regulatory substrate binding in yeast pyruvate decarboxylase is not conserved, requiring a different mechanism for allosteric substrate activation in PPDC. Only minor changes occur in the interactions with the cofactors, thiamine diphosphate and Mg2+, compared to pyruvate decarboxylase. A greater diversity is observed in the substrate binding pocket accounting for the difference in substrate specificity. Moreover, a catalytically important glutamate residue conserved in nearly all decarboxylases is replaced by a leucine in PPDC. The consequences of these differences in terms of the catalytic and regulatory mechanism of PPDC are discussed.  相似文献   

12.
Acylcyclohexanedione derivatives have been designed, synthesized, and evaluated for in vitro inhibition activity against the enzyme 4-hydroxyphenylpyruvate dioxygenase (4-HPPD). The biological data demonstrated that 7 is a potent inhibitor of 4-HPPD with an IC(50) value of 40 nM. After metabolism, compound 7 has the potential to become a potent inhibitor of a second enzyme, GA(20) 3beta-hydroxylase.  相似文献   

13.
The regulatory consequences of acetate infusion on the pyruvate and the branched chain α-keto acid dehydrogenase reactions in the isolated, perfused rat liver were investigated. Metabolic flux through these two decarboxylation reactions was monitored by measuring the rate of 14CO2 production from infused 1-14C-labeled substrates. When acetate was presented to the liver as the sole substrate the rate of ketogenesis which resulted was maximal at concentrations of acetate in excess of 10 mm. The increase in hepatic ketogenesis during acetate infusion was not accompanied by an alteration of the mitochondrial oxidation-reduction state as measured by the ratio of β-hydroxybutyrate/ acetoacetate in the effluent perfusate. While acetate infusion did not affect the rate of α-keto[1-14C]isocaproate decarboxylation, the rate of α-keto[1-14C]isovalerate decarboxylation was stimulated appreciably upon acetate addition. No change was observed in the amount of extractable branched chain α-keto acid dehydrogenase during acetate infusion. The rate of [1-14C]pyruvate decarboxylation was stimulated in the presence of acetate at low (<1 mm) but not at high (>1 mm) perfusate pyruvate concentrations. The stimulation of the metabolic flux through the pyruvate dehydrogenase reaction upon acetate infusion was accompanied by an increase in the activation state of the pyruvate dehydrogenase complex from 25.7 to 35.6% in the active form. In a liver perfused in the presence of the pyruvate dehydrogenase kinase inhibitor, dichloroacetate, at a low concentration of pyruvate (0.05 mm) the infusion of acetate did not affect the rate of pyruvate decarboxylation. As the rate of mitochondrial acetoacetate efflux is increased during acetate infusion the stimulation of pyruvate and α-ketoisovalerate decarboxylation is attributed to an accelerated rate of exchange of mitochondrial acetoacetate for cytosolic pyruvate or α-ketoisovalerate on the monocarboxylate transporter.  相似文献   

14.
Secor J 《Plant physiology》1994,106(4):1429-1433
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27) was partially purified from barnyardgrass (Echinochloa crus-galli L.) leaves and assayed by high-performance liquid chromatography analysis of product formation or by the capture of released 14CO2. The bleaching herbicide sulcotrione [2-(2-chloro-4-methanesulfonylbenzoyl)-1,3-cyclohexanedione] was shown to be a potent, linear competitive inhibitor of 4-hydroxyphenylpyruvate dioxygenase. Kinetic analyses determined that the Km for the substrate, 4-hydroxyphenylpyruvate, was 4.3 [mu]M, and the Ki value was 9.8 nM for sulcotrione.  相似文献   

15.
Tritium isotope effects in the reaction catalyzed by 4-hydroxyphenylpyruvate dioxygenase (4-hydroxyphenyl-pyruvate:oxygen oxidoreductase (hydroxylating, decarboxylating), EC 1.13.11.27) from Pseudomonas sp. strain P.J. 874 were studied with 14C- and different 3H-labelled 4-hydroxyphenylpyruvate. Tritium of ring-2,6-3H2-labelled substrate was released into water in 1:2 stoichiometry to 14CO2 formation. The tritium release from ring-3,5-3H2- and side chain-3-3H1-labelled 4-hydroxyphenylpyruvate was low as compared with 14CO2 formation. The apparent tritium isotope effects were below two, as judged by comparison of 3H/14C ratios of 4-hydroxyphenylpyruvate and homogentisate. The ratios showed no dependence on oxygen concentrations between 1 and 21% in the gas phase. Thus, a tritium assay can be used to determine the activity of 4-hydroxyphenylpyruvate dioxygenase. Apparently, none of the substrate hydrogens is involved in any rate-limiting step up to the first irreversible step. enol-4-Hydroxyphenylpyruvate was excluded as the active substrate tautomer.  相似文献   

