首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most of the carbon used for starch biosynthesis in cereal endosperms is derived from ADP-glucose (ADP-Glc) synthesized by extra-plastidial AGPase activity, and imported directly across the amyloplast envelope. The properties of the wheat endosperm amyloplast ADP-Glc transporter were analysed with respect to substrate kinetics and specificities using reconstituted amyloplast envelope proteins in a proteoliposome-based assay system, as well as with isolated intact organelles. Experiments with liposomes showed that ADP-Glc transport was dependent on counter-exchange with other adenylates. Rates of ADP-Glc transport were highest with ADP and AMP as counter-exchange substrates, and kinetic analysis revealed that the transport system has a similar affinity for ADP and AMP. Measurement of ADP and AMP efflux from intact amyloplasts showed that, under conditions of ADP-Glc-dependent starch biosynthesis, ADP is exported from the plastid at a rate equal to that of ADP-Glc utilization by starch synthases. Photo-affinity labelling of amyloplast membranes with the substrate analogue 8-azido-[alpha-32P]ADP-Glc showed that the polypeptide involved in substrate binding is an integral membrane protein of 38 kDa. This study shows that the ADP-Glc transporter in cereal endosperm amyloplasts imports ADP-Glc in exchange for ADP which is produced as a by-product of the starch synthase reaction inside the plastid.  相似文献   

2.
Potato (Solanum tuberosum) is the fourth largest crop worldwide in yield, and cv. Kuras is the major starch potato of northern Europe. Storage starch is packed densely in tuber amyloplasts, which become starch granules. Amyloplasts of soil-grown mini-tubers and agar-grown micro-tubers of cv. Kuras were purified. The mini-tuber amyloplast preparation was enriched 10-20-fold and the micro-tuber amyloplast approximately fivefold over comparative total protein extracts. Proteins separated by SDS-PAGE were digested with trypsin, analysed by mass spectrometry and identified by mascot software searches against an in-house potato protein database and the NCBI non-redundant plant database. The differential growth conditions for mini- and micro-tubers gave rise to rather different protein profiles, but the major starch granule-bound proteins were identical for both and dominated by granule-bound starch synthase I, starch synthase II and alpha-glucan water dikinase. Soluble proteins were dominated by starch phosphorylase L-1, other large proteins of the classes 'starch and sucrose metabolism', 'pentose phosphate pathway', 'glycolysis', 'amino acid metabolism', and other proteins such as plastid chaperonins. The majority of the identified proteins had a predicted plastid transit peptide, supporting their presence in the amyloplast. However, several highly expressed proteins had no transit peptide, such as starch phosphorylase H, or had a predicted mitochondrial location. Intriguingly, all polyphenol oxidases, a family of enolases, one transketolase, sulfite reductase, deoxynucleoside kinase-like and dihydroxy-acid dehydrase had twin-arginine translocation motifs, and a homologue to dihydrolipoamide dehydrogenase had a Sec (secretory) motif; these motifs usually target thylakoid-like structures.  相似文献   

3.
Protein-protein interactions among enzymes of amylopectin biosynthesis were investigated in developing wheat (Triticum aestivum) endosperm. Physical interactions between starch branching enzymes (SBEs) and starch synthases (SSs) were identified from endosperm amyloplasts during the active phase of starch deposition in the developing grain using immunoprecipitation and cross-linking strategies. Coimmunoprecipitation experiments using peptide-specific antibodies indicate that at least two distinct complexes exist containing SSI, SSIIa, and either of SBEIIa or SBEIIb. Chemical cross linking was used to identify protein complexes containing SBEs and SSs from amyloplast extracts. Separation of extracts by gel filtration chromatography demonstrated the presence of SBE and SS forms in protein complexes of around 260 kD and that SBEII forms may also exist as homodimers. Analysis of cross-linked 260-kD aggregation products from amyloplast lysates by mass spectrometry confirmed SSI, SSIIa, and SBEII forms as components of one or more protein complexes in amyloplasts. In vitro phosphorylation experiments with gamma-(32)P-ATP indicated that SSII and both forms of SBEII are phosphorylated. Treatment of the partially purified 260-kD SS-SBE complexes with alkaline phosphatase caused dissociation of the assembly into the respective monomeric proteins, indicating that formation of SS-SBE complexes is phosphorylation dependent. The 260-kD SS-SBEII protein complexes are formed around 10 to 15 d after pollination and were shown to be catalytically active with respect to both SS and SBE activities. Prior to this developmental stage, SSI, SSII, and SBEII forms were detectable only in monomeric form. High molecular weight forms of SBEII demonstrated a higher affinity for in vitro glucan substrates than monomers. These results provide direct evidence for the existence of protein complexes involved in amylopectin biosynthesis.  相似文献   

