首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study was conducted to compare the cooling rates and storage temperatures within equine semen transport containers exposed to different ambient temperatures, and to evaluate the ability of these containers to preserve spermatozoal motility following 24 h of storage under these conditions. In Experiment 1, nonfat dried milk solids, glucose, sucrose, equine semen extender was divided into seven 40-mL aliquots and loaded into seven different semen transport containers: Equitainer I, Equitainer II, Equitainer III, ExpectaFoal, Bio-Flite, Lane STS, and Equine Express. After containers were loaded, they were subjected to one of three ambient storage temperatures: 1) 22 degrees C for 72 h, 2) -20 degrees C for 6 h followed by 22 degrees C for 66 h, or 3) 37 degrees C for 72 h. Cooling rates and storage temperatures of semen extender in each container were monitored with thermocouples and a chart recorder. In Experiment 2, semen from each of three stallions (3 ejaculates per stallion) was diluted to 25 x 10(6) spermatozoa/mL with semen extender, divided into 40 mL aliquots and loaded into transport containers as in Experiment I. Containers were subjected to one of three ambient storage conditions: 1) 22 degrees C for 24 h, 2) -20 degrees C for 6 h, followed by 22 degrees C for 18 h, or 3) 37 degrees C for 24 h. After 24 h of storage, spermatozoal motion characteristics (percentage of motile spermatozoa; MOT, percentage of progressively motile spermatozoa; PMOT, and mean curvilinear velocity; VCL) were evaluated using a computerized spermatozoal motion analyzer. Significant interactions were detected among storage conditions and semen transport containers for the majority of the temperature endpoints measured. When exposed to temporary ambient freezing conditions, the lowest temperatures attained by samples in containers ranged from -2.8 to 0.8 degrees C. Lowest temperature samples attained was not correlated (P > 0.05) with spermatozoal motility under any ambient condition. However, time below 4 degrees C was highly correlated (P < 0.05) with a reduction in spermatozoal motility. Mean cooling rates from 20 degrees C to 8 degrees C did not correlate with spermatozoal motility, except when containers were exposed to temporary freezing conditions. No container cooled samples below 6 degrees C in 22 degrees C or 37 degrees C environments except for the ExpectaFoal, in which samples fell below 4 degrees C under all ambient conditions. Ambient temperature affected MOT, PMOT and VCL of semen stored in all containers (P < 0.05) except for the Equitainer II in which motion characteristics remained high and were similar among all ambient temperatures (P > 0.05). Results suggest that stallion semen may be able to tolerate a wider range of cooling rates and storage temperatures than previously considered safe.  相似文献   

2.
In the present study, the effect of three different containers in the preservation of dog chilled semen, during 24, 48 and 72h was evaluated. Weekly sperm pools of different dogs were obtained, during 10 consecutive weeks. Semen samples were diluted in egg-yolk-Tris-fructose extender and stored in a Styrofoam box, a common Thermos flask and an Equitainer. Progressive motility, morphology and sperm membrane integrity were examined in semen aliquots taken daily from each container during the 3 days of storage. Additionally, integrity of the acrosome and sperm plasma membranes, determined by PI/Fitc-PSA staining was assessed at 48 and 72h of storage. At 24h no differences were observed between the three containers for the evaluated parameters. At 48h samples kept in the Equitainer presented a higher progressive motility than samples kept in the Thermos. At 72h, progressive motility was higher in the Equitainer than in the other two containers. Only samples kept in the Equitainer maintained similar levels of progressive motility between 24 and 72h. Membrane integrity assessed by eosin-nigrosin deteriorated over the 72h period, whereas functional membrane integrity determined by the hypoosmotic swelling test was independently affected by type of container (the Equitainer) kept a higher percentage of sperm cells with intact membrane) and time of storage (a decrease of membrane integrity between 24 to 72h). Staining with PI-Fitc-PSA allowed the detection of differences between containers but not between the two studied storage periods (48 and 72h). The results indicated that the use of the Equitainer is preferable when transporting chilled dog semen for more than 48h.  相似文献   

