首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic cells (DC) represent potent APCs that are capable of generating tumor-specific immunity. We performed a pilot clinical trial using Ag-pulsed DC as a tumor vaccine. Twenty-one patients with metastatic prostate cancer received two monthly injections of DC enriched and activated from their PBMC. DC were cocultured ex vivo with recombinant mouse prostatic acid phosphatase as the target neoantigen. Following enrichment, DC developed an activated phenotype with up-regulation of CD80, CD86, and CD83 expression. During culture, the DC maintained their levels of various adhesion molecules, including CD44, LFA-1, cutaneous lymphocyte-associated Ag, and CD49d, up-regulated CCR7, but lost CD62 ligand and CCR5. In the absence of CD62 ligand, such cells would not be expected to prime T cells efficiently if administered i.v. due to their inability to access lymphoid tissue via high endothelial venules. To assess this possibility, three patient cohorts were immunized with Ag-pulsed DC by i.v., intradermal (i.d.), or intralymphatic (i.l.) injection. All patients developed Ag-specific T cell immune responses following immunization, regardless of route. Induction of IFN-gamma production, however, was seen only with i.d. and i.l. routes of administration, and no IL-4 responses were seen regardless of route, consistent with the induction of Th1-type immunity. Five of nine patients who were immunized by the i.v. route developed Ag-specific Abs compared with one of six for i.d. and two of six for i.l. routes. These results suggest that while activated DC can prime T cell immunity regardless of route, the quality of this response and induction of Ag-specific Abs may be affected by the route of administration.  相似文献   

2.
BACKGROUND: We evaluated a clinical-grade protocol for the manufacture of mature DC from CD14 + precursors derived from normal donors and patients suffering from CML and stage IV malignant melanoma. We manufactured six products for CML patients and five for melanoma patients and administered them as vaccines in phase I clinical trials. METHODS: We isolated CD 14+ cells from apheresis products by immunomagnetic separation and incubated them in X-VIVO 15' medium supplemented with human AB serum, GM-CSF and IL-4 for 7 days, and with additional tumor necrosis factor (TNF)-a, IL-lIf, IL-6 and prostaglandin E2 for 3 days. Some cells were electroporated and transfected with mRNA isolated from melanoma tissue. DC were characterized by flow cytometry for the expression of CD83, CD86 andCD14. RESULTS: CD14+ cells constituted 14.4+/-6.2% (mean + SD) of nucleated cells in apheresis products and 98.3+/- 3.6% of isolated cells. Normal DC and CML DC were 77.4+/-7.3% CD83+ and 93.5+/- 7.0% CD86+.Corresponding values for electroporated DC from melanoma patients were 66.1 + 7.2% and 94.1 + 7.8%. The yield of CD83+ DC from isolated CD14+ cells was 18.1 + 7.2% for normal and CML patients and 9.8 + 3.7% for melanoma patients. DC viability was 92.7 + 5.8%; after cryopreservation and thawing it was 77+/-13.5%. DISCUSSION: Our method yielded viable and mature DC free of bacteria and mycoplasma. This robust and reproducible method provides cells of consistent phenotype and viability. Cryopreservation in single-dose aliquots allows multiple DC vaccine doses to be manufactured from a single apheresis product.  相似文献   

3.
BACKGROUND: The use of myeloma Ag-loaded mature DC vaccines, cryopreserved in single-use aliquots, is an attractive immunotherapeutic strategy. In this study we investigated the retention of phenotype, viability and potency of DC vaccines after freezing and thawing. METHODS: Plastic-adherent monocytes, derived from a steady-state leukapheresis, were cultured in serum-free media containing GM-CSF and IL-4. DC were loaded on day 6 with myeloma lysate (ML) or idiotype (Id) Ag and keyhole limpet hemocyanin (KLH), induced to mature on day 7 with CD40-ligand and cryopreserved on day 9. Seventeen clinical-scale cultures were evaluated for DC yield, recovery and immunophenotype after potency was validated with allogeneic mixed lymphocyte culture and Ag presentation assays. RESULTS: We produced 88 individual vaccines from 17 clinical-scale cultures. Median DC yield at harvest was 131 x 10(6) (range 37-375 x 10(6)) and median recovery of viable DC after thawing was 69% (range 11-100%). We confirmed viability (7AAD-), phenotype (CD14-, CD83+/CD40+, CD83+/CD80+, CD83+/CD86+, CD83+/CD54+, HLA-DR++) and the ability of the DC to present Ag and stimulate allogeneic T cells post-thawing. DISCUSSION: We have validated a serum-free culture system for the production of DC. Cryopreservation did not interfere with DC activity, allowed time for rigorous quality control (QC) and flexible scheduling of intranodal vaccination, and reduced the time to prepare multiple vaccines.  相似文献   

