首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Targeting transcription to the neuromuscular synapse   总被引:10,自引:0,他引:10  
  相似文献   

3.
4.
5.
6.
7.
8.
9.
Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic agrin mutant mice. Agrin is expressed by many populations of neurons in the central nervous system (CNS), suggesting that this molecule may also play a role in neuron-neuron synapse formation. To test this hypothesis, we examined synapse formation between cultured cortical neurons isolated from agrin-deficient mouse embryos. Our data show that glutamate receptors accumulate at synaptic sites on agrin-deficient neurons. Moreover, electrophysiological analysis demonstrates that functional glutamatergic and gamma-aminobutyric acid (GABA)ergic synapses form between mutant neurons. The frequency and amplitude of miniature postsynaptic glutamatergic and GABAergic currents are similar in mutant and age-matched wild-type neurons during the first 3 weeks in culture. These results demonstrate that neuron-specific agrin is not required for formation and early development of functional synaptic contacts between CNS neurons, and suggest that mechanisms of interneuronal synaptogenesis are distinct from those regulating synapse formation at the neuromuscular junction.  相似文献   

10.
11.
Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic agrin mutant mice. Agrin is expressed by many populations of neurons in the central nervous system (CNS), suggesting that this molecule may also play a role in neuron–neuron synapse formation. To test this hypothesis, we examined synapse formation between cultured cortical neurons isolated from agrin‐deficient mouse embryos. Our data show that glutamate receptors accumulate at synaptic sites on agrin‐deficient neurons. Moreover, electrophysiological analysis demonstrates that functional glutamatergic and gamma‐aminobutyric acid (GABA)ergic synapses form between mutant neurons. The frequency and amplitude of miniature postsynaptic glutamatergic and GABAergic currents are similar in mutant and age‐matched wild‐type neurons during the first 3 weeks in culture. These results demonstrate that neuron‐specific agrin is not required for formation and early development of functional synaptic contacts between CNS neurons, and suggest that mechanisms of interneuronal synaptogenesis are distinct from those regulating synapse formation at the neuromuscular junction. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 547–557, 1999  相似文献   

12.
13.
SHP2, a protein tyrosine phosphatase with two SH2 domains, has been implicated in regulating acetylcholine receptor (AChR) gene expression and cluster formation in cultured muscle cells. To understand the role of SHP2 in neuromuscular junction (NMJ) formation in vivo, we generated mus cle-specific deficient mice by using a loxP/Cre strategy since Shp2 null mutation causes embryonic lethality. Shp2(floxed/floxed) mice were crossed with mice expressing the Cre gene under the control of the human skeletal alpha-actin (HSA) promoter. Expression of SHP2 was reduced or diminished specifically in skeletal muscles of the conditional knockout (CKO) mice. The mutant mice were viable and fertile, without apparent muscle defects. The mRNA of the AChR alpha subunit and AChR clusters in CKO mice were localized in a narrow central region surrounding the phrenic nerve primary branches, without apparent change in intensity. AChR clusters colocalized with markers of synaptic vesicles and Schwann cells, suggesting proper differentiation of presynaptic terminals and Schwann cells. In comparison with age-matched littermates, no apparent difference was observed in the size and length of AChR clusters in CKO mice. Both the frequency and amplitude of mEPPs in CKO mice were similar to those in controls, suggesting normal neurotransmission when SHP2 was deficient. These results suggest that Shp2 is not required for NMJ formation and/or maintenance.  相似文献   

14.
Acute blockade of signaling through the tyrosine kinase receptor B (TrkB) attenuates neuromuscular transmission and fragments postsynaptic acetylcholine receptors (AChRs) in adult mice, suggesting that TrkB signaling is a key regulator of neuromuscular function. Using immunohistochemical, histological, and in vitro muscle contractile techniques, we tested the hypothesis that constitutively reduced TrkB expression would disrupt neuromuscular pre- and postsynaptic structure, neurotransmission, muscle fiber size, and muscle function in the soleus muscle of 6- to 8-mo-old TrkB?/? mice compared with age-matched littermates. Age-like expansion of postsynaptic AChR area, AChR fragmentation, and denervation was observed in TrkB?/? mice similar to that found in 24-mo-old wild-type mice. Neurotransmission failure was increased in TrkB?/? mice, suggesting that these morphologic changes were sufficient to alter synaptic function. Reduced TrkB expression resulted in decreased muscle strength and fiber cross-sectional area. Immunohistochemical and muscle retrograde labeling experiments show that motor neuron number and size are unaffected in TrkB?/? mice. These results suggest that TrkB- signaling at the neuromuscular junction plays a role in synaptic stabilization, neurotransmission, and muscle function and may impact the aging process of sarcopenia.  相似文献   