3.
Malmgren L 《Theriogenology》1998,50(6):833-839
The storage and transport of cooled, liquid semen is an effective way of facilitating the use of desirable stallions for breeding mares located on distant farms. The Equitainer System is the most widely used transport container and it has been shown that it is possible to ship semen in this container and obtain good conception rates. However, the cost of Equitainers is high, and stud-farms that ship large quantities of semen have tended to rely on cheaper alternatives, even though little documentation exists concerning their reliability, especially under extreme temperature conditions. Two different containers for transporting equine semen (the Equitainer and a styrofoam box) were compared in their effectiveness at maintaining semen quality (i.e. sperm motility and plasma membrane integrity) during 24 h of storage. The transport containers were stored at 2 different environmental temperatures, i.e., room temperature (20 degrees C) and 37 degrees C. Thirty-seven ejaculates from 10 Standardbred stallions (3 to 6 samples per stallion) were examined. Sperm function and plasma membrane integrity were assessed using a Mika Motion Analyzer and a fluorescein stain (Calcein AM/Ethidium homodimer) in fresh diluted semen that had been stored for 24 h at room temperature (20 degrees C). Another 18 ejaculates from 5 stallions were examined using methods described above, but the transport boxes were kept at a high environmental temperature (37 degrees C). After storage at room temperature, there was no significant difference in total sperm motility and frequency of spermatozoa with an intact plasma membrane between the 2 types of transport boxes. A significant difference was seen in linear sperm motility, with the Equitainer being the better container. However, a significant difference was also seen in average path velocity, with the styrofoam box being the better container. After storage at 37 degrees C, the Equitaner maintained semen quality better. A significant difference was seen in total sperm motility, average path velocity, lateral head displacement and frequency of spermatozoa with an intact plasma membrane between the 2 types of transport boxes. Although, both transport containers were satisfactory when used under normal conditions. The Equitainer seemed superior under more extreme temperatures and during longer transport periods (> 24 to 30 h).  相似文献   

4.
The objective of this study was to determine if centrifugation and partial removal of seminal plasma would improve spermatozoal motility in semen from stallions whose whole ejaculates have poor tolerance to cooling and storage. Stallions were divided into two groups (n = 5/group) based on the ability of their extended semen to maintain spermatozoal motility after cooling and storage. Group 1 stallions ("good coolers") produced semen in which progressive spermatozoal motility after 24 h of cooling and storage was reduced by < or = 30% of progressive motility prior to storage. Group 2 stallions ("poor coolers") produced semen in which progressive spermatozoal motility after 24 h of cooling and storage was reduced by > or = 40% of progressive motility prior to storage. The sperm-rich portion of each ejaculate was divided into 4 aliquots. Two aliquots underwent standard processing for cooled transported semen and were examined after 24 and 48 h of cooling and storage in an Equitainer. The remaining two aliquots were diluted 1:1 with semen extender, then centrifuged at 400 x g for 12 min at room temperature. After centrifugation, approximately 90% of the seminal plasma was removed, and the sperm pellet was resuspended in extender to a final concentration of 25 to 50 x 10(6) sperm/mL. These aliquots were then packaged as for the non-centrifuged aliquots and examined after 24 and 48 h of storage. The spermatozoal motion characteristics in fresh semen and after 24 and 48 h of cooling and storage was determined via computer-assisted semen analysis. Centrifugation and partial removal of seminal plasma increased the percentage of progressively motile spermatozoa and limited the reduction in progressive spermatozoal motility of "poor cooling" stallions after 48 h of cooling and storage. Results of this study indicate that centrifugation and partial removal of seminal plasma is beneficial for stallions whose ejaculates have poor tolerance to cooling and storage with routine semen dilution and packaging techniques, especially if the semen is stored for > 24 h.  相似文献   

5.
Ticarcillin and piperacillin were compared to determine their effect on sperm motility and bacterial growth of equine semen samples diluted in Kenney's glucose skim milk semen extender. Each ejaculate (n=11) was divided into three portions and glucose skim milk semen extender solution was added. The control semen extender solution contained extended semen and no antibiotic, whereas ticarcillin and piperacillin solutions contained extended semen plus 1.0mg/mL of ticarcillin or piperacillin, respectively. An aliquot was removed (1h after collection) to evaluate sperm motility and microbial concentration. All three solutions were stored at 4 degrees C and aliquots were obtained at 24 and 48 h to determine sperm motility and microbial concentration. Mean percentages of motile and progressively motile sperm did not differ significantly among control and antibiotic-containing solutions after storage. Control-extended semen samples from ejaculates of stallions (n=11) were contaminated with aerobic gram-positive and gram-negative bacteria. In solutions that contained either antibiotic, growth of these microbes was inhibited after 1, 24, and 48 h at 4 degrees C. Semen samples from stallions (n=5) were extended with Kenney's glucose skim milk extender containing no antibiotic, ticarcillin or piperacillin and then inoculated with approximately 5 x 10(2)CFU/mL Klebsiella pneumoniae or Pseudomonas aeruginosa; there was no significant difference between antibiotics in the inhibition of microbial growth. In conclusion, piperacillin was an appropriate alternative to ticarcillin in extenders for equine semen.  相似文献   