4.
BACKGROUND: In clinical trials, cancer patients have received immunotherapy based on DCs generated from leukapheresed blood. It would therefore be an advantage to be able to measure blood levels and estimate the phenotype of DC before leukapheresis, to estimate the yield required for preparation of vaccines, or ex vivo stimulation of T cells for adoptive immunotherapy. METHODS: Recently, circulating lineage negative (Lin-) myeloid DC cells and their precursors have been identified by flow cytometry. We apply this strategy to the screening of blood samples from patients with multiple myeloma, in an attempt to characterize and quantitate the subset. By a direct flow cytometry approach, the blood levels of circulating lineage (CD3, CD19, CD14) negative, CD33++, HLA-DR+ cells were estimated before and following ex vivo cell differentiation, and phenotyped by MAbs with specificity against HLA-DR, HLA-ABC, CD1a, CD11c, CD33, CD40, CD49d, CD49e, CD54, CD80, CD83, and CD86. RESULTS: This study demonstrated that multiple myeloma patients have a 50% reduced blood level of Lin-, CD33++, HLA-DR+ myeloid DC, but a DC-precursor level within normal range. Furthermore, GM-CSF and IL-4 ex vivo stimulated DCs demonstrated an impaired up-regulation of the co-stimulatory molecule CD80 and the adhesion molecule CD54. DISCUSSION: These results may have clinical implications as a predictor for yield and functionality of the harvested DCs to be used in vaccination of myeloma patients.  相似文献   

5.
An efficacious vaccine strategy must be capable of inducing strong responses of an appropriate phenotype that are long lasting and sufficiently broad to prevent pathogen escape mechanisms. In the present study, we use anti-CD25 mAb to augment vaccine-induced immunity in mice. We demonstrate that coformulation of Ab and poxviral- or adenoviral-vectored vaccines induces significantly increased T cell responses to a malaria Ag; prior anti-CD25 Ab administration was not required for this effect. Furthermore, this vaccination approach subverts immunodominant epitope hierarchies by enhancing responses to subdominant epitopes induced by recombinant modified vaccinia virus Ankara immunization. Administration of anti-CD25 with a vaccine also induces more durable immunity compared with vaccine alone; significantly higher T cell responses were observed 100 days after the primary immunization. Enhanced immunogenicity is observed for multiple vaccine types with enhanced CD4+ and CD8+ T cell responses induced by bacillus Calmette-Guérin and a recombinant subunit protein vaccine to hepatitis B virus and with multiple Ags of tumor, viral, bacterial, and parasitic origin. Vaccine strategies incorporating anti-CD25 lead to improved protection against pre-erythrocytic malaria challenge. These data underpin new strategies for the design and development of more efficacious vaccines in clinical settings.  相似文献   

6.
Low-frequency CTL and low-titer IgM responses against tumor-associated Ag MUC1 are present in cancer patients but do not prevent cancer growth. Boosting MUC1-specific immunity with vaccines, especially effector mechanisms responsible for tumor rejection, is an important goal. We studied immunogenicity, tumor rejection potential, and safety of three vaccines: 1) MUC1 peptide admixed with murine GM-CSF as an adjuvant; 2) MUC1 peptide admixed with adjuvant SB-AS2; and 3) MUC1 peptide-pulsed dendritic cells (DC). We examined the qualitative and quantitative differences in humoral and T cell-mediated MUC1-specific immunity elicited in human MUC1-transgenic (Tg) mice compared with wild-type (WT) mice. Adjuvant-based vaccines induced MUC1-specific Abs but failed to stimulate MUC1-specific T cells. MUC1 peptide with GM-CSF induced IgG1 and IgG2b in WT mice but only IgM in MUC1-Tg mice. MUC1 peptide with SB-AS2 induced high-titer IgG1, IgG2b, and IgG3 Abs in both WT and MUC1-Tg mice. Induction of IgG responses was T cell independent and did not have any effect on tumor growth. MUC1 peptide-loaded DC induced only T cell immunity. If injected together with soluble peptide, the DC vaccine also triggered Ab production. Importantly, the DC vaccine elicited tumor rejection responses in both WT and MUC1-Tg mice. These responses correlated with the induction of MUC1-specific CD4+ and CD8+ T cells in WT mice, but only CD8(+) T cells in MUC1-Tg mice. Even though MUC1-specific CD4+ T cell tolerance was not broken, the capacity of MUC1-Tg mice to reject tumor was not compromised.  相似文献   