4.
While tandem mass spectrometry (MS/MS) is routinely used to identify proteins from complex mixtures, certain types of proteins present unique challenges for MS/MS analyses. The major wheat gluten proteins, gliadins and glutenins, are particularly difficult to distinguish by MS/MS. Each of these groups contains many individual proteins with similar sequences that include repetitive motifs rich in proline and glutamine. These proteins have few cleavable tryptic sites, often resulting in only one or two tryptic peptides that may not provide sufficient information for identification. Additionally, there are less than 14,000 complete protein sequences from wheat in the current NCBInr release. In this paper, MS/MS methods were optimized for the identification of the wheat gluten proteins. Chymotrypsin and thermolysin as well as trypsin were used to digest the proteins and the collision energy was adjusted to improve fragmentation of chymotryptic and thermolytic peptides. Specialized databases were constructed that included protein sequences derived from contigs from several assemblies of wheat expressed sequence tags (ESTs), including contigs assembled from ESTs of the cultivar under study. Two different search algorithms were used to interrogate the database and the results were analyzed and displayed using a commercially available software package (Scaffold). We examined the effect of protein database content and size on the false discovery rate. We found that as database size increased above 30,000 sequences there was a decrease in the number of proteins identified. Also, the type of decoy database influenced the number of proteins identified. Using three enzymes, two search algorithms and a specialized database allowed us to greatly increase the number of detected peptides and distinguish proteins within each gluten protein group.  相似文献   

5.
The aim of the present work was to investigate the relationship between the Btl gene (Btl) and the major 39–44 kDa amyloplast membrane polypeptides which were deficient in amyloplast membranes of brittlel (btl) kernels of maize (Zea mays L.). A rapid yet gentle procedure for the isolation of amyloplasts from immature kernels is described. These amyloplasts were relatively free of contamination by other cellular components, and immunological studies showed that they contained polypeptides which reacted with antibodies to maize starch branching enzyme and ADP-Gle pyrophosphorylase. Purified membranes isolated from the amyloplast contained a poly-peptide which reacted with antibodies to the Pi-translocator from spinach chloroplasts. However, a cluster of 39–44 kDa polypeptides accounted for about 40% of the total amyloplast membrane protein from W64A kernels. These polypeptides were specifically recognized by antibodies raised against a fusion protein consisting of 56 amino acids of the carboxyl terminus of the BTI protein and glutathione S-transferase. The BT1 antibodies also reacted with the abundant polypeptides in amyloplast membranes from hybrid kernels (Doebler 66XP and Pioneer 3780), and the shrunkenl and shrunken2 mutant genotypes, but no BTl reacting polypeptides were present in amyloplast membranes from btl mutant kernels. We were unable to detect BTl by the immunoblot procedure in microsomal membranes from embryo and pericarp tissues from the kernel, from seedling roots and shoots, or in membranes from mitochondria and chloroplasts. The same BTl immunoblot pattern was obtained for proteins extracted from microsomal membranes from developing endosperm and from purified amyloplast membranes. A linear relationship between the number of copies of Btl alleles and the levels of BTl in endosperm microsomal membranes was demonstrated in a gene dosage series. BTl was not extracted from amyloplast membranes by chloroform/methanol or by alkaline buffer at pH 11.5, but was partially extracted by 0.1 M NaOH. These lines of evidence support the conclusion that Btl is the structural gene for the major 39–44 kDa amyloplast membrane polypeptides and that these polypeptides are integral proteins specific to amyloplast membranes from the endosperm.  相似文献   

6.
Lack of genomic sequence data and the relatively high cost of tandem mass spectrometry have hampered proteomic investigations into helminths, such as resolving the mechanism underpinning globally reported anthelmintic resistance. Whilst detailed mechanisms of resistance remain unknown for the majority of drug-parasite interactions, gene mutations and changes in gene and protein expression are proposed key aspects of resistance. Comparative proteomic analysis of drug-resistant and -susceptible nematodes may reveal protein profiles reflecting drug-related phenotypes. Using the gastro-intestinal nematode, Haemonchus contortus as case study, we report the application of freely available expressed sequence tag (EST) datasets to support proteomic studies in unsequenced nematodes. EST datasets were translated to theoretical protein sequences to generate a searchable database. In conjunction with matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS), Peptide Mass Fingerprint (PMF) searching of databases enabled a cost-effective protein identification strategy. The effectiveness of this approach was verified in comparison with MS/MS de novo sequencing with searching of the same EST protein database and subsequent searches of the NCBInr protein database using the Basic Local Alignment Search Tool (BLAST) to provide protein annotation. Of 100 proteins from 2-DE gel spots, 62 were identified by MALDI-TOF-MS and PMF searching of the EST database. Twenty randomly selected spots were analysed by electrospray MS/MS and MASCOT Ion Searches of the same database. The resulting sequences were subjected to BLAST searches of the NCBI protein database to provide annotation of the proteins and confirm concordance in protein identity from both approaches. Further confirmation of protein identifications from the MS/MS data were obtained by de novo sequencing of peptides, followed by FASTS algorithm searches of the EST putative protein database. This study demonstrates the cost-effective use of available EST databases and inexpensive, accessible MALDI-TOF MS in conjunction with PMF for reliable protein identification in unsequenced organisms.  相似文献   

