首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In humans, intra-abdominal pressure (IAP) is elevated during many everyday activities. This experiment aimed to investigate the extent to which increased IAP--without concurrent activity of the abdominal or back extensor muscles--produces an extensor torque. With subjects positioned in side lying on a swivel table with its axis at L3, moments about this vertebral level were measured when IAP was transiently increased by electrical stimulation of the diaphragm via the phrenic nerve. There was no electromyographic activity in abdominal and back extensor muscles. When IAP was increased artificially to approximately 15% of the maximum IAP amplitude that could be generated voluntarily with the trunk positioned in flexion, a trunk extensor moment (approximately 6 Nm) was recorded. The size of the effect was proportional to the increase in pressure. The extensor moment was consistent with that predicted from a model based on measurements of abdominal cross-sectional area and IAP moment arm. When IAP was momentarily increased while the trunk was flexed passively at a constant velocity, the external torque required to maintain the velocity was increased. These results provide the first in vivo data of the amplitude of extensor moment that is produced by increased IAP. Although the net effect of this extensor torque in functional tasks would be dependent on the muscles used to increase the IAP and their associated flexion torque, the data do provide evidence that IAP contributes, at least in part, to spinal stability.  相似文献   

2.
Determination of the trunk maximum voluntary exertion moment capacity and associated internal spinal forces could serve in proper selection of workers for specific occupational task requirements, injury prevention and treatment outcome evaluations. Maximum isometric trunk exertion moments in flexion and extension along with surface EMG of select trunk muscles are measured in 12 asymptomatic subjects. Subsequently and under individualized measured harness-subject forces, kinematics and upper trunk gravity, an iterative kinematics-driven finite element model is used to compute muscle forces and spinal loads in 4 of these subjects. Different co-activity and intra-abdominal pressure levels are simulated. Results indicate significantly larger maximal resistant moments and spinal compression/shear forces in extension exertions than flexion exertions. The agonist trunk muscles reach their maximum force generation (saturation) to greater extent in extension exertions compared to flexion exertions. Local lumbar extensor muscles are highly active in extension exertions and generate most of the internal spinal forces. The maximum exertion attempts produce large spinal compression and shear loads that increase with the antagonist co-activity level but decrease with the intra-abdominal pressure. Intra-abdominal pressure decreases agonist muscle forces in extension exertions but generally increase them in flexion exertions.  相似文献   

3.
The aim of the present study was to test the assumption that asymmetric trunk loading requires a higher total muscle force and consequently entails a higher compression forces on the spine as compared to symmetric loading. When the trunk musculature is modelled in sufficient detail, optimisation shows that there is no mechanical necessity for an increase in total muscle force (or compression force) with task asymmetry. A physiologically based optimisation does also not predict an increase in total muscle force or spinal loading with asymmetry. EMG data on 14 trunk muscles collected in eight subjects showed antagonistic coactivity to be present in both conditions. However, estimates of total muscle force based on the EMG were lower when producing an asymmetric moment. In conclusion, producing an asymmetric moment appears to cause slightly lower forces on the lumbosacral joint as compared to a symmetric moment. Only lateral shear forces increase with asymmetry but these remain well below failure levels.  相似文献   

4.
Despite recent advances in modeling of the human spine, simplifying assumptions are still required to tackle complexities. Such assumptions need to be scrutinized to assess their likely impacts on predictions. A comprehensive comparison of muscle forces and spinal loads estimated by a single-joint (L5–S1) optimisation-assisted EMG-driven (EMGAO) and a multi-joint Kinematics-driven (KD) model of the spine under symmetric (symmetric trunk flexion from neutral upright to maximum forward flexion) and asymmetric (holding a load at various heights in the right hand) activities is carried out. Regardless of the task simulated, the KD model predicted greater activities in extensor muscles as compared to the EMGAO model. Such differences in the symmetric tasks was due mainly to the distinct approaches to resolve the redundancy while in the asymmetric tasks they were due also to the different methods used to estimate joint moments. Shear and compression forces were generally higher in the KD model. Differences in predictions between these modeling approaches varied depending on the task simulated and the joint considered in the single-joint EMGAO model. The EMGAO model should incorporate a multi-joint strategy to satisfy equilibrium at different levels while the KD model should benefit from recorded EMG activities of the antagonistic muscles to supplement input measured kinematics.  相似文献   