16.
It was confirmed that 2,3-dihydroxy-p-cumate is a substrate for ring cleavage in Pseudomonas putida PL-W after growth with p-cymene or p-cumate. This compound was oxidized to pyruvate, acetaldehyde, isobutyrate, and carbon dioxide by extracts of cells, and these products appear in equimolar amounts. The transient appearance of compounds and 2,3-dihydroxy-p-cumate to a yellow intermediate (lambda max, 345 nm) without decarboxylation. Extracts of the benzene nucleus; this is followed by decarboxylation to give the 393-nm species, which gives rise to isobutyrate, acetaldehyde, and pyruvate by the hydrolytic route of meta cleavage of catechols, via 4-hydroxy-2-oxovalerate. This was confirmed with a mutant of P. putida PL-RF-1 that was unable to grow with p-cymene (or p-cumate) but was able to oxidize both compounds AND 2,3-DIHYDROXY-P-CUMATE TO A YELLOW INTERMEDIATE (LAMBDA MAX, 345 NM) WITHOUT DECARBOXYLATION. Extrats of P. putida PL-W (wild type) or a revertant of the mutant PL-RF-1 catalyzed the decarboxlation of the 345-nm intermediate with transient formation of the compound that absorbed at 393 nm. The substrate specificities of the 3,4-dioxygenative ring cleavage enzyme, and the decarboxylase were determined in crude extracts of P. putida PL-W and Pseudomonas fluorescens 007. It was conclude that 3,4-dioxygenative cleavage and decarboxylation are sequential enzyme-catalyzed reactions common to both P. putida and P. fluorescens for the oxidation of 2,3-dihydroxybenzoates. Unlike P. putida PL-W, which exclusively use the hydrolase branch, P. fluorescens 007 uses the dehydrogenase branch of the meta pathways that diverge after ring cleavage and later converge at oxoenate intermediates.  相似文献   

17.
The α-ketoglutate (α-KG)-dependent dioxygenases are a large class of mononuclear non-heme iron enzymes that require FeII, α-KG and dioxygen for catalysis, with the α-KG cosubstrate supplying the two additional electrons required for dioxygen activation. A sub-class of these enzymes exists in which the α-keto acid is covalently attached to the substrate, including (4-hydroxy)mandelate synthase (HmaS) and (4-hydroxyphenyl)pyruvate dioxygenase (HPPD) which utilize the same substrate but exhibit two different general reactivities (H-atom abstraction and electrophilic attack). Previous kinetic studies of Streptomyces avermitilis HPPD have shown that the substrate analog phenylpyruvate (PPA), which only differs from the normal substrate (4-hydroxyphenyl)pyruvate (HPP) by the absence of a para-hydroxyl group on the aromatic ring, does not induce a reaction with dioxygen. While an FeIVO intermediate is proposed to be the reactive species in converting substrate to product, the key step utilizing O2 to generate this species is the decarboxylation of the α-keto acid. It has been generally proposed that the two requirements for decarboxylation are bidentate coordination of the α-keto acid to FeII and the presence of a 5C FeII site for the O2 reaction. Circular dichroism and magnetic circular dichroism studies have been performed and indicate that both enzyme complexes with PPA are similar with bidentate α-KG coordination and a 5C FeII site. However, kinetic studies indicate that while HmaS reacts with PPA in a coupled reaction similar to the reaction with HPP, HPPD reacts with PPA in an uncoupled reaction at an 105-fold decreased rate compared to the reaction with HPP. A key difference is spectroscopically observed in the n → π* transition of the HPPD/FeII/PPA complex which, based upon correlation to density functional theory calculations, is suggested to result from H-bonding between a nearby residue and the carboxylate group of the α-keto acid. Such an interaction would disfavor the decarboxylation reaction by stabilizing electron density on the carboxylate group such that the oxidative cleavage to yield CO2 is disfavored.  相似文献   