7.
Characterization of the human heart mitochondrial proteome   总被引:25,自引:0,他引:25  
To gain a better understanding of the critical role of mitochondria in cell function, we have compiled an extensive catalogue of the mitochondrial proteome using highly purified mitochondria from normal human heart tissue. Sucrose gradient centrifugation was employed to partially resolve protein complexes whose individual protein components were separated by one-dimensional PAGE. Total in-gel processing and subsequent detection by mass spectrometry and rigorous bioinformatic analysis yielded a total of 615 distinct protein identifications. All protein pI values, molecular weight ranges, and hydrophobicities were represented. The coverage of the known subunits of the oxidative phosphorylation machinery within the inner mitochondrial membrane was >90%. A significant proportion of identified proteins are involved in signaling, RNA, DNA, and protein synthesis, ion transport, and lipid metabolism. The biochemical roles of 19% of the identified proteins have not been defined. This database of proteins provides a comprehensive resource for the discovery of novel mitochondrial functions and pathways.  相似文献   

8.
9.
Manual analysis of mass spectrometry data is a current bottleneck in high throughput proteomics. In particular, the need to manually validate the results of mass spectrometry database searching algorithms can be prohibitively time-consuming. Development of software tools that attempt to quantify the confidence in the assignment of a protein or peptide identity to a mass spectrum is an area of active interest. We sought to extend work in this area by investigating the potential of recent machine learning algorithms to improve the accuracy of these approaches and as a flexible framework for accommodating new data features. Specifically we demonstrated the ability of boosting and random forest approaches to improve the discrimination of true hits from false positive identifications in the results of mass spectrometry database search engines compared with thresholding and other machine learning approaches. We accommodated additional attributes obtainable from database search results, including a factor addressing proton mobility. Performance was evaluated using publically available electrospray data and a new collection of MALDI data generated from purified human reference proteins.  相似文献   

10.
A proteomic analysis of leaf sheaths from rice   总被引:13,自引:0,他引:13  
The proteins extracted from the leaf sheaths of rice seedlings were separated by 2-D PAGE, and analyzed by Edman sequencing and mass spectrometry, followed by database searching. Image analysis revealed 352 protein spots on 2-D PAGE after staining with Coomassie Brilliant Blue. The amino acid sequences of 44 of 84 proteins were determined; for 31 of these proteins, a clear function could be assigned, whereas for 12 proteins, no function could be assigned. Forty proteins did not yield amino acid sequence information, because they were N-terminally blocked, or the obtained sequences were too short and/or did not give unambiguous results. Fifty-nine proteins were analyzed by mass spectrometry; all of these proteins were identified by matching to the protein database. The amino acid sequences of 19 of 27 proteins analyzed by mass spectrometry were similar to the results of Edman sequencing. These results suggest that 2-D PAGE combined with Edman sequencing and mass spectrometry analysis can be effectively used to identify plant proteins.  相似文献   

11.
The proteins in blood were all first expressed as mRNAs from genes within cells. There are databases of human proteins that are known to be expressed as mRNA in human cells and tissues. Proteins identified from human blood by the correlation of mass spectra that fail to match human mRNA expression products may not be correct. We compared the proteins identified in human blood by mass spectrometry by 10 different groups by correlation to human and nonhuman nucleic acid sequences. We determined whether the peptides or proteins identified by the different groups mapped to the human known proteins of the Reference Sequence (RefSeq) database. We used Structured Query Language data base searches of the peptide sequences correlated to tandem mass spectrometry spectra and basic local alignment search tool analysis of the identified full length proteins to control for correlation to the wrong peptide sequence or the existence of the same or very similar peptide sequence shared by more than one protein. Mass spectra were correlated against large protein data bases that contain many sequences that may not be expressed in human beings yet the search returned a very high percentage of peptides or proteins that are known to be found in humans. Only about 5% of proteins mapped to hypothetical sequences, which is in agreement with the reported false-positive rate of searching algorithms conditions. The results were highly enriched in secreted and soluble proteins and diminished in insoluble or membrane proteins. Most of the proteins identified were relatively short and showed a similar size distribution compared to the RefSeq database. At least three groups agree on a nonredundant set of 1671 types of proteins and a nonredundant set of 3151 proteins were identified by at least three peptides.  相似文献   