5.
Biomechanical models utilized for analysis of tasks that load the lumbar spine often predict the resultant moment, disc compression and sometimes shear. Usually the extensor muscular and ligament forces of the lumbar spine are assumed to act 5 cm posterior to a disc centre of rotation. This study has re-examined the generation and pathways of muscular force transmission within the extensor musculature. The effects on L4/L5 disc compression and shear estimates of an anatomically and biomechanically justifiable range of tissue moment arms, lines of force and force generating capacity of muscle, input to a computer model, have been determined. Results indicated that L4/L5 compression estimates could be reduced by up to 35% when the output from a more realistic anatomical model of the erector spinae muscle group was compared with that from the frequently reported and simplified single muscle equivalent with a 5 cm moment arm. The shear force estimates could be altered from more than 500 N (L4 tending to shear anteriorly on L5) to less than 200 N with L4 tending to shear posteriorly on L5. Using the combination of input variables considered by the authors to be most feasible to estimate compression, a single 'equivalent' extensor soft tissue moment arm of 7.5 rather than 5 cm would be needed to equate the compression. This simplification of course, does not accommodate the shear force estimate problem.  相似文献   

6.
The functional design of spine muscles in part dictates their role in moving, loading, and stabilizing the lumbar spine. There have been numerous studies that have examined the isolated properties of these individual muscles. Understanding how these muscles interact and work together, necessary for the prediction of muscle function, spine loading, and stability, is lacking. The objective of this study was to measure sarcomere lengths of lumbar muscles in a neutral cadaveric position and predict the sarcomere operating ranges of these muscles throughout full ranges of spine movements. Sarcomere lengths of seven lumbar muscles in each of seven cadaveric donors were measured using laser diffraction. Using published anatomical coordinate data, superior muscle attachment sites were rotated about each intervertebral joint and the total change in muscle length was used to predict sarcomere length operating ranges. The extensor muscles had short sarcomere lengths in a neutral spine posture and there were no statistically significant differences between extensor muscles. The quadratus lumborum was the only muscle with sarcomere lengths that were optimal for force production in a neutral spine position, and the psoas muscles had the longest lengths in this position. During modeled flexion the extensor, quadratus lumborum, and intertransversarii muscles lengthened so that all muscles operated in the approximate same location on the descending limb of the force-length relationship. The intrinsic properties of lumbar muscles are designed to complement each other. The extensor muscles are all designed to produce maximum force in a mid-flexed posture, and all muscles are designed to operate at similar locations of the force-length relationship at full spine flexion.  相似文献   

7.
To resolve the trunk redundancy to determine muscle forces, spinal loads, and stability margin in isometric forward flexion tasks, combined in vivo-numerical model studies was undertaken. It was hypothesized that the passive resistance of both the ligamentous spine and the trunk musculature plays a crucial role in equilibrium and stability of the system. Fifteen healthy males performed free isometric trunk flexions of approximately 40 degrees and approximately 65 degrees +/- loads in hands while kinematics by skin markers and EMG activity of trunk muscles by surface electrodes were measured. A novel kinematics-based approach along with a nonlinear finite element model were iteratively used to calculate muscle forces and internal loads under prescribed measured postures and loads considered in vivo. Stability margin was investigated using nonlinear, linear buckling, and perturbation analyses under various postures, loads and alterations in ligamentous stiffness. Flexion postures significantly increased activity in extensor muscles when compared with standing postures while no significant change was detected in between flexed postures. Compression at the L5-S1 substantially increased from 570 and 771 N in upright posture, respectively, for +/-180 N, to 1912 and 3308 N at approximately 40 degrees flexion, and furthermore to 2332 and 3850 N at approximately 65 degrees flexion. Passive ligamentous/muscle components resisted up to 77% of the net moment. In flexion postures, the spinal stability substantially improved due both to greater passive stiffness and extensor muscle activities so that, under 180 N, no muscle stiffness was required to maintain stability. The co-activity of abdominal muscles and the muscle stiffness were of lesser concern to maintain stability in forward flexion tasks as compared with upright tasks. An injury to the passive system, on one hand, required a substantial compensatory increase in active muscle forces which further increased passive loads and, hence, the risk of injury and fatigue. On the other hand, it deteriorated the system stability which in turn could require greater additional muscle activation. This chain of events would place the entire trunk active-passive system at higher risks of injury, fatigue and instability.  相似文献   