18.
Studies were performed to elucidate factors involved in the regulation of pyruvate dehydrogenase activity in rat brain synaptosomes during membrane depolarization. Addition of 24 mM-KCl to synaptosomes resulted in increases in rates of O2 consumption (90%) and [1-(14)C]pyruvate decarboxylation (85%) and in the active/total ratio of extractable pyruvate dehydrogenase (90--100%) within 10 s. Neither pyruvate (10 mM) nor dichloroacetate (10 mM) affected the activation state of the enzyme complex. Also, the activation state of pyruvate dehydrogenase was unaffected by addition of 1 mM-octanoate, L-(--)-carnitine, 3-hydroxybutyrate, glutamate, citrate, lactate, L-malate, acetate, acetaldehyde or ethanol. Removal of Ca2+ by using EGTA lowered the active/total ratio to about 70%, although the rate of O2 consumption and pyruvate decarboxylation was unaffected. Rates of pyruvate decarboxylation in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in the presence and absence of NaF and EGTA demonstrated a linear correlation with changes in the activity of the enzyme complex. This observation indicated that a change in the activation state of pyruvate dehydrogenase from 90 to 100% active could result in a 27% increase in the rate of pyruvate decarboxylation. It is suggested that the pyruvate dehydrogenase complex is an important site for the regulation of substrate utilization in rat brain synaptosomes. Further, the phosphorylation/dephosphorylation system and direct feedback-inhibitory effects on the enzyme complex both play a significant role in rapidly adapting pyruvate decarboxylation to changes in the requirements for mitochondrial energy production.  相似文献   

19.
p-Hydroxyphenylpyruvate dioxygenase (HPD) plays a key role in the normal catabolism of tyrosine. An Fe2+/oxygen-dependent enzyme, it converts p-hydroxyphenylpyruvate into homogentisate and is part of the superfamily of alpha-ketoglutarate-dependent enzymes that couples oxidative decarboxylation of an alpha-ketoacid cofactor to oxidative modification of its substrate. In this case, the alpha-ketoacid is part of the substrate side chain. HPD shows strong homology to p-hydroxymandelate synthase (HMS), an enzyme that catalyzes the formation of p-hydroxymandelate from p-hydroxyphenylpyruvate, an early step in the biosynthesis of p-hydroxyphenylglycine, which is a nonproteinogenic amino acid incorporated into several biologically active secondary metabolites. Sequence alignment between the HPD and the HMS enzyme families and analysis of the Pseudomonas fluorescens HPD crystal structure highlighted four residues within each active site that may play roles in catalytic differentiation between the two products. We attempted to convert Streptomyces avermitilis HPD into an engineered S. avermitilis HMS by site-directed mutagenesis of these four residues individually and in combination. HPLC assay analysis of each His6-tagged mutant indicated that F337I successfully produced p-hydroxymandelate, along with homogentisate and an unknown compound. The structure of the latter was determined to be an oxepinone derived from the benzene-oxide intermediate long hypothesized in HPD catalysis.  相似文献   

20.
Abstract The first two steps in the catabolism of 4-hydroxybenzoate by the ascomycetous yeast Candida parapsilosis CBS604 were investigated. In contrast to the well-known bacterial pathways and to what was previously assumed, metabolism of 4-hydroxybenzoate in C. parapsilosis proceeds through initial oxidative decarboxylation to give 1,4-dihydroxybenzene. This reaction is catalyzed by a NAD(P)H and FAD-dependent 4-hydroxybenzoate 1-hydroxylase. Further metabolism of 1,4-dihydroxybenzene to the ring-fission substrate 1,2,4-trihydroxybenzene is catalyzed by a NADPH-specific FAD-dependent aromatic hydroxylase acting on phenolic compounds. 19F-NMR experiments with cell extracts and 2-fluoro-4-hydroxybenzoate as the model compound confirm this metabolic pathway and exclude the alternative pathway proceeding through initial 3-hydroxylation followed by oxidative decarboxylation in the second step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号