15.
Congenital myasthenic syndromes (CMS) are rare genetic diseases affecting the neuromuscular junction (NMJ) and are characterized by a dysfunction of the neurotransmission. They are heterogeneous at their pathophysiological level and can be classified in three categories according to their presynaptic, synaptic and postsynaptic origins. We report here the first case of a human neuromuscular transmission dysfunction due to mutations in the gene encoding a postsynaptic molecule, the muscle-specific receptor tyrosine kinase (MuSK). Gene analysis identified two heteroallelic mutations, a frameshift mutation (c.220insC) and a missense mutation (V790M). The muscle biopsy showed dramatic pre- and postsynaptic structural abnormalities of the neuromuscular junction and severe decrease in acetylcholine receptor (AChR) epsilon-subunit and MuSK expression. In vitro and in vivo expression experiments were performed using mutant MuSK reproducing the human mutations. The frameshift mutation led to the absence of MuSK expression. The missense mutation did not affect MuSK catalytic kinase activity but diminished expression and stability of MuSK leading to decreased agrin-dependent AChR aggregation, a critical step in the formation of the neuromuscular junction. In electroporated mouse muscle, overexpression of the missense mutation induced, within a week, a phenotype similar to the patient muscle biopsy: a severe decrease in synaptic AChR and an aberrant axonal outgrowth. These results strongly suggest that the missense mutation, in the presence of a null mutation on the other allele, is responsible for the dramatic synaptic changes observed in the patient.  相似文献   

16.
Subtle Neuromuscular Defects in Utrophin-deficient Mice   总被引:9,自引:1,他引:8       下载免费PDF全文
Utrophin is a large cytoskeletal protein that is homologous to dystrophin, the protein mutated in Duchenne and Becker muscular dystrophy. In skeletal muscle, dystrophin is broadly distributed along the sarcolemma whereas utrophin is concentrated at the neuromuscular junction. This differential localization, along with studies on cultured cells, led to the suggestion that utrophin is required for synaptic differentiation. In addition, utrophin is present in numerous nonmuscle cells, suggesting that it may have a more generalized role in the maintenance of cellular integrity. To test these hypotheses we generated and characterized utrophin-deficient mutant mice. These mutant mice were normal in appearance and behavior and showed no obvious defects in muscle or nonmuscle tissue. Detailed analysis, however, revealed that the density of acetylcholine receptors and the number of junctional folds were reduced at the neuromuscular junctions in utrophin-deficient skeletal muscle. Despite these subtle derangements, the overall structure of the mutant synapse was qualitatively normal, and the specialized characteristics of the dystrophin-associated protein complex were preserved at the mutant neuromuscular junction. These results point to a predominant role for other molecules in the differentiation and maintenance of the postsynaptic membrane.  相似文献   

17.
The nicotinic acetylcholine (ACh) receptor is an integral membrane protein which mediates synaptic transmission at the skeletal neuromuscular junction. A key event in the development of the neuromuscular junction is the formation of high density aggregates of ACh receptors in the postsynaptic membrane. Receptor clustering has been attributed, in part, to their association with a peripheral membrane protein of Mr 43,000 (43K protein). We have addressed whether the association of the 43K protein can alter the single channel properties of the ACh receptor, and thus influence neuromuscular transmission at developing synapses, by expressing ACh receptors with and without the 43K protein in heterologous expression systems. We found that coexpression of the 43K protein with the receptor did not significantly alter either its single channel conductance or its mean channel open time. This was true in oocytes and also in COS cells where it was possible to localize 43K-induced clusters by fluorescence microscopy and to record from those clustered receptors. These data are in agreement with previous single channel studies which have shown that the properties of diffusely distributed and clustered receptors in native muscle cells from both mice and Xenopus do not differ.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号