8.
A wide range of loading conditions involving external forces with varying magnitudes, orientations and locations are encountered in daily activities. Here we computed the effect on trunk biomechanics of changes in force location (two levels) and orientation (5 values) in 4 subjects in upright standing while maintaining identical external moment of 15 Nm, 30 N m or 45 Nm at the L5–S1. Driven by measured kinematics and gravity/external loads, the finite element models yielded substantially different trunk neuromuscular response with moderate alterations (up to 24% under 45 Nm moment) in spinal loads as the load orientation varied. Under identical moments, compression and shear forces at the L5–S1 as well as forces in extensor thoracic muscles progressively decreased as orientation of external forces varied from downward gravity (90°) all the way to upward (−25°) orientation. In contrast, forces in local lumbar muscles followed reverse trends. Under larger horizontal forces at a lower elevation, lumbar muscles were much more active whereas extensor thoracic muscle forces were greater under smaller forces at a higher elevation. Despite such differences in activity pattern, the spinal forces remained nearly identical (<6% under 45 Nm moment). The published recorded surface EMG data of extensor muscles trend-wise agreed with computed local muscle forces as horizontal load elevation varied but were overall different from results in both local and global muscles when load orientation altered. Predictions demonstrate the marked effect of external force orientation and elevation on the trunk neuromuscular response and spinal forces and questions attempts to estimate spinal loads based only on consideration of moments at a spinal level.  相似文献   

9.
This study evaluated the sport-specific characteristics of the cross-sectional areas (CSAs) of trunk muscles and trunk muscle strength in wrestlers and judokas. We also examined whether their trunk muscles and muscle strength depended on athletic performance levels in each sport. The subjects comprised 14 male collegiate wrestlers and 14 judokas. Magnetic resonance imaging was used to assess the trunk muscle CSAs at the L3-4 level parallel to the lumbar disc space. A Biodex System3 was used to measure isokinetic trunk flexor and extensor muscle strength of peak torque, work, average torque, and average power. The absolute and relative CSAs of the trunk muscles in the wrestlers and judokas were significantly different (rectus abdominis: wrestling > judo, P < 0.05; obliques: wrestling < judo, P < 0.05; quadratus lumborum: wrestling < judo, P < 0.01). We confirmed that the absolute and relative trunk extensor and flexor strength of peak torque, work, and average torque were significantly higher in the collegiate wrestlers than in judokas. On athletic performance, the tendency of the CSAs and muscular strength of trunk muscles was not consistent with athletic performance levels in each sport. Our findings indicated that the sport-specific characteristics of the CSAs of the trunk muscles and trunk muscle strength obviously differed between the 2 similar sports. Athletes should practice the sport-specific training of trunk muscles and develop sport specificity in their sports. Particularly, wrestlers have to train in trunk flexion and extension motions, and judokas need to strengthen trunk rotation and lateral flexion motions. This information will be available for athletes as well as strength and technical training coaches in wrestling, judo, and the other sports.  相似文献   

10.
Due to the complexity of the human spinal motion segments, the intervertebral joints are often simulated in the musculoskeletal trunk models as pivots thus allowing no translational degrees of freedom (DOFs). This work aims to investigate, for the first time, the effect of such widely used assumption on trunk muscle forces, spinal loads, kinematics, and stability during a number of static activities. To address this, the shear deformable beam elements used in our nonlinear finite element (OFE) musculoskeletal model of the trunk were either substantially stiffened in translational directions (SFE model) or replaced by hinge joints interconnected through rotational springs (HFE model). Results indicated that ignoring intervertebral translational DOFs had in general low to moderate impact on model predictions. Compared with the OFE model, the SFE and HFE models predicted generally larger L4–L5 and L5–S1 compression and shear loads, especially for tasks with greater trunk angles; differences reached ~15% for the L4–L5 compression, ~36% for the L4–L5 shear and ~18% for the L5–S1 shear loads. Such differences increased, as location of the hinge joints in the HFE model moved from the mid-disc height to either the lower or upper endplates. Stability analyses of these models for some select activities revealed small changes in predicted margin of stability. Model studies dealing exclusively with the estimation of spinal loads and/or stability may, hence with small loss of accuracy, neglect intervertebral translational DOFs at smaller trunk flexion angles for the sake of computational simplicity.  相似文献   