7.
Zhang HM  Zhang LW  Liu WC  Cheng J  Si XM  Ren J 《Cytotherapy》2006,8(6):580-588
BACKGROUND: DC vaccination with the use of tumor cells provides the potential to generate a polyclonal immune response to multiple known and unknown tumor Ag. Our study comparatively analyzed DC fused with tumor cells or transfected with tumor total RNA as potential cancer vaccines against hepatocellular carcinoma (HCC). METHODS: Immature DC generated from PBMC of patients with HCC were fused with HepG2-GFP (HepG2 cell line transfected stably with plasmid pEGFP-C3) cells or transfected with their total RNA. Matured DC were used to stimulate autologous T cells, and the resultant Ag-specific effector T cells were analyzed by IFN-gamma ELISPOT assay. RESULTS: DC were capable of further differentiation into mature DC after fusion with HepG2-GFP cells or transfection with HepG2-GFP cell total RNA, and were able to elicit specific T-cell responses in vitro. Both methods of Ag loading could result in stimulating CD4+ and CD8+ T cells, but with the indication that fusion loading was more efficient than RNA loading in priming the Th1 response, while RNA loading was more effective in CTL priming. DISCUSSION: Our results indicate that DC fused with tumor cells or transfected with tumor total RNA represent promising strategies for the development of cancer vaccines for treatment of HCC. They may have potential as an adjuvant immunotherapy for patients with HCC.  相似文献   

8.
Ligation of CD40 induces maturation of dendritic cells (DC) and could be a useful target for vaccines. In this study, we have constructed two types of Ab-based vaccine constructs that target mouse CD40. One type is a recombinant Ab with V regions specific for CD40 and has defined T cell epitopes inserted into its C region. The other type is a homodimer, each chain of which is composed of a targeting unit (single-chain fragment variable targeting CD40), a dimerization motif, and an antigenic unit. Such proteins bound CD40, stimulated maturation of DC, and enhanced primary and memory T cell responses. When delivered i.m. as naked DNA followed by electroporation, the vaccines induced T cell responses against MHC class II-restricted epitopes, Ab responses, and protection in two tumor models (myeloma and lymphoma). Two factors apparently contributed to these results: 1) agonistic ligation of CD40 and induction of DC maturation, and 2) delivery of Ag to APC and presentation on MHC class II molecules. These results highlight the importance of agonistic targeting of Ag to CD40 for induction of long-lasting and protective immune responses.  相似文献   

9.
Vaccine strategies in the treatment of low-grade non-Hodgkin lymphoma   总被引:1,自引:0,他引:1  
Recent years have witnessed the development of a variety of promising immunotherapies for treating patients with B-cell non-Hodgkin's lymphomas. Each B lymphocyte expresses an immunoglobulin molecule that is the product of a unique combination of gene segments. B cell malignancy arises from one original B lymphocyte, and therefore all the members of a given lymphoma tumor population have the same unique immunoglobulin, which can serve as a target for immune therapy. When the idiotype (Id), or unique portion, of each immunoglobulin is used as a vaccine, antibodies and T cells can be induced and each can cause rejection of the tumor by the host. This special opportunity for tumor specificity is accompanied by the challenge of constructing a different vaccine for each patient. The first clinical trial of Id vaccination for lymphoma was initiated at Stanford University in 1988. Tumor cells obtained from lymph node sampling were fused with a myeloma cell line to generate a "hybridoma" producing large quantities of idiotype protein. Purified Id protein was then chemically coupled to keyhole limpet hemocyanin (KLH) and emulsified in an "oil-in-water" type immunologic adjuvant. The initial trial included patients with low-grade, follicular lymphoma, in first remission following chemotherapy. Among the first 32 vaccinated patients, roughly half (14/32) developed anti-Id immune responses. These were principally humoral responses rather than cellular responses. Long-term follow-up of these 32 patients has revealed that the development of an immune response is strongly correlated with prolonged freedom from disease progression interval and overall survival. Further trials have confirmed significant clinical benefit following Id vaccination. There is reason for excitement about the prospects for effective vaccine therapies for lymphoma as randomized Id vaccine trials commence and newer cell-based vaccine trials enter the clinic. As the clinical activity of lymphoma vaccines becomes established, it will be important to determine how to best integrate active vaccination approaches with standard therapeutic approaches.  相似文献   

