首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Just as synthetic organic chemistry once revolutionized the ability of chemists to build molecules (including those that did not exist in nature) following a basic set of design rules, cell-free synthetic biology is beginning to provide an improved toolbox and faster process for not only harnessing but also expanding the chemistry of life. At the interface between chemistry and biology, research in cell-free synthetic systems is proceeding in two different directions: using synthetic biology for synthetic chemistry and using synthetic chemistry to reprogram or mimic biology. In the coming years, the impact of advances inspired by these approaches will make possible the synthesis of nonbiological polymers having new backbone compositions, new chemical properties, new structures, and new functions.  相似文献   

2.
Molecular evolution has been widely applied in the laboratory to generate novel biological macromolecules. The principles underlying evolution have more recently been used to address problems in the chemical sciences, including the discovery of functional synthetic small molecules, catalysts, materials and new chemical reactions. The application of these principles in dynamic combinatorial chemistry and in efforts involving small molecule-nucleic acid conjugates has facilitated the evaluation of large numbers of candidate structures or reactions for desired characteristics. These early efforts suggest the promise of pairing evolutionary approaches with synthetic chemistry.  相似文献   

3.
The combination of the tools and principles of chemistry, together with the tools of modern molecular biology, allow us to create complex synthetic and natural molecules, and processes with novel biological, chemical and physical properties. This article illustrates the tremendous opportunity that lies at this interface of chemistry and biology by describing a number of examples, ranging from efforts to expand the genetic code of living organisms to the use of combinatorial methods to generate biologically active synthetic molecules.  相似文献   

4.
The field of organic chemistry began with 19th century scientists identifying and then expanding upon synthetic dye molecules for textiles. In the 20th century, dye chemistry continued with the aim of developing photographic sensitizers and laser dyes. Now, in the 21st century, the rapid evolution of biological imaging techniques provides a new driving force for dye chemistry. Of the extant collection of synthetic fluorescent dyes for biological imaging, two classes reign supreme: rhodamines and cyanines. Here, we provide an overview of recent examples where modern chemistry is used to build these old-but-venerable classes of optically responsive molecules. These new synthetic methods access new fluorophores, which then enable sophisticated imaging experiments leading to new biological insights.  相似文献   

5.
The combination of the tools and principles of chemistry, together with the tools of modern molecular biology, allow us to create complex synthetic and natural molecules, and processes with novel biological, chemical and physical properties. This article illustrates the tremendous opportunity that lies at this interface of chemistry and biology by describing a number of examples, ranging from efforts to expand the genetic code of living organisms to the use of combinatorial methods to generate biologically active synthetic molecules.  相似文献   

6.
The combination of the tools and principles of chemistry, together with the tools of modern molecular biology, allow us to create complex synthetic and natural molecules, and processes with novel biological, chemical and physical properties. This article illustrates the tremendous opportunity that lies at this interface of chemistry and biology by describing a number of examples, ranging from efforts to expand the genetic code of living organisms to the use of combinatorial methods to generate biologically active synthetic molecules.  相似文献   

7.
Hybrid combinatorial chemistry strategies that use DNA as an information-carrying medium are proving to be powerful tools for molecular discovery. In order to extend these efforts, we present a highly parallel format for DNA-programmed chemical library synthesis. The new format uses a standard microwell plate footprint and is compatible with commercially available automation technology. It can accommodate a wide variety of combinatorial synthetic schemes with up to 384 different building blocks per chemical step. We demonstrate that fluidic routing of DNA populations in the highly parallel format occurs with excellent specificity, and that chemistry on DNA arrayed into 384 well plates proceeds robustly, two requirements for the high-fidelity translation and efficient in vitro evolution of small molecules.  相似文献   

8.
Diversity-oriented synthesis (DOS) is an emerging field involving the synthesis of combinatorial libraries of diverse small molecules for biological screening. Rather than being directed toward a single biological target, DOS libraries can be used to identify new ligands for a variety of targets. Several different strategies for library design have been developed to target the biologically relevant regions of chemical structure space. DOS has provided powerful probes to investigate biological mechanisms and also served as a new driving force for advancing synthetic organic chemistry.  相似文献   

9.
The field of organic chemistry has recently witnessed a rapid rise in the use of chemoenzymatic strategies for the synthesis of complex molecules. Under this paradigm, biocatalytic methods and contemporary synthetic methods are used synergistically in a multistep approach toward a target molecule. In light of the unparalleled regioselectivity and stereoselectivity of enzymatic transformations and the reaction diversity of contemporary organic chemistry, chemoenzymatic strategies hold enormous potential for streamlining access to important bioactive molecules. This review covers recent demonstrations of chemoenzymatic approaches in chemical synthesis, with special emphasis on the preparation of medicinally relevant natural products.  相似文献   

10.
Self-replicating molecules stand at the very boundary of chemistry with biology. This review describes the development of synthetic structures capable of self-replication from studies in molecular recognition. The weak intermolecular forces--hydrogen bonds and aromatic stacking interactions--that characterize interactions of nucleic acid components were designed into synthetic receptors for adenine. Covalent conjugates of these receptors with adenines gave self-complementary structures capable of replication. The new systems feature autocatalysis, sigmoidal product growth and even mutation. General rules for the design of replicating systems are described and these suggest that the evolution of replicating molecules was an inevitable event.  相似文献   