11.
The longitudinal veins of the trunk of the Port Jackson shark exhibit low venous pressures and blood flow is facilitated by four subsidiary mechanisms. The sucking action of the heart is augmented by the presence of single flap valves at the central ends of certain longitudinal veins. The flexion of the trunk in swimming transfers blood from the dorsal aorta to the caudal vein; both the segmental arteries and the segmental veins are valved at their origins from the main vessels. Movement of the median dorsal fins and of the tail pumps blood from cutaneous veins to the caudal vein by the compression and dilation of valved venous reservoirs located close to radial muscles. Movement of the rectum generates negative pressures in certain cutaneous veins. A division of the trunk venous system, into abdominal and postpelvic regions is suggested on functional and anatomical grounds.  相似文献   

12.
Mechanical loading of the low back during lifting is a common cause of low back pain. In this study two-handed lifting is compared to one-handed lifting (with and without supporting the upper body with the free hand) while lifting over an obstacle. A 3-D linked segment model was combined with an EMG-assisted trunk muscle model to quantify kinematics and joint loads at the L5S1 joint. Peak total net moments (i.e., the net moment effect of all muscles and soft tissue spanning the joint) were found to be 10+/-3% lower in unsupported one-handed lifting compared to two-handed lifting, and 30+/-8% lower in supported compared to unsupported one-handed lifting. L5S1 joint forces also showed reductions, but not of the same magnitude (18+/-8% and 15+/-10%, respectively, for compression forces, and 15+/-17% and 11+/-14% respectively, for shear forces). Those reductions of low back load were mainly caused by a reduction of trunk and load moment arms relative to the L5S1 joint during peak loading, and, in the case of hand support, by a support force of about 250 N. Stretching one leg backward did not further reduce low back load estimates. Furthermore, one-handed lifting caused an 6+/-8 degrees increase in lateral flexion, a 9+/-5 degrees increase in twist and a 6+/-6 degrees decrease in flexion. Support with the free hand caused a small further increase in lumbar twisting. It is concluded that one-handed lifting, especially with hand support, reduces L5S1 loading but increases asymmetry in movements and moments about the lumbar spine.  相似文献   

13.
Accurate quantification of the trunk transient response to sudden loading is crucial in prevention, evaluation, rehabilitation and training programs. An iterative dynamic kinematics-driven approach was used to evaluate the temporal variation of trunk muscle forces, internal loads and stability under sudden application of an anterior horizontal load. The input kinematics is hypothesized to embed basic dynamic characteristics of the system that can be decoded by our kinematics-driven approach. The model employs temporal variation of applied load, trunk forward displacement and surface EMG of select muscles measured on two healthy and one chronic low-back pain subjects to a sudden load. A finite element model accounting for measured kinematics, nonlinear passive properties of spine, detailed trunk musculature with wrapping of global extensor muscles, gravity load and trunk biodynamic characteristics is used to estimate the response under measured sudden load. Results demonstrate a delay of ~200 ms in extensor muscle activation in response to sudden loading. Net moment and spinal loads substantially increase as muscles are recruited to control the trunk under sudden load. As a result and due also to the trunk flexion, system stability significantly improves. The reliability of the kinematics-driven approach in estimating the trunk response while decoding measured kinematics is demonstrated. Estimated large spinal loads highlight the risk of injury that likely further increases under larger perturbations, muscle fatigue and longer delays in activation.  相似文献   