10.
The unique Ag-presenting capabilities of dendritic cells (DCs) make them attractive vehicles for the delivery of therapeutic cancer vaccines. While tumor Ag-pulsed DC vaccination has shown promising results in a variety of murine tumor models and early clinical trials, the optimal form of tumor Ag for use in DC pulsing has not been determined. We have studied DC vaccination using alternative forms of a soluble protein tumor Ag, the tumor-specific Ig idiotype (Id) expressed by a murine B cell lymphoma. Vaccination of mice with Id-pulsed DCs was able to induce anti-Id Abs only when the Id was modified to constitute a hapten-carrier system. DCs pulsed with Id proteins modified to include foreign constant regions, foreign constant regions plus GM-CSF, or linkage to keyhole limpet hemocyanin (KLH) carrier protein were increasingly potent in their ability to elicit anti-Id Abs. Vaccination with Id-KLH-pulsed DCs induced tumor-protective immunity superior to that obtained with Id-KLH plus a chemical adjuvant, and protection was not dependent upon effector T cells. Rather, protection was associated with the induction of high titers of anti-Id Abs of the IgG2a subclass, characteristic of a Th1 response. These findings have implications for the design of therapeutic Ag-pulsed DC vaccines for cancer immunotherapy in humans.  相似文献   

11.
Lenalidomide is an effective therapeutic agent for multiple myeloma that exhibits immunomodulatory properties including the activation of T and NK cells. The use of lenalidomide to reverse tumor-mediated immune suppression and amplify myeloma-specific immunity is currently being explored. In the present study, we examined the effect of lenalidomide on T-cell activation and its ability to amplify responses to a dendritic cell-based myeloma vaccine. We demonstrate that exposure to lenalidomide in the context of T-cell expansion with direct ligation of CD3/CD28 complex results in polarization toward a Th1 phenotype characterized by increased IFN-γ, but not IL-10 expression. In vitro exposure to lenalidomide resulted in decreased levels of regulatory T cells and a decrease in T-cell expression of the inhibitory marker, PD-1. Lenalidomide also enhanced T-cell proliferative responses to allogeneic DCs. Most significantly, lenalidomide treatment potentiated responses to the dendritic cell/myeloma fusion vaccine, which were characterized by increased production of inflammatory cytokines and increased cytotoxic lymphocyte-mediated lysis of autologous myeloma targets. These findings indicate that lenalidomide enhances the immunologic milieu in patients with myeloma by promoting T-cell proliferation and suppressing inhibitory factors, and thereby augmenting responses to a myeloma-specific tumor vaccine.  相似文献   

12.
Dendritic cell (DC) therapies are currently being evaluated for the treatment of cancer. The majority of ongoing clinical trials use DCs loaded with defined antigenic peptides or proteins, or tumor-derived products, such as lysates or apoptotic cells, as sources of Ag. Although several theoretical considerations suggest that DCs expressing transgenic protein Ags may be more effective immunogens than protein-loaded cells, methods for efficiently transfecting DCs are only now being developed. In this study we directly compare the immunogenicity of peptide/protein-pulsed DCs with lentiviral vector-transduced DCs, and their comparative efficacy in tumor immunotherapy. Maturing, bone marrow-derived DCs can be efficiently transduced with lentiviral vectors, and transduction does not affect DC maturation, plasticity, or Ag presentation function. Transduced DCs efficiently process and present both MHC class I- and II-restricted epitopes from the expressed transgenic Ag OVA. Compared with peptide- or protein-pulsed DCs, lentiviral vector-transduced DCs elicit stronger and longer-lasting T cell responses in vivo, as measured by both in vivo killing assays and intracellular production of IFN-gamma by Ag-specific T cells. In the B16-OVA tumor therapy model, the growth of established tumors was significantly inhibited by a single immunization using lentiviral vector-transduced DCs, resulting in significantly longer survival of immunized animals. These results suggest that compared with Ag-pulsed DCs, vaccination with lentiviral vector-transduced DCs may achieve more potent antitumor immunity. These data support the further development of lentiviral vectors to transduce DCs with genes encoding Ags or immunomodulatory adjuvants to generate and control systemic immune responses.  相似文献   

