首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The levels of certain essential amino acids, in particular cysteine, lysine and methionine, in the seed storage protein of a commercial spring variety of rape, Brassica napus, have been increased by the introduction of an antisense gene for cruciferin, which is the most abundant storage protein in rapeseed. The antisense construct contained part of the cruA gene in an inverted orientation, and the gene was driven by the 5 flanking region of the gene for napin such that antisense RNA was expressed in a seed-specific manner. The construct was introduced by Agrobacterium-mediated gene transfer. In self-pollinated seeds (T1 seeds) of transgenic plants there was a reduction in the levels of the 11 and 2/32/3 subunits of cruciferin, whereas the level of the 44 subunit was unchanged. The total protein and lipid contents of transgenic seeds did not differ significantly from that of normal seeds. Seeds with reduced amounts of cruciferin accumulated higher amounts of napin than non-transformed seeds, but the level of oleosin was unaffected. Amino-acid analysis of the seed storage protein revealed that T1 seeds with reduced amounts of cruciferin contained higher relative levels of three essential amino acids, namely, lysine, methionine and cysteine, with increases of 10%, 8% and 32% over the respective levels in non-transgenic seeds (B. napus cv Westar).  相似文献   

2.
Summary Genetically transformed plants of Brassica napus L. (oilseed rape) were obtained from hypocotyl expiants using Agrobacterium tumefaciens vectors. Hypocotyl explants were inoculated with disarmed or oncogenic A. tumefaciens strains, EHA101 and A281, and then cultured on media containing kanamycin. The A. tumefaciens strains harbored a binary vector, which contained a neomycin phosphotransferase II (NPTII) gene driven by the 35S promoter of cauliflower mosaic virus and an engineered napin (seed storage protein) gene with its own promoter (300 nucleotides 5 to the start of translation). Transformation of B. napus plants was confirmed by detection of NPT II enzyme activity, Southern blot analysis and inheritance of the kanamycin-resistance trait (NPT II gene) in the progeny. Expression of the engineered napin gene in embryos but not in leaves of transgenic plants was observed by Northern analysis. These data demonstrate that morphologically normal, fertile transgenic B. napus plants can be obtained using Agrobacterium as a gene vector and that developmentally regulated expression of reintroduced genes can be achieved.  相似文献   

3.
Intracellularly expressed cytotoxins are useful tools both to study the action of plant regulatory sequences in transgenic plants and to modify plant phenotype. We have engineered a low mammalian toxicity derivative of Pseudomonas aeruginosa exotoxin A for intracellular expression in plant cells by fusing the ADP ribosylating domain of the exotoxin gene to plant regulatory sequences. The efficacy of exotoxin A on plant cells was demonstrated by transient expression of the modified exotoxin gene in tobacco protoplasts: the exotoxin gene inhibited the expression of a co-electroporated -glucuronidase gene. An exotoxin with an introduced frameshift mutation was also effective at inhibiting -glucuronidase expression in the transient assay; the activity of the frameshifted gene was presumably a result of frameshifting during translation or initiation of translation at a codon other than AUG. When fused to napin regulatory sequences, the exotoxin gene specifically arrested embryo development in the seeds of transgenic Brassica napus plants concomitant with the onset of napin expression. The napin/exotoxin chimeric gene did not have the same pattern of expression in tobacco as in B. napus; in addition to exhibiting an inhibition of seed development, the transgenic tobacco plants were male-sterile.  相似文献   

4.
Chlorophyll reduction in the seed of Brassica can be achieved by downregulating its synthesis. To reduce chlorophyll synthesis, we have used a cDNA clone of Brassica napus encoding glutamate 1-semialdehyde aminotransferase (GSA-AT) to make an antisense construct for gene manipulation. Antisense glutamate 1-semialdehyde aminotransferase gene (Gsa) expression, directed by a Brassica napin promoter, was targeted specifically to the embryo of the developing seed. Transformants expressing antisense Gsa showed varying degrees of inhibition resulting in a range of chlorophyll reduction in the seeds. Seed growth and development were not affected by reduction of chlorophyll. Seeds from selfed transgenic plants germinated with high efficiency and growth of seedlings was vigorous. Seedlings from T2 transgenic lines segregated into three distinctive phenotypes: dark green, light green and yellow, indicating the dominant inheritance of Gsa antisense gene. These transgenic lines have provided useful materials for the development of a low chlorophyll seed variety of B. napus.  相似文献   