6.
The control of bacteria in semen of stallions has been most effective with the use of seminal extenders containing suitable concentrations of antibiotics. However, the detrimental effect of antibiotics on sperm motility may be greater in stored, cooled semen due to the prolonged exposure to the antibiotic. Therefore, a study was conducted to determine the effect of various antibiotics on sperm motion characteristics following short term exposure and during cooled storage of semen. Reagent grade amikacin sulfate, ticarcillin disodium, gentamicin sulfate and polymixin B sulfate were added to a nonfat, dried, skim milk - glucose seminal extender at concentrations of 1000 or 2000 mug or IU/ml. Aliquots of raw semen were diluted with extender-antibiotic combinations to a concentration of 25 x 10(6) spermatozoa/ml. An aliquot was also diluted with extender without antibiotic. Aliquots were incubated at 23 degrees C for 1 h. In addition, portions of the aliquots were cooled from 23 to 5 degrees C and stored for 48 h. During 1 h of incubation of extended semen at 23 degrees C, there was a significant (P<0.05) reduction in the percentage of progressively motile spermatozoa for samples containing gentamicin sulfate. After 24 h of storage at 5 degrees C, 2000 mug/ml of gentamicin and levels equal to and greater than 1000 IU/ml of polymixin B in seminal extender resulted in significant (P<0.05) reductions in the percentages of motile and progressively motile spermatozoa. After 48 h of cooled storage, a level of 1000 mug/ml of gentamicin sulfate. resulted in significant (P<0.05) reductions in the percentages of motile and progressively motile spermatozoa. Levels equal to or greater than 1000 IU/ml of polymixin B sulfate also resulted in a significant (P<0.05) reduction in mean curvilinear velocity. Levels up to 2000 mug/ml of amikacin sulfate and ticarcillin disodium had no significant effect on sperm motion characteristics during short-term incubation at 23 degrees C or storage for 24 h at 5 degrees C. Overall, the addition of antibiotics to extender did not significantly (P>0.05) improve motion characteristics of spermatozoa over control samples. However, levels of gentamicin sulfate greater than 1000 mug/ml and of polymixin B sulfate equal to or greater than 1000 IU/ml should be avoided in seminal extenders used for cooled semen.  相似文献   

7.
This study was designed to evaluate the possible benefits of adding gelatin to a standard milk extender, for solid storage of sheep semen at 15 degrees C. Solid storage was assessed in terms of effects on sperm motility and membrane integrity up to 2 days (Study 1), and on in vitro penetration capacity after storage for 24h (Study 2). In both studies, semen was diluted in CONTROL (standard milk extender) and GEL (1.5 g gelatin/100ml extender) diluents to a final concentration of 400 x 10(6)sperm/ml. In Study 1, semen samples were stored at 15 degrees C, and sperm quality variables analyzed after 2, 24 and 48 h of storage. Motility and viability values were significantly lowered using the liquid compared to the gel extender for all storage periods, except for motility after 2h of storage, whose values were similar. After 2h of incubation at 37 degrees C, motile cell percentages and membrane integrity were significantly lower in the CONTROL group than in the GEL group for all storage periods. In Study 2, in vitro matured lamb oocytes were randomly divided into three groups and fertilized with CONTROL diluted semen stored for 2h or 24h, or with GEL diluted semen stored for 24h. After co-incubation, oocytes were evaluated for signs of penetration. Storage of semen in the GEL diluent for 24h gave rise to increased in vitro fertilization rates in comparison with the CONTROL diluent. Our findings indicate that the solid storage at 15 degrees C of ram spermatozoa by adding gelatin to the extender leads to improved survival and in vitro penetrating ability over the use of the normal liquid extender. A solid diluent could thus be a useful option for the preservation of fresh ovine semen for extended periods.  相似文献   