13.
We investigated interactions between CD4+ T cells and dendritic cells (DC) necessary for presentation of exogenous Ag by DC to CD8+ T cells. CD4+ T cells responding to their cognate Ag presented by MHC class II molecules of DC were necessary for induction of CD8+ T cell responses to MHC class I-associated Ag, but their ability to do so depended on the manner in which class II-peptide complexes were formed. DC derived from short-term mouse bone marrow culture efficiently took up Ag encapsulated in IgG FcR-targeted liposomes and stimulated CD4+ T cell responses to Ag-derived peptides associated with class II molecules. This CD4+ T cell-DC interaction resulted in expression by the DC of complexes of class I molecules and peptides from the Ag delivered in liposomes and permitted expression of the activation marker CD69 and cytotoxic responses by naive CD8+ T cells. However, while free peptides in solution loaded onto DC class II molecules could stimulate IL-2 production by CD4+ T cells as efficiently as peptides derived from endocytosed Ag, they could not stimulate induction of cytotoxic responses by CD8+ T cells to Ag delivered in liposomes into the same DC. Signals requiring class II molecules loaded with endocytosed Ag, but not free peptide, were inhibited by methyl-beta-cyclodextrin, which depletes cell membrane cholesterol. CD4+ T cell signals thus require class II molecules in cholesterol-rich domains of DC for induction of CD8+ T cell responses to exogenous Ag by inducing DC to process this Ag for class I presentation.  相似文献   

14.
BACKGROUND: The use of mRNA in vaccine studies has generally been through loading or transfection of immature DC followed by a maturation step. A recent study has suggested that this strategy may result in inferior priming of cytotoxic T lymphocytes (CTL). Furthermore the study did not address any possible effects on the priming of CD4(+) T-cell responses. METHODS: We compared mRNA transfection of mature DC with that of immature DC, using as a read-out their capacity to prime autologous T cells during one cycle of in vitro stimulation. In this model system we used mRNA from the tumor cell line Jurkat E6. DC transfected at either the immature stage (day 5) or mature stage (day 7) displayed a similar phenotype. RESULTS: Interestingly, no major differences in their ability to prime CD4 and CD8 T-cell responses were observed. As in vitro priming to some extent may reflect the capacity of these DC to prime T cells in vivo after vaccination, these studies support the use of mRNA-transfected mature DC in clinical protocols. DISCUSSION: Transfection of DC at the end of the maturation process represents a logistical improvement in the GMP production of mRNA-transfected DC for clinical protocols.  相似文献   

15.
Dendritic cell (DC)/tumor cell fusion cells (FCs) can induce potent CTL responses. The therapeutic efficacy of a vaccine requires the improved immunogenicity of both DCs and tumor cells. The DCs stimulated with the TLR agonist penicillin-killed Streptococcus pyogenes (OK-432; OK-DCs) showed higher expression levels of MHC class I and II, CD80, CD86, CD83, IL-12, and heat shock proteins (HSPs) than did immature DCs. Moreover, heat-treated autologous tumor cells displayed a characteristic phenotype with increased expression of HSPs, carcinoembryonic Ag (CEA), MUC1, and MHC class I (HLA-A2 and/or A24). In this study, we have created four types of FC preparation by alternating fusion cell partners: 1) immature DCs fused with unheated tumor cells; 2) immature DCs fused with heat-treated tumor cells; 3) OK-DCs fused with unheated tumor cells; and 4) OK-DCs fused with heat-treated tumor cells. Although OK-DCs fused with unheated tumor cells efficiently enhanced CTL induction, OK-DCs fused with heat-treated tumor cells were most active, as demonstrated by: 1) up-regulation of multiple HSPs, MHC class I and II, CEA, CD80, CD86, CD83, and IL-12; 2) activation of CD4+ and CD8+ T cells able to produce IFN- gamma at higher levels; 3) efficient induction of CTL activity specific for CEA or MUC1 or both against autologous tumor; and 4) superior abilities to induce CD107+ IFN-gamma+ CD8+ T cells and CD154+ IFN-gamma+ CD4+ T cells. These results strongly suggest that synergism between OK-DCs and heat-treated tumor cells enhances the immunogenicity of FCs and provides a promising means of inducing therapeutic antitumor immunity.  相似文献   