5.
A cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase from Limnanthes douglasii was introduced into oil seed rape (Brassica napus) under the control of a napin promoter. Seed triacylglycerols from transgenic plants were analysed by reversed-phase HPLC and trierucin was detected at a level of 0.4% and 2.8% in two transgenic plants but was not found in untransformed rape seed. Total fatty acid composition analysis of seeds from these selected plants revealed that the erucic acid content was no higher than the maximum found in the starting population. Analysis of fatty acids at the sn-2 position showed no erucic acid in untransformed rape but in the selected transgenic plants 9% (mol/mol) and 28.3% (mol/mol) erucic acid was present. These results conclusively demonstrate that the gene from L. douglasii encodes a 1-acyl-sn-glycerol-3-phosphate acyltransferase which can function in rape and incorporate erucic acid at the sn-2 position of triacylglycerols in seed. Additional modifications may further increase levels of trierucin.  相似文献   

6.
A zero erucic acid (C22:1) line of Brassica juncea (VH486), adapted to the agronomic conditions of Northern India, has been modified for its fatty acid composition in the seed oil with antisense constructs using the sequence of fad2 gene of B. rapa. The full-length B. rapa fad2 cDNA sequence was determined by 5 and 3 RACE of a partial sequence available in the EST database. Construct pASfad2.1 contained 315 to 1251 bp and construct pASfad2.2 contained 1 to 1251 bp fragment of the fad2 gene, both in antisense orientation, driven by a truncated napin promoter. Analysis of the levels of linoleic acid (C18:2) in the BC1 seeds of single-copy transgenics showed that the construct pASfad2.2 gave better suppression of the fad2 gene as compared to the construct pASfad2.1. The BC1 transgenic seeds containing the pASfad2.2 construct segregated into two distinct classes of C18:2>20% (putative null homozygotes) and C18:2<20% (putative heterozygotes) in a 1:1 ratio, while the T1 seeds segregated into three classes, C18:2>20%, C18:2 between 12% and 20%) and C18:2<12% (putative homozygotes) in a 1:2:1 ratio. Putative homozygous T1 seeds (C18:2<12% analyzed by the half-seed method) of four of the transgenic lines were grown to establish T2 homozygous lines. These had ca. 73% C18:1 and 8 to 9% each of C18:2 and C18:3 (-linolenic acid) fractions in comparison to ca. 53% C18:1, 24% C18:2 and 16% C18:3 in the parental line VH486.  相似文献   

7.
Napin is a 2S storage protein found in the seeds of oilseed rape (Brassica napus L.) and related species. Using protein structural prediction programs we have identified a region in the napin protein sequence which forms a `hydrophilic loop' composed of amino acid residues located at the protein surface. Targeting this region, we have constructed two napin chimeric genes containing the coding sequence for the peptide hormone leucine-enkephalin as a topological marker. One version has a single enkephalin sequence of 11 amino acids including linkers and the second contains a tandem repeat of this peptide comprising 22 amino acids, inserted into the napin large subunit. The inserted peptide sequences alter the balance of hydrophilic to hydrophobic amino acids and introduce flexibility into this region of the polypeptide chain. The chimeric genes have been expressed in tobacco plants under the control of the seed-specific napA gene promoter. Analyses indicate that the engineered napin proteins are expressed, transported, post-translationally modified and deposited inside the protein bodies of the transgenic seeds demonstrating that the altered napin proteins behave in a similar fashion to the authentic napin protein. Detailed immunolocalisation studies indicate that the insertion of the peptide sequences has a significant effect on the distribution of the napin proteins within the tobacco seed protein bodies.  相似文献   