8.
The aim of this study was to determine if dead spermatozoa reduced motility or membrane integrity of live spermatozoa in fresh and cooled-stored equine semen. Three ejaculates from each of three stallions were centrifuged and virtually all seminal plasma was removed. Spermatozoa were resuspended to 25 x 10(6) spermatozoa/ml with EZ-Mixin CST extender and 10% autologous seminal plasma, then divided into aliquots to which 0 (control), 10, 25, 50, or 75% (v/v) dead spermatozoa were added. Dead spermatozoa preparations contained 25 x 10(6) spermatozoa/ml and 10% seminal plasma from pooled ejaculates of the three stallions, in EZ-Mixin CST extender. Spermatozoa were killed in the pooled ejaculates by repeated freezing and thawing, then stored at -20 degrees C until warmed to 37 degrees C and mixed with aliquots of fresh spermatozoa to be cooled and stored in an Equitainer for 24h. Motion characteristics (% total motility (MOT), % progressive motility (PMOT), and mean curvilinear velocity (VCL)) for fresh and 24h cooled samples were determined using a computerized spermatozoal motion analyzer. The presence of up to 75% dead spermatozoa did not adversely affect MOT or PMOT of live spermatozoa in either fresh or cooled-stored semen. However, VCL and the percentage of membrane-intact spermatozoa were reduced compared to control samples when 75% (v/v) dead spermatozoa were added. Membrane integrity, as assessed by staining with carboxyfluoresein diacetate-propidium iodide, was highly correlated (r>0.8; P<0.001) with MOT and PMOT in both fresh and cooled-stored semen samples. Results of this study have application to the processing of both cooled and frozen equine semen.  相似文献   

9.
Control extender was incubated at 4 degrees C for 24 hours. Rubber or plastic syringe plungers were separately incubated in semen extender for 24 hours at 4 degrees C. Following incubation, the extender was stored at -20 degrees C until the time of semen collection. The treatments consisted of the following: Group A = equine semen plus control extender; Group B=equine semen plus extender incubated with rubber plungers and Group C=equine semen plus extender incubated in plastic plungers; Group D=equine semen plus control extended in rubber plunger syringes and Group E=equine semen plus control extender in plastic plunger syringer. Each group contained a 5-ml volume of semen and extender at a concentration of 1.0 x 10(8) sperm/ml. The number of live spermatozoa, percentage of progressively motile spermatozoa and rate of progressive motility were taken following collection and every 15 minutes for 1 hour following application of treatments. In experiment 2, treatments were allowed to incubate with semen for 45 minutes, then the extender was removed and was replaced with fresh extender. The rate of progressive motility and the percentage of progressively motile spermatozoa were taken immediately, at 45 minutes, and then every 15 minutes for 1 hour. In experiment 1, the number of live spermatozoa was not affected among the 5 groups. However, there was a decrease (P<0.01) in the rate of progressive motility and in the percentage of progressively motile spermatozoa in Group B compared with the remaining 4 treatment groups at 30, 45 and 60 minutes, with no differences noted when semen was held in syringes with a rubber or a plastic plunger. In experiment 2, the percentage of progressively motile spermatozoa increased after the addition of the control extender.  相似文献   

10.
Ejaculates were collected form three mixed-breed male dogs daily for 3 d. The semen was diluted in either a nonfat dried milk solid-glucose (NFDMS-G) or egg yolk citrate (EYC) extender at a concentration of 25 x 10(6) sperm/ml. The diluted samples were exposed to three different storage temperatures (35, 22 and 4 degrees C). Three cooling rates (-1.0, -0.3 and -0.1 degrees C/min) were also investigated at the lowest storage temperature (4 degrees C). The semen was evaluated for total motility, progressive motility and velocity at 0, 6, 12, 24, 48, 72, 96 and 120 h after collection by two independent observers. Interactions between extenders, temperatures and time after collection were found for each of the variables. Nonfat dried milk solid-glucose diluent was superior to EYC (P<0.05) in preservating sperm motility parameters that were evaluated for most of the observations. The evaluated sperm motility parameters were also significantly superior (P<0.05) in semen stored at 4 degrees C than at 35 or 22 degrees C for most of the observations. The progressive motility and velocity of sperm in semen cooled at 4 degrees C in NFDMS-G were higher (P<0.05) at the fast and medium cooling rates (-1.0 and -0.3 degrees C) than at the slow cooling rate (-0.1 degrees C/min) at 24 and 72 h, and at 48 h, respectively. In conclusion, the present study suggests that canine spermatozoal motility is well preserved when a NFDMS-glucose extender is added to the semen and the semen is cooled at a medium or fast rate to a storage temperature of 4 degrees C. Additional studies are needed to evaluate the fertility of semen stored in this manner.  相似文献   