16.

Purpose

A wealth of preclinical information, as well as a modest amount of clinical information, indicates that dendritic cell vaccines have therapeutic potential. The aim of this work was to assess the immune response, disease progression, and post-treatment survival of ER/PR double-negative stage II/IIIA breast cancer patients vaccinated with autologous dendritic cells pulsed with autologous tumor lysates.

Methods

Dendritic cell (DC) vaccines were generated from CD14+ precursors pulsed with autologous tumor lysates. DCs were matured with defined factors that induced surface marker and cytokine production. Individuals were immunized intradermally four times. Specific delayed type IV hypersensitivity (DTH) reaction, ex vivo cytokine production, and lymphocyte subsets were determined for the evaluation of the therapeutic efficiency. Overall survival and disease progression rates were analyzed using Kaplan–Meier curves and compared with those of contemporaneous patients who were not administered DC vaccines.

Results

There were no unanticipated or serious adverse effects. DC vaccines elicited Th1 cytokine secretion and increased NK cells, CD8+ IFN-γ+ cells but decreased the percentage of CD3+ T cells and CD3+ HLA-DR+ T cells in the peripheral blood. Approximately 58% (18/31) of patients had a DTH-positive reaction. There was no difference in overall survival between the patients with and without DC vaccine. The 3-year progression-free survival was significantly prolonged: 76.9% versus 31.0% (with vs. without DC vaccine, p?Conclusion Our findings strongly suggest that tumor lysate-pulsed DCs provide a standardized and widely applicable source of breast cancer antigens that are very effective in evoking anti-breast cancer immune responses.  相似文献   

17.
In this report, we studied T cell responses to a prostate cancer Ag by adoptively transferring tumor Ag-specific T cells into prostate tumor-bearing mice. Our findings demonstrate that CD8(+) T cells initially encountered tumor Ag in the lymph node and underwent an abortive proliferative response. Upon isolation from the tumor, the residual tumor-specific T cells were functionally tolerant of tumor Ag as measured by their inability to degranulate and secrete IFN-gamma and granzyme B. We next sought to determine whether providing an ex vivo-matured, peptide-pulsed dendritic cell (DC) vaccine could overcome the tolerizing mechanisms of tumor-bearing transgenic adenocarcinoma of the mouse prostate model mice. We demonstrate that tumor Ag-specific T cells were protected from tolerance following provision of the DC vaccine. Concurrently, there was a reduction in prostate tumor size. However, even when activated DCs initially present tumor Ag, T cells persisting within the tolerogenic tumor environment gradually lost Ag reactivity. These results suggest that even though a productive antitumor response can be initiated by a DC vaccine, the tolerizing environment created by the tumor still exerts suppressive effects on the T cells. Furthermore, our results demonstrate that when trying to elicit an effective antitumor immune response, two obstacles must be considered: to maintain tumor Ag responsiveness, T cells must be efficiently primed to overcome tumor Ag presented in a tolerizing manner and protected from the suppressive mechanisms of the tumor microenvironment.  相似文献   