8.
In both plants and bacteria, de novo fatty acid biosynthesis is catalysed by a type II fatty acid synthetase (FAS) system which consists of a group of eight discrete enzyme components. The introduction of heterologous, i.e. bacterial, FAS genes in plants could provide an alternative way of modifying the plant lipid composition. In this study the Escherichia coli fabD gene, encoding malonyl CoA-ACP transacylase (MCAT), was used as a model gene to investigate the effects of over-producing a bacterial FAS component in the seeds of transgenic plants. Chimeric genes were designed, so as not to interfere with the household activities of fatty acid biosynthesis in the earlier stages of seed development, and introduced into tobacco and rapeseed using the Agrobacterium tumefaciens binary vector system. A napin promoter was used to express the E. coli MCAT in a seed-specific and developmentally specific manner. The rapeseed enoyl-ACP reductase transit peptide was used successfully, as confirmed by immunogold labelling studies, for plastid targeting of the bacterial protein. The activity of the bacterial enzyme reached its maximum (up to 55 times the maximum endogenous MCAT activity) at the end of seed development, and remained stable in mature transgenic seeds. Significant changes in fatty acid profiles of storage lipids and total seed lipid content of the transgenic plants were not found. These results are in support of the notion that MCAT does not catalyse a rate-limiting step in plant fatty acid biosynthesis.  相似文献   

9.
Brassica napus cv. Topas microspores can be diverted from pollen development toward haploid embryo formation in culture by subjecting them to a heat stress treatment. We show that this switch in developmental pathways is accompanied by the induction of high levels of napin seed storage protein gene expression. Changes in the plant growth or microspore culture conditions were not by themselves sufficient to induce napin gene expression. Specific members of the napin multigene family were cloned from a cDNA library prepared from microspores that had been induced to undergo embryogenesis. The majority of napin clones represented three members (BnmNAP2, BnmNAP3 and BnmNAP4) that, along with a previously isolated napin genomic clone (BngNAP1), constitute the highly conserved BnmNAP subfamily of napin genes. Both RNA gel blot analysis, using a subfamily-specific probe, and histochemical analysis of transgenic plants expressing a BngNAP1 promoter--glucuronidase gene fusion demonstrated that the BnmNAP subfamily is expressed in embryogenic microspores as well as during subsequent stages of microsporic embryo development.  相似文献   

10.
The promoter and upstream region of the Brassica napus 2S storage protein napA gene were studied to identify cis-acting sequences involved in developmental seed-specific expression. Fragments generated by successive deletions of the 5 control region of the napA gene were fused to the reporter gene -glucuronidase (GUS). These constructs were used to transform tobacco leaf discs. Analyses of GUS activities in mature seeds from the transformed plants indicated that there were both negatively and positively acting sequences in the napin gene promoter. Deletion of sequences between –1101 and –309 resulted in increased GUS activity. In contrast, deletion of sequences between –309 and –211 decreased the expression. The minimum sequence required for seed-specific expression was a 196 bp fragment between –152 and +44. Further 5 deletion of the fragment to –126 abolished this activity. Sequence comparison showed that a G box-like sequence and two sequence motifs conserved between 2S storage protein genes are located between –148 to –120. Histochemical and fluorometric analysis of tobacco seeds showed that the spatial and developmental expression pattern was retained in the deletion fragments down to –152. However, the expression in tobacco seeds differed from the spatial and temporal expression in B. napus. In tobacco, the napA promoter directed GUS activity early in the endosperm before any visible activity could be seen in the heart-shaped embryo. Later, during the transition from heart to torpedo stages, the main expression of GUS was localized to the embryo. No significant GUS activity was found in either root or leaf.  相似文献   