11.
Protein transduction domains (PTDs) that readily transverse cellular membranes are of great interest and are attractive tools for the intracellular delivery of bioactive molecules. Learning to program synthetic polymers and oligomers with the appropriate chemical information to capture adequately the biological activity of proteins is critical to our improved understanding of how these natural molecules work. In addition, the versatility of these synthetic mimics provides the opportunity to discover analogs with superior properties compared with their native sequences. Here we report the first detailed structure-activity relationship of a new PTD family of polymers based on a completely abiotic backbone. The synthetic approach easily allows doubling the density of guanidine functional groups, which increases the transduction efficiency of the sequences. Cellular uptake studies on three different cell lines (HEK 293T, CHO, and Jurkat T cells) confirm that these synthetic analogs are highly efficient novel protein transduction domain mimics (PTDMs), which are more effective than TAT(49-57) and nonaarginine (R9) and also highlight the usefulness of polymer chemistry at the chemistry-biology interface.  相似文献   

12.
The introduction of high-throughput synthesis and combinatorial chemistry has precipitated a global decline in the screening of natural products by the pharmaceutical industry. Some companies terminated their natural products program, despite the unproven success of the new technologies. This was a premature decision, as natural products have a long history of providing important medicinal agents. Furthermore, they occupy a complementary region of chemical space compared with the typical synthetic compound library. For these reasons, the interest in natural products has been rekindled. Various approaches have evolved that combine the power of natural products and organic chemistry, ranging from the combinatorial total synthesis of analogues to the exploration of natural product scaffolds and the design of completely unnatural molecules that resemble natural products in their molecular characteristics.  相似文献   

13.
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.  相似文献   

14.
Using biological machinery to make new, functional molecules is an exciting area in chemical biology. Complex molecules containing both 'natural' and 'unnatural' components are made by processes ranging from enzymatic catalysis to the combination of molecular biology with chemical tools. Here, we discuss applying this approach to the next level of biological complexity -- building synthetic, functional biotic systems by manipulating biological machinery responsible for development of multicellular organisms. We describe recent advances enabling this approach, including first, recent developmental biology progress unraveling the pathways and molecules involved in development and pattern formation; second, emergence of microfluidic tools for delivering stimuli to a developing organism with exceptional control in space and time; third, the development of molecular and synthetic biology toolsets for redesigning or de novo engineering of signaling networks; and fourth, biological systems that are especially amendable to this approach.  相似文献   

15.
The development of a new product in the chemical industry is still driven by needs like technical properties, price/performance ratio, biodegradability, or product safety. However, in terms of improving more and more on ecological criteria, summarized under such catchphrases as sustainable development or green chemistry, another important aspect is to use renewable resources as starting materials. This is not significantly new in fragrance chemistry, and there are a lot of raw materials in the perfume oils that are derived from molecules of renewable resources. Two commonly used materials are: longifolene (from turpentine oil) and cedrene (from cedarwood oil). These compounds are very suitable for the synthesis of woody and ambery notes, and even though it seemed that all possibilities were exhausted, it is actually still feasible to discover new molecules with excellent olfactory properties such as Ambrocenide (50a), which is available in three steps from alpha-cedrene. Some of these molecules will be treated in this review, both with respect to synthesis as well as structural and sensory aspects.  相似文献   

16.
The growing demand for enantiomerically pure pharmaceuticals has impelled research on enzymes as catalysts for asymmetric synthetic transformations. However, the use of enzymes for this purpose was rather limited until the discovery that enzymes can work in organic solvents. Since the advent of the PCR the number of available enzymes has been growing rapidly and the tailor-made biocatalysts are becoming a reality. Thus, it has been possible the use of enzymes for the synthesis of new innovative medicines such as carbohydrates and their incorporation to modern methods for drug development, such as combinatorial chemistry. Finally, the genomic research is allowing the manipulation of whole genomes opening the door to the combinatorial biosynthesis of compounds. In this review, our intention is to highlight the main landmarks that have led to transfer the chemical efficiency shown by the enzymes in the cell to the synthesis of bioactive molecules in the lab during the last 20 years.  相似文献   

17.
The fundamental role of glycoconjugates in many biological processes is now well appreciated and has intensified the development of innovative and improved synthetic strategies. All areas of synthetic methodology have seen major advances and many complex, highly branched carbohydrates and glycoproteins have been prepared using solution- and/or solid-phase approaches. The development of an automated oligosaccharide synthesizer provides rapid access to biologically relevant compounds. These chemical approaches help to produce sufficient quantities of defined oligosaccharides for biological studies. Synthetic chemistry also supports an improved understanding of glycobiology and will eventually result in the discovery of new therapeutics.  相似文献   

18.
New chemical methods that use small molecules to perturb cellular function in ways analogous to genetics have recently been developed. These approaches include both synthetic methods for discovering small molecules capable of acting like genetic mutations, and techniques that combine the advantages of genetics and chemistry to optimize the potency and specificity of small-molecule inhibitors. Both approaches have been used to study protein function in vivo and have provided insights into complex signaling cascades.  相似文献   

19.
The advent of combinatorial chemistry for the high-throughput synthesis of compounds has driven the advancement of new and emerging technologies for synthetic chemistry laboratories. Automated methods for reaction design, information management, chemical synthesis, compound analysis, and biological testing are necessary to realize the full potential of combinatorial chemistry efforts.  相似文献   

20.
Genetic design: rising above the sequence   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号