11.
Five experiments evaluated the effects of processing, freezing and thawing techniques on post-thaw motility of equine sperm. Post-thaw motility was similar for sperm frozen using two cooling rates. Inclusion of 4% glycerol extender was superior to 2 or 6%. Thawing in 75 degrees C water for 7 sec was superior to thawing in 37 degrees C water for 30 sec. The best procedure for concentrating sperm, based on sperm motility, was diluting semen to 50 x 10(6) sperm/ml with a citrate-based centrifugation medium at 20 degrees C and centrifuging at 400 x g for 15 min. There was no difference in sperm motility between semen cooled slowly in extender with or without glycerol to 5 degrees C prior to freezing to -120 degrees C and semen cooled continuously from 20 degrees C to -120 degrees C. From these experiments, a new procedure for processing, freezing and thawing semen evolved. The new procedure involved dilution of semen to 50 x 10(6) sperm/ml in centrifugation medium and centrifugation at 400 x g for 15 min, resuspension of sperm in lactose-EDTA-egg yolk extender containing 4% glycerol, packaging in 0.5-ml polyvinyl chloride straws, freezing at 10 degrees C/min from 20 degrees C to -15 degrees C and 25 degrees C/min from -15 degrees C to -120 degrees C, storage at -196 degrees C, and thawing at 75 degrees C for 7 sec. Post-thaw motility of sperm averaged 34% for the new method as compared to 22% for the old method (P<0.01).  相似文献   

12.
This study investigated whether the immotility induced by the CLONE chilled semen extender prolongs the lifespan of dog spermatozoa stored at 5 degrees C, compared with a Tris-egg yolk-glucose (TG) extender, which maintains motility. Pooled semen was split in four aliquots, centrifuged, and the four sperm pellets mixed with TG extender; with the CLONE chilled semen (CL) extender; with TG extender mixed with an activator (TG+A(TG)); or with the CLONE extender mixed with the CLONE activator (CL+A(CL)). Samples were stored at 5 degrees C for 23 days and examined 12 times for sperm motility, plasma membrane and acrosome integrity, glucose consumption, and DNA fragmentation index (DFI). The experiment was performed in triplicate. Glucose consumption was not significantly different between extenders until the period 15-23 days, when it was higher in CL and CL+A(CL) than in TG (P=0.0055) and TG+A(TG) (P=0.0010). No breakdown of DNA chromatin (P>0.05) occurred until day 14. Spermatozoa preserved in TG or TG+A(TG) showed better values for all the different parameters throughout the experiment compared with sperm subjected to CL or CL+A(CL). In conclusion, the immotility induced by the CLONE chilled semen extender during long-term cold storage at 5 degrees C did not prolong the lifespan of spermatozoa compared with the lifespan following storage in Tris-egg yolk-glucose. In addition, our results indicate that good quality dog semen may possibly be stored for up to 14 days in TG extender at 5 degrees C, with retained fertilizing capacity. In vivo studies should, however, be performed to further support this conclusion.  相似文献   

13.
We conducted two studies to improve preservation of rabbit semen. The objective of the first study was determine whether a glucose- and fructose-based extender with two different amounts of gelatin would solidify at 15 degrees C, and to evaluate the influence of gelatin supplementation on sperm motility parameters after storing semen up to 10 days at 15 degrees C. The fertility of rabbit semen diluted in the best gelatin-supplemented extender established in Study 1 and stored for up to 5 days was evaluated in the second study. In Study 1, semen was collected with an artificial vagina from 40 bucks. Each ejaculate was diluted to (80-100) x 10(6) spermatozoa/mL (1:3, semen/extender) at 37 degrees C in one of the three following glucose- and fructose-based extenders: control (standard liquid extender), semi-gel or gel (0.7 or 1.4 g gelatin in 100 mL extender, respectively). Pools of semen were allocated among 0.6 mL plastic artificial insemination (AI) guns. Thirty (10 per extender group) AI doses were immediately analyzed (0 h) and the remainder stored in a refrigerator (15 degrees C) for 12, 24, 36, 48, 72, 96, or 240 h. All doses with gelatin extenders solidified at 15 degrees C. Semen samples, prewarmed to 37 degrees C, were evaluated with a computer-assisted sperm analysis (CASA) system. The percentage of motile cells was significantly lower using the liquid compared to the gel extenders during semen storage from 0 to 96 h. Although significance was lost, these differences persisted after 240 h of storage. Motility of spermatozoa in the semi-gel extender was intermediate between that of liquid and gel extender throughout the study. Study 2 was performed on 1250 multiparous lactating does. Five homogeneous groups of 250 does previously synchronized were inseminated using semen previously stored for 120, 96, 72, 48 or 24 h, respectively. Rabbit does receiving 24 h-stored semen (diluted with the control extender used in Study 1) served as controls. The remaining females received seminal doses supplemented with 1.4 g/100mL gelatin (gel extender used in Study 1). Kindling rates for rabbit does inseminated with gelatin-supplemented (solid) semen doses stored for 48 h (88%) or 72 h (83%) were similar to those recorded for liquid controls stored for 24 h (81%), whereas rates significantly decreased when the semen was solid and stored for 96 h (64%) or 120 h (60%) before AI. In conclusion, rabbit spermatozoa were effectively stored in the solid state at 15 degrees C, with fertility preserved for up to 5 days. Solid storage of rabbit semen would facilitate commercial distribution.  相似文献   