11.
Seed lipids of oilseed rape (Brassica napus) usually contain small proportions (<3%) of stearic acid. The objective of this study was to increase the content of stearic fatty␣acid in rapeseed oil. An antisense down-regulation of the endogenous stearoyl-ACP desaturase (SAD) catalysing the reaction step from stearic to oleic acid in two different genetic backgrounds was studied. The result of down-regulation of the SAD yielded an about 10-fold increase of stearic acid from 3.7% up to 32% in single seeds of transgenic low-erucic acid rapeseed (LEAR), while high-erucic acid rapeseed (HEAR) showed a 4-fold increase of C18:0 from 1% up to 4%. It could be shown in pooled T2 seed material of LEAR rapeseed, that the stearic acid content is highly correlated with the down-regulation of SAD as indicated by the␣stearate desaturation proportion (SDP). The importance of the promoter strength for the alteration of a trait was confirmed in this study as no change in the fatty acid composition of transgenic plants was achieved with gene constructs controlled by the weak FatB4 seed-specific promoter from Cuphea lanceolata.Karim Zarhloul and Christof Stoll have contributed in equal parts to the present work  相似文献   

12.
The plsC gene of Escherichia coli encoding sn-1-acylglycerol-3-phosphate acyltransferase was modified by inserting an endoplasmic reticulum retrieval signal to its 3 end and introduced into rapeseed (Brassica napus L.) plants under the control of a napin promotor. In developing seeds from transgenic plants an sn-1-acylglycerol-3-phosphate acyltransferase activity was detectable which showed substrate specificities typical of the E. coli enzyme. Moreover, seed oil from the transformants unlike that from untransformed plants contained substantial amounts of triacylglycerol species esterified with very-long-chain fatty acids at each glycerol position. Analysis of fatty acids at the sn-2 position of triacylglycerol showed hardly any very-long-chain fatty acids in untransformed plants, but in certain transformants these fatty acids were present, namely about 4% erucic acid and 9% eicosenoic acid. These data demonstrate that the bacterial acyltransferase can function in developing rapeseed and alters the stereochemical composition of transgenic rape seed oil by directing very-long-chain fatty acids, especially cis-11 eicosenoic acid, to its sn-2 position.  相似文献   

13.
The onset of storage lipid biosynthesis during seed development in the oilseed crop Brassica napus (rape seed) coincides with a drastic qualitative and quantitative change in fatty acid composition. During this phase of storage lipid biosynthesis, the enzyme activities of the individual components of the fatty acid synthase system increase rapidly. We describe a rapid and simple purification procedure for the plastidlocalized NADH-dependent enoyl-acyl carrier protein reductase from developing B. napus seed, based on its affinity towards the acyl carrier protein (ACP). The purified protein was N-terminally sequenced and used to raise a potent antibody preparation. Immuno-screening of a seed-specific gt11 cDNA expression library resulted in the isolation of enoyl-ACP reductase cDNA clones. DNA sequence analysis of an apparently full-length cDNA clone revealed that the enoyl-ACP reductase mRNA is translated into a precursor protein with a putative 73 amino acid leader sequence which is removed during the translocation of the protein through the plastid membrane. Expression studies in Escherichia coli demonstrated that the full-length cDNA clone encodes the authentic B. napus NADH-dependent enoyl-ACP reductase. Characterization of the enoyl-ACP reductase genes by Southern blotting shows that the allo-tetraploid B. napus contains two pairs of related enoyl-ACP reductase genes derived from the two distinct genes found in both its ancestors, Brassica oleracea and B. campestris. Northern blot analysis of enoyl-ACP reductase mRNA steady-state levels during seed development suggests that the increase in enzyme activity during the phase of storage lipid accumulation is regulated at the level of gene expression.  相似文献   