14.
Co-contraction of the muscles is proposed in the literature as one of the strategies that anterior cruciate ligament deficient (ACLD) subjects can use to compensate the loss of ACL function. This study examined the response of ACLD and control subjects to different shear forces in isometric and slow-dynamic knee extensions. Twelve chronic ACLD and 10 control subjects performed submaximal positioning and slow-dynamic knee extensions (between 45 degrees and 5 degrees of knee flexion) with two external flexion moments both applied at two distances on the lower leg. The shear force was controlled by changing the moment arm without changing the moment. Electromyographic data were collected from knee flexor and extensor muscles. In the analysis of variance, no significant effect of subject group was found in positioning or slow-dynamic tasks across all muscles. The effect of knee angle was significantly different between the subject groups for biceps femoris in positioning and for rectus femoris in slow-dynamic tasks, but these effects were very small and will not have a great impact on the resulting shear forces. There was no interaction between moment arm and subject group. Therefore, the hypothesis that ACLD subjects increase co-contraction in situations with an increased shear load in positioning and slow-dynamic knee extensions could not be confirmed.  相似文献   

15.
Velocity of movement has been suggested as a risk factor for low-back disorders. The effect of changes in velocity during unconstrained flexion-extension movements on muscle activations, spinal loads, base reaction forces and system stability was computed. In vivo measurements of kinematics and ground reaction forces were initially carried out on young asymptomatic subjects. The collected kinematics of three subjects representing maximum, mean and minimum lumbar rotations were subsequently used in the kinematics-driven model to compute results during the entire movements at three different velocities. Estimated spinal loads and muscle forces were significantly larger in fastest pace as compared to slower ones indicating the effect of inertial forces. Spinal stability was improved in larger trunk flexion angles and fastest movement. Partial or full flexion relaxation of global extensor muscles occurred only in slower movements. Some local lumbar muscles, especially in subjects with larger lumbar flexion and at slower paces, also demonstrated flexion relaxation. Results confirmed the crucial role of movement velocity on spinal biomechanics. Predictions also demonstrated the important role on response of the magnitude of peak lumbar rotation and its temporal variation.  相似文献   

16.
The spinal stability and passive-active load partitioning under dynamic squat and stoop lifts were investigated as the ligamentous stiffness in flexion was altered. Measured in vivo kinematics of subjects lifting 180 N at either squat or stoop technique was prescribed in a nonlinear transient finite element model of the spine. The Kinematics-driven approach was utilized for temporal estimation of muscle forces, internal spinal loads and system stability. The finite element model accounted for nonlinear properties of the ligamentous spine, wrapping of thoracic extensor muscles and trunk dynamic characteristics while subject to measured kinematics and gravity/external loads. Alterations in passive properties of spine substantially influenced muscle forces, spinal loads and system stability in both lifting techniques, though more so in stoop than in squat. The squat technique is advocated for resulting in smaller spinal loads. Stability of spine in the sagittal plane substantially improved with greater passive properties, trunk flexion and load. Simulation of global extensor muscles with curved rather than straight courses considerably diminished loads on spine and increased stability throughout the task.  相似文献   

17.
Posture-dependent trunk function data are important for appropriate normalization of submaximal trunk exertions, and is also necessary to define a more precise and specific use for strength testing in the prevention and diagnosis of spinal disorders. The aim of the current study was to quantify maximal effort trunk muscle extensor activity and trunk isometric extension torque over a functional range of sagittal standing postures. Twenty healthy, young adult male and female subjects performed isometric extension tasks over a sagittal posture range of -20 degrees extension to +50 degrees flexion, in 10 degrees increments. Erector spinae muscle activity was recorded bilaterally at the level of L3 using surface EMG electrodes. Isometric trunk extension torque was measured using a trunk dynamometer. EMG and trunk torque differed significantly between genders, but there were no differences between male and female subjects when the data were normalized with respect to the upright posture. For the combined male and female population, upright posture normalized L3 EMG activity (EMGn) and trunk extension torque (Tn) increased 1.7-fold and 3.5-fold, respectively, over the 70 degrees range of sagittal postures examined. The ratio (Tn/EMGn) increased two-fold (0.83 to 1.67) from -20 degrees extension to +50 degrees flexion, indicating that the neuromuscular efficiency increases with flexion. Trunk extension torque normalized with respect to the upright posture was linearly and positively correlated (r = 0.59, P < 0.001) to similarly normalized L3 EMG activity. This relatively weak correlation suggests that trunk muscle synergism and/or intrinsic muscle length-tension relationships are also modulated by posture. This study provides data that can be used to estimate trunk extensor muscle function over a broad range of sagittal postures. Our findings indicate that appropriate postural normalization of trunk extensor EMG activity is necessary for studies where submaximal trunk exertions are performed over a range of upright postures.  相似文献   