14.
A breeding trial was conducted to evaluate the effect of in vitro storage time and temperature on fertilizing capacity of equine spermatozoa. Semen obtained from one stallion and diluted with skim milk-glucose extender was used to artificially inseminate 45 estrussynchronized mares. The mares were assigned to one of three treatment groups (15 mares per group): 1) insemination with fresh semen (collected within 0.5 h of use), 2) insemination with semen stored for 24 h at 20 degrees C or 3) insemination with semen stored for 24 h at 5 degrees C. The mares were inseminated daily during estrus, from the detection of a 35-mm follicle until ovulation, with 250 x 10(6) progressively motile spermatozoa (based on initial sperm motility of fresh semen). Semen samples (n = 35) were evaluated prior to insemination for percentages of total sperm motility (TSM), progressive sperm motility (PSM) and sperm velocity (SV). Single-cycle 15-d pregnancy rates. resulting from insemination with fresh semen, from fresh semen stored for 24 h at 20 degrees C or from semen stored for 24 h at 5 degrees C were the same (11 15 ; 73%). Mean diameters (mm) of 15-d embryonic vesicles were not different (P>0.05) among these three treatment groups (21.5 +/- 2.9, 19.6 +/- 2.6 and 20.5 +/- 3.6, respectively). Ten pregnant mares were aborted on Day 15 of gestation for use in another project. The pregnancy status of the 23 remaining pregnant mares was again determined at 35 to 40 d and 55 to 60 d of gestation. No pregnancy losses occurred during this time period. Mean TSM percentages were different (P<0.05) among the three groups: the fresh semen percentage was 89 +/- 2, semen stored for 24 h at 20 degrees C was 57 +/- 11 and semen stored for 24 h at 5 degrees C was 80 +/- 6. Similar differences were found for mean PSM and SV. Semen storage at either 20 or 5 degrees C for 24 h had no apparent effect on the fertilizing capacity of the extended semen samples; however, the reduction in all motility parameters tested was more dramatic in semen stored at 20 degrees C than that stored at 5 degrees C.  相似文献   

15.
The effects of extender and storage at 20 degrees C on equine spermatozoa were evaluated in two experiments using embryo recovery as the end point. In both experiments, inseminations were every other day, starting on Day 2 or 3 of estrus or after a 35-mm follicle was detected, with 250 x 10(6) progressively motile cells (based on initial evaluation). In Experiment 1, semen from two stallions was used to compare the motility and fertility of spermatozoa maintained in a) heated skim milk extender at 37 degrees C with insemination in <1 h; b) E-Z Mixin extender at 37 degrees C with insemination in <1 h; and c) E-Z Mixin extender at 37 degrees C with cooling to 20 degrees C and insemination after storage for 12 h at 20 degrees C. The percentage of motile spermatozoa was 34% after 12 h compared to 55% at 0 h (P < 0.05). However, the percentage of mares from which an embryo was recovered 6.5 d after ovulation was 62, 56, and 50% for Treatments A, B, and C (P > 0.05). In Experiment 2, semen from three stallions was used to compare the motility and fertility of spermatozoa in a) E-Z Mixin extender at 37 degrees C with insemination in <1 h or b) E-Z Mixin extender at 37 degrees C with cooling to 20 degrees C and insemination after storage for 24 h at 20 degrees C. The percentage of motile spermatozoa was 17% after 24 h compared to 54% at 0 h (P < 0.05). There was no difference between treatments (P > 0.05) in the percentage of mares from which an embryo was recovered 6.0 d after ovulation (68 vs 62%) or among stallions. Thus, stallion semen extended in E-Z Mixin was held at 20 degrees C for 24 h without a marked decline in fertility.  相似文献   