14.
Summary A chimeric gene containing a cloned human metallothionein-II (MT-II) processed gene was introduced into Brassica napus and Nicotiana tabacum cells on a disarmed Ti-plasmid of Agrobacterium tumefaciens. Transformants expressed MT protein as a Mendelian trait and in a constitutive manner. Seeds from self-fertilized transgenic plants were germinated on media containing toxic levels of cadmium and scored for tolerance/ susceptibility to this heavy metal. The growth of root and shoot of transformed seedlings was unaffected by up to 100 M CdCl2, whereas control seedlings showed severe inhibition of root and shoot growth and chlorosis of leaves. The results of these experiments indicate that agriculturally important plants such as B. napus can be genetically engineered for heavy metal tolerance/sequestration and eventually for partitioning of heavy metals in non-consumed plant tissues.  相似文献   

15.
16.
The protein p12 accumulates in leaves of trees with citrus blight (CB), a serious decline of unknown cause. The function of p12 is not known, but sequence analysis indicates it may be related to expansins. In studies to determine the function of p12, sense and antisense constructs were used to make transgenic Carrizo citrange using an Agrobacterium-mediated transformation system. Homogeneous -glucuronidase+ (GUS+) sense and antisense transgenic shoots were regenerated using kanamycin as a selective agent. Twenty-five sense and 45 antisense transgenic shoots were in vivo grafted onto Carrizo citrange for further analyses. In addition, 20 sense and 18 antisense shoots were rooted. The homogeneous GUS+ plants contained either the p12 sense or antisense gene (without the intron associated with the gene in untransformed citrus) as shown by PCR and Southern blotting. Northern blots showed the expected RNA in the sense and antisense plants. A protein of identical size and immunoreactivity was observed in seven of nine sense plants but not in nine antisense or non-transgenic plants. At the current stage of growth, there are no visual phenotypic differences between the transgenic and non-transgenic plants. Selected plants will be budded with sweet orange for field evaluation for resistance or susceptibility to CB and general rootstock performance.Abbreviations AS Acetosyringone - CaMV 35S P Cauliflower mosaic virus 35S promoter - CaMV 35S poly A Cauliflower mosaic virus 35S poly A terminator - CB Citrus blight - 2,4-D 2,4-Dichlorophenoxyacetic acid - FMV Figwort mosaic virus - GUS -Glucuronidase - GUS gene uidA - IBA Indole-3-butyric acid - MES 2-(N-Morpholino) ethane sulfonic acid - MSI Inoculation medium - MSP-10M Plasmolysis solution with 10% maltose - MSP-8S Plasmolysis solution with 8% sucrose - NAA -Naphthaleneacetic acid - NOS Nopaline synthase - NP Nopaline synthase promoter - NT Nopaline synthase terminator - NPTII Neomycin phosphotransferase II - p12 Blight-associated protein p12  相似文献   

17.
该研究以烟草品系NC89的无菌苗叶片为受体材料,采用前期构建的能同步抑制种子中FAD2(Δ12-油酸去饱和酶基因)与FatB(酰基转移酶基因)表达的RNAi载体,通过农杆菌介导转化获得了转基因烟草植株,分析转基因植株种子中的脂肪酸组分。结果显示:与对照相比,转基因植株种子中FAD2和FatB基因的表达水平分别降低了23%和11%;转基因植株种子的脂肪酸组分中,饱和脂肪酸棕榈酸和硬脂酸平均含量分别为8.02%和4.45%,多不饱和脂肪酸亚油酸平均含量为76.82%,较对照分别降低了2.91%、9.92%和3.47%;而转基因植株种子中单不饱和脂肪酸油酸含量高达7.48%,比对照提高46.38%。研究表明,同步抑制FAD2和FatB基因的表达能够显著提高烟草种子中油酸组分的含量,为进一步改良油料作物品质奠定了基础。  相似文献   