18.
Experimental studies suggest that prolonged trunk flexion reduces passive support of the spine. To understand alterations of the synergy between active and passive tissues following such loadings, several studies have assessed the time-dependent behavior of passive tissues including those within spinal motion segments and muscles. Yet, there remain limitations regarding load-relaxation of the lumbar spine in response to flexion exposures and the influence of different flexion angles. Ten healthy participants were exposed for 16 min to each of five magnitudes of lumbar flexion specified relative to individual flexion-relaxation angles (i.e., 30, 40, 60, 80, and 100%), during which lumbar flexion angle and trunk moment were recorded. Outcome measures were initial trunk moment, moment drop, parameters of four viscoelastic models (i.e., Standard Linear Solid model, the Prony Series, Schapery''s Theory, and the Modified Superposition Method), and changes in neutral zone and viscoelastic state following exposure. There were significant effects of flexion angle on initial moment, moment drop, changes in normalized neutral zone, and some parameters of the Standard Linear Solid model. Initial moment, moment drop, and changes in normalized neutral zone increased exponentially with flexion angle. Kelvin-solid models produced better predictions of temporal behaviors. Observed responses to trunk flexion suggest nonlinearity in viscoelastic properties, and which likely reflected viscoelastic behaviors of spinal (lumbar) motion segments. Flexion-induced changes in viscous properties and neutral zone imply an increase in internal loads and perhaps increased risk of low back disorders. Kelvin-solid models, especially the Prony Series model appeared to be more effective at modeling load-relaxation of the trunk.  相似文献   

19.
The role of the intrinsic finger flexor muscles was investigated during finger flexion tasks. A suspension system was used to measure isometric finger forces when the point of force application varied along fingers in a distal-proximal direction. Two biomechanical models, with consideration of extensor mechanism Extensor Mechanism Model (EMM) and without consideration of extensor mechanism Flexor Model (FM), were used to calculate forces of extrinsic and intrinsic finger flexors. When the point of force application was at the distal phalanx, the extrinsic flexor muscles flexor digitorum profundus, FDP, and flexor digitorum superficialis, FDS, accounted for over 80% of the summed force of all flexors, and therefore were the major contributors to the joint flexion at the distal interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints. When the point of force application was at the DIP joint, the FDS accounted for more than 70% of the total force of all flexors, and was the major contributor to the PIP and MCP joint flexion. When the force of application was at the PIP joint, the intrinsic muscle group was the major contributor for MCP flexion, accounting for more than 70% of the combined force of all flexors. The results suggest that the effects of the extensor mechanism on the flexors are relatively small when the location of force application is distal to the PIP joint. When the external force is applied proximally to the PIP joint, the extensor mechanism has large influence on force production of all flexors. The current study provides an experimental protocol and biomechanical models that allow estimation of the effects of extensor mechanism on both the extrinsic and intrinsic flexors in various loading conditions, as well as differentiating the contribution of the intrinsic and extrinsic finger flexors during isometric flexion.  相似文献   

20.
Moment arm lengths of three hip extensor muscles, the gluteus maximus, the hamstrings and the adductor magnus, were determined at hip flexion angles from 0 degrees to 90 degrees by combining data from ten autopsy specimens and from twenty patients, the latter examined by computed tomography. A straight-line muscle model for muscle force was used for the hamstrings and adductor magnus, and for the gluteus maximus a two-segment straight-line muscle force model was used. With the joint in its anatomical position the moment arm of the gluteus maximus to the bilateral motion axis averaged 79 mm, for the hamstrings 61 mm and for the adductor magnus 15 mm. The moment arm of gluteus maximus decreased with increasing hip flexion angle. The hamstrings showed an increase in moment arm length up to an average of 35 degrees hip flexion and then a decrease with increasing hip flexion angle. The corresponding figures for the adductor magnus moment arm showed an increase up to 75 degrees and then a decrease. Statistical analysis revealed significant differences in moment arm length between men and women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号