16.
Semen was collected with an artificial vagina from four adult rams. The ejaculates were pooled and diluted, using a split-sample technique, in four different extenders: one for milk (Mi), one for sodium citrate (Na), and two for Tris-based extenders (T1 and T2) including egg yolk. Thereafter, the diluted semen was stored at 5 and 20 degrees C, respectively. We evaluated sperm viability after 0, 6, 12, 24 and 30 h of storage. We assessed sperm motility subjectively, and we determined sperm membrane integrity using both the hypo-osmotic resistance test (ORT) and a fluorophore staining (SYBR-14 and propidium iodide) technique. We evaluated acrosomal status with Spermac and capacitation status with Chlortetracycline (CTC assay). All sperm viability parameters were influenced by storage time and extender, while sperm motility was the only evaluated parameter that was influenced by the interaction between extender and temperature. Semen that was diluted and stored in the commercially available Tris-based extender (T2) maintained sperm motility for a longer period of time, and acrosome and membrane integrity was higher during storage for up to 30 h as compared to the other extenders independent of storage temperature. In general, however, storage of ram semen at 5 degrees C seemed to influence sperm viability parameters less than storage at 20 degrees C. In conclusion, the results of the present study indicate that Tris-based extenders, especially T2, preserved sperm viability better than both the sodium citrate- and the milk-based extender did when liquid ram semen was stored up to 30 h at 5 and 20 degrees C. Whether the differences found between the extenders will be reflected in the fertility results after AI is yet unknown and needs to be further studied.  相似文献   

17.
A problem of semen extenders based on milk or egg yolk is the fact that these biological products consist of a variety of substances. Extenders containing only components with clearly protective effects on spermatozoa would thus be an advantage. In this study, we have compared the effects of an extender containing defined caseinates and whey proteins only (EquiPro, defined milk protein extender) with skim milk extender on equine spermatozoa during cooled storage. The defined milk protein extender was used with and without the antioxidant N-acetyl cysteine (NAC). In a second experiment, semen was diluted with PBS or defined milk protein extender and was either stored directly or 90% of seminal plasma was removed by centrifugation and replaced by defined milk protein extender before storage. In both experiments, eight stallions were available for semen collections. Motility, velocity and membrane integrity of spermatozoa were determined by CASA immediately after semen processing and after 24, 48 and 72 h of storage at 5 degrees C. Total motility after 24 h of storage was lowest in semen diluted with PBS (p<0.05 versus all extenders). At 48 and 72 h, motility of spermatozoa in defined milk protein extender was significantly (p<0.05) higher than in PBS or skim milk extender. Velocity of spermatozoa after storage was highest in defined milk protein extender. Membrane integrity after storage was significantly (p<0.05) lower in semen diluted with PBS than in semen diluted with both extenders. Addition of NAC was without effect on the examined parameters. Centrifugation further increased the percentage of motile and membrane-intact spermatozoa in the defined milk protein extender (p<0.05). Velocity of spermatozoa in this extender was not negatively affected by centrifugation.  相似文献   

18.
Katila T 《Theriogenology》1997,48(7):1217-1227
Handling procedures for semen to be used at the stud-farm and for transport are reviewed. Proper handling of semen is required throughout the entire process, from semen collection to the insemination of the mare. Semen shall not be exposed to mechanical damage, light, cold or heat. All equipment that comes in contact with semen must be warm, clean, dry and free from toxic residues. Skim-milk extender appears to be the medium best suited for the preservation of stallion semen during cooling and storage. When used immediately, semen is usually extended 1:1 (v:v), but for transport, concentrations of 25 to 100 x 10(6) spermatozoa/mL are recommended. The proportion of semen plasma should be reduced to < 20%. by centrifuging, by collecting only the first 3 sperm-rich fractions, or by substantially diluting of the ejaculate. The storage temperature can be between 20 to 15 degrees C, if shipment time is no more than 12 h; for longer storage, temperatures < 10 degrees C are recommended. Semen can be cooled rapidly from 35 to 19 degrees C. In the temperature zone between 19 and 8 degrees C, stallion spermatozoa are sensitive to cold shock, and the cooling rate should be slowed to 0.05 degrees C/min. Rapid cooling can be resumed below 8 degrees C. At low temperatures, removal of oxygen-rich air is beneficial for the survival of spermatozoa. The Equitainer transport container keeps a constant temperature of 5 degrees C for 48 h and is therefore recommended for transportation lasting over 24 h.  相似文献   