18.
Seeds of oilseed rape (Brassica napus) accumulate high amounts of antinutritive sinapate esters (SE) with sinapoylcholine (sinapine) as major component, accompanied by sinapoylglucose. These phenolic compounds compromise the use of the protein-rich valuable seed meal. Hence, a substantial reduction of the SE content is considered essential for establishing rape as a protein crop. The present work focuses on the suppression of sinapine synthesis in rape. Therefore, rape (spring cultivar Drakkar) was transformed with a dsRNAi construct designed to silence seed-specifically the BnSGT1 gene encoding UDP-glucose:sinapate glucosyltransferase (SGT1). This resulted in a substantial decrease of SE content in T2 seeds with a reduction reaching 61%. In T2 seeds a high and significant correlation between the contents of sinapoylglucose and all other sinapate esters has been observed. Among transgenic plants, no significant difference in other important agronomic traits, such as oil, protein, fatty acid and glucosinolate content in comparison to the control plants was observed. Maximal reduction of total SE content by 76% was observed in seeds of one homozygous T2 plant (T3 seeds) carrying the BnSGT1 suppression cassette as a single copy insert. In conclusion, this study is an initial proof of principle that suppression of sinapoylglucose formation leads to a strong reduction of SE in rape seeds and is thus a promising approach in establishing rape, currently an important oil crop, as a protein crop as well.  相似文献   

19.
Protoplast fusions were performed between hypocotyl protoplasts of Brassica napus and mesophyll protoplasts of Thlaspi perfoliatum. The two species are members of the Lepidieae and Brassiceae tribes, respectively, in the family of Brassicaceae. Seeds of T. perfoliatum are rich in the fatty acid C241 (nervonic acid), an oil valuable for technical purposes. In the search for renewable oils to replace the mineral oils, plant breeders have been trying to develop oil crops with a high content of long-chain fatty acids. After fusion of B. napus protoplasts with non-irradiated as well as irradiated protoplasts of T. perfoliatum selection was carried out by flow cytometry and cell sorting. Of the shoots regenerated from different calli 27 were verified as hybrids or partial hybrids using the isoenzyme phosphoglucose isomerase (PGI) as a marker. Another 6 plants were identified as partial hybrids using a T. perfoliatum-specific repetitive DNA sequence. Slot blot experiments were performed to estimate the copy number of the repetitive DNA sequence in the parental species and in the hybrids. In T. perfoliatum there were approximately 105 copies per haploid genome, and the range in the hybrids was 1–37% of the value in T. perfoliatum. When the nuclear DNA content of the regenerated shoots was analysed we found partial as well as symmetric hybrids. Even though the rooting and establishment of hybrid shoots in the greenhouse were difficult, resulting in the death of many plants, 19 plants were cultured to full maturity. Seeds obtained from 15 plants were analysed to determine whether they contained nervonic acid, and 5 of the hybrids were found to contain significantly greater amounts of nervonic acid than B. napus.  相似文献   

20.
The Escherichia coli fabH gene encoding 3-ketoacyl-acyl carrier protein synthase III (KAS III) was isolated and the effect of overproduction of bacterial KAS III was compared in both E. coli and Brassica napus. The change in fatty acid profile of E. coli was essentially the same as that reported by Tsay et al. (J Biol Chem 267 (1992) 6807–6814), namely higher C14:0 and lower C18:1 levels. In our study, however, an arrest of cell growth was also observed. This and other evidence suggests that in E. coli the accumulation of C14:0 may not be a direct effect of the KAS III overexpression, but a general metabolic consequence of the arrest of cell division. Bacterial KAS III was expressed in a seed- and developmentally specific manner in B. napus in either cytoplasm or plastid. Significant increases in KAS III activities were observed in both these transformation groups, up to 3.7 times the endogenous KAS III activity in mature seeds. Only the expression of the plastid-targeted KAS III gene, however, affected the fatty acid profile of the storage lipids, such that decreased amounts of C18:1 and increased amounts of C18:2 and C18:3 were observed as compared to control plants. Such changes in fatty acid composition reflect changes in the regulation and control of fatty acid biosynthesis. We propose that fatty acid biosynthesis is not controlled by one rate-limiting enzyme, such as acetyl-CoA carboxylase, but rather is shared by a number of component enzymes of the fatty acid biosynthetic machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号