18.
Immunotherapy represents an appealing option to specifically target CNS tumors using the immune system. In this report, we tested whether adjunctive treatment with the TLR-7 agonist imiquimod could augment antitumor immune responsiveness in CNS tumor-bearing mice treated with human gp100 + tyrosine-related protein-2 melanoma-associated Ag peptide-pulsed dendritic cell (DC) vaccination. Treatment of mice with 5% imiquimod resulted in synergistic reduction in CNS tumor growth compared with melanoma-associated Ag-pulsed DC vaccination alone. Continuous imiquimod administration in CNS tumor-bearing mice, however, was associated with the appearance of robust innate immune cell infiltration and hemorrhage into the brain and the tumor. To understand the immunological mechanisms by which imiquimod augmented antitumor immunity, we tested whether imiquimod treatment enhanced DC function or the priming of tumor-specific CD8+ T cells in vivo. With bioluminescent, in vivo imaging, we determined that imiquimod dramatically enhanced both the persistence and trafficking of DCs into the draining lymph nodes after vaccination. We additionally demonstrated that imiquimod administration significantly increased the accumulation of tumor-specific CD8+ T cells in the spleen and draining lymph nodes after DC vaccination. The results suggest that imiquimod positively influences DC trafficking and the priming of tumor-specific CD8+ T cells. However, inflammatory responses induced in the brain by TLR signaling must also take into account the local microenvironment in the context of antitumor immunity to induce clinical benefit. Nevertheless, immunotherapeutic targeting of malignant CNS tumors may be enhanced by the administration of the innate immune response modifier imiquimod.  相似文献   

19.
Processing of exogenous protein Ags by APC leads predominantly to presentation of peptides on class II MHC and, thus, stimulation of CD4+ T cell responses. However, "cross-priming" can also occur, whereby peptides derived from exogenous Ags become displayed on class I MHC molecules and stimulate CD8+ T cell responses. We compared the efficiency of cross-priming with exogenous proteins to use of peptide Ags in human whole blood using a flow cytometry assay to detect T cell intracellular cytokine production. CD8+ T cell responses to whole CMV proteins were poorly detected (compared with peptide responses) in most CMV-seropositive donors. Such responses could be increased by using higher doses of Ag than were required to achieve maximal CD4+ T cell responses. A minority of donors displayed significantly more efficient CD8+ T cell responses to whole protein, even at low Ag doses. These responses were MHC class I-restricted and dependent upon proteosomal processing, indicating that they were indeed due to cross-priming. The ability to efficiently cross-prime was not a function of the number of dendritic cells in the donor's blood. Neither supplementation of freshly isolated dendritic cells nor use of cultured, Ag-pulsed dendritic cells could significantly boost CD8 responses to whole-protein Ags in poorly cross-priming donors. Interestingly, freshly isolated monocytes performed almost as well as dendritic cells in inducing CD8 responses via cross-priming. In conclusion, the efficiency of cross-priming appears to be poor in most donors and is dependent upon properties of the individual's APC and/or T cell repertoire. It remains unknown whether cross-priming ability translates into any clinical advantage in ability to induce CD8+ T cell responses to foreign Ags.  相似文献   

20.
BACKGROUND: Recent reports have described a new strategy for differentiation and maturation of monocyte (Mo)-derived DCs within only 48 h of in vitro culture (fast-DC). Here we assess the efficacy of the fast-DC to process and present different Aspergillus fumigatus and CMV Ag preparations to autologous T cells, compared with DCs generated in standard 7-day cultures (standard-DC). METHODS: Adherent blood Mo were treated with GM-CSF and IL-4 (1 day for fast-DC, 5 days in the standard-DC) to generate immature DCs, and then were matured for either 1-2 days (fast-DC) or 2 days (standard-DC) with inflammatory cytokines. DCs were pulsed with A. fumigatus or CMV Ag preparation immediately prior to maturation, or infected after maturation with adeno-pp65. Mature DCs were then used to prime Ag-specific proliferative and cytotoxic T lymphocytes (CTL) responses. RESULTS: Fast-DC were CD14- and expressed mature DC surface markers to the same degree as standard-DC, and maintained this phenotype after withdrawing cytokine from the cultures. Fast-DC and standard-DC were equally capable of inducing A. fumigatus and CMV-specific T-cell proliferation, as well as priming Ag-specific CTL activity. The Aspergillus- and CMV-specific CTL were of mixed CD3+/CD4+ and CD3+/CD8+ phenotype, and specifically killed autologous DC pulsed with A. fumigatus Ag and autologous CMV infected fibroblasts, respectively. DISCUSSION: Fast-DC are as effective as standard-DC in the generation of Ag-specific T-cell responses. Moreover, use of fast-DC not only reduces labor and supply cost, as well as workload and time, but also increases the number of DCs derived from adherent Mo, which may facilitate the use of DCs in clinical trials of cellular immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号