19.
Research was conducted to develop an effective method for cryopreserving bottlenose dolphin (Tursiops truncatus) semen processed immediately after collection or after 24-h liquid storage. In each of two experiments, four ejaculates were collected from three males. In experiment 1, three cryopreservation methods (CM1, CM2, and CM3), two straw sizes (0.25 and 0.5 ml), and three thawing rates (slow, medium, and fast) were evaluated. Evaluations were conducted at collection, prefreeze, and 0-, 3-, and 6-h postthaw. A sperm motility index (SMI; total motility [TM] x % progressive motility [PPM] x kinetic rating [KR, scale of 0-5]) was calculated and expressed as a percentage MI of the initial ejaculate. For all ejaculates, initial TM and PPM were greater than 85%, and KR was five. At 0-h postthaw, differences in SMI among cryopreservation methods and thaw rates were observed (P < 0.05), but no effect of straw size was observed. In experiment 2, ejaculates were divided into four aliquots for dilution (1:1) and storage at 4 degrees C with a skim milk- glucose or a N-tris(hydroxymethyl)methyl-2-aminoethane sulfonic acid (TES)-TRIS egg yolk solution and at 21 degrees C with a Hepes-Tyrode balanced salt solution (containing bovine albumin and HEPES) (TALP) medium or no dilution. After 24 h, samples were frozen and thawed (CM3, 0.5-ml straws, fast thawing rate) at 20 x 10(6) spermatozoa ml(-1) (low concentration) or at 100 x 10(6) spermatozoa ml(-1) (standard concentration). The SMI at 0-h postthaw was higher for samples stored at 4 degrees C than for samples stored at 21 degrees C (P < 0.001), and at 6-h postthaw, the SMI was higher for samples frozen at the standard concentration than for samples frozen at the low concentration (P < 0.05). For both experiments, acrosome integrity was similar across treatments. In summary, a semen cryopreservation protocol applied to fresh or liquid-stored semen maintained high levels of initial ejaculate sperm characteristics.  相似文献   

20.
Two experiments were conducted to examine the effects of cooling rate and storage temperature on motility parameters of stallion spermatozoa. In Experiment 1, specific cooling rates to be used in Experiment 2 were established. In Experiment 2, three ejaculates from each of two stallions were diluted to 25 x 10(6) sperm/ml with 37 degrees C nonfat dry skim milk-glucose-penicillin-streptomycin seminal extender, then assigned to one of five treatments: 1) storage at 37 degrees C, 2) storage at 25 degrees C, 3) slow cooling rate to and storage at 4 degrees C, 4) moderate cooling rate to and storage at 4 degrees C, and 5) fast cooling rate to and storage at 4 degrees C. Total spermatozoal motility (TSM), progressive spermatozoal motility (PSM), and spermatozoal velocity (SV) were estimated at 6, 12, 24, 48, 72, 96 and 120 h postejaculation. The longevity of spermatozoal motility was greatly reduced when spermatozoa were stored at 37 degrees C as compared to lower spermatozoal storage temperatures. At 6 h postejaculation, TSM values (mean % +/- SEM) of semen stored at 37 degrees C, slowly cooled to and stored at 25 degrees C or slowly cooled to and stored at 4 degrees C were 5.4 +/- 1.1, 79.8 +/- 1.6, and 82.1 +/- 1.6, respectively. Mean TSM for semen that was cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean TSM of semen cooled to 4 degrees C at a moderate rate for four of seven time periods (6, 24, 72 and 120 h), and it was greater (P<0.05) than mean TSM of semen cooled to 4 degrees C at a fast rate for five of seven time periods (6, 12, 24, 72 and 120 h). Mean TSM of semen cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean TSM of semen cooled to 25 degrees C for five of seven time periods (24 to 120 h). A similar pattern was found for PSM. Mean SV of semen cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean SV of semen cooled to 25 degrees C for all time periods. A slow cooling rate (initial cooling rate of -0.3 degrees /min) and a storage temperature of 4 degrees C appear to optimize liquid preservation of equine spermatozoal motility in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号