12.
Protein phosphorylation in amyloplasts and chloroplasts of Triticum aestivum (wheat) was investigated after the incubation of intact plastids with gamma-(32)P-ATP. Among the soluble phosphoproteins detected in plastids, three forms of starch branching enzyme (SBE) were phosphorylated in amyloplasts (SBEI, SBEIIa, and SBEIIb), and both forms of SBE in chloroplasts (SBEI and SBEIIa) were shown to be phosphorylated after sequencing of the immunoprecipitated (32)P-labeled phosphoproteins using quadrupole-orthogonal acceleration time of flight mass spectrometry. Phosphoamino acid analysis of the phosphorylated SBE forms indicated that the proteins are all phosphorylated on Ser residues. Analysis of starch granule-associated phosphoproteins after incubation of intact amyloplasts with gamma-(32)P-ATP indicated that the granule-associated forms of SBEII and two granule-associated forms of starch synthase (SS) are phosphorylated, including SSIIa. Measurement of SBE activity in amyloplasts and chloroplasts showed that phosphorylation activated SBEIIa (and SBEIIb in amyloplasts), whereas dephosphorylation using alkaline phosphatase reduced the catalytic activity of both enzymes. Phosphorylation and dephosphorylation had no effect on the measurable activity of SBEI in amyloplasts and chloroplasts, and the activities of both granule-bound forms of SBEII in amyloplasts were unaffected by dephosphorylation. Immunoprecipitation experiments using peptide-specific anti-SBE antibodies showed that SBEIIb and starch phosphorylase each coimmunoprecipitated with SBEI in a phosphorylation-dependent manner, suggesting that these enzymes may form protein complexes within the amyloplast in vivo. Conversely, dephosphorylation of immunoprecipitated protein complex led to its disassembly. This article reports direct evidence that enzymes of starch metabolism (amylopectin synthesis) are regulated by protein phosphorylation and indicate a wider role for protein phosphorylation and protein-protein interactions in the control of starch anabolism and catabolism.  相似文献   

13.
Proteomic approaches to biological research that will prove the most useful and productive require robust, sensitive, and reproducible technologies for both the qualitative and quantitative analysis of complex protein mixtures. Here we applied the isotope-coded affinity tag (ICAT) approach to quantitative protein profiling, in this case proteins that copurified with lipid raft plasma membrane domains isolated from control and stimulated Jurkat human T cells. With the ICAT approach, cysteine residues of the two related protein isolates were covalently labeled with isotopically normal and heavy versions of the same reagent, respectively. Following proteolytic cleavage of combined labeled proteins, peptides were fractionated by multidimensional chromatography and subsequently analyzed via automated tandem mass spectrometry. Individual tandem mass spectrometry spectra were searched against a human sequence database, and a variety of recently developed, publicly available software applications were used to sort, filter, analyze, and compare the results of two repetitions of the same experiment. In particular, robust statistical modeling algorithms were used to assign measures of confidence to both peptide sequences and the proteins from which they were likely derived, identified via the database searches. We show that by applying such statistical tools to the identification of T cell lipid raft-associated proteins, we were able to estimate the accuracy of peptide and protein identifications made. These tools also allow for determination of the false positive rate as a function of user-defined data filtering parameters, thus giving the user significant control over and information about the final output of large-scale proteomic experiments. With the ability to assign probabilities to all identifications, the need for manual verification of results is substantially reduced, thus making the rapid evaluation of large proteomic datasets possible. Finally, by repeating the experiment, information relating to the general reproducibility and validity of this approach to large-scale proteomic analyses was also obtained.  相似文献   

14.
Informatics for protein identification by mass spectrometry   总被引:3,自引:0,他引:3  
High throughput protein analysis (i.e., proteomics) first became possible when sensitive peptide mass mapping techniques were developed, thereby allowing for the possibility of identifying and cataloging most 2D gel electrophoresis spots. Shortly thereafter a few groups pioneered the idea of identifying proteins by using peptide tandem mass spectra to search protein sequence databases. Hence, it became possible to identify proteins from very complex mixtures. One drawback to these latter techniques is that it is not entirely straightforward to make matches using tandem mass spectra of peptides that are modified or have sequences that differ slightly from what is present in the sequence database that is being searched. This has been part of the motivation behind automated de novo sequencing programs that attempt to derive a peptide sequence regardless of its presence in a sequence database. The sequence candidates thus generated are then subjected to homology-based database search programs (e.g., BLAST or FASTA). These homology search programs, however, were not developed with mass spectrometry in mind, and it became necessary to make minor modifications such that mass spectrometric ambiguities can be taken into account when comparing query and database sequences. Finally, this review will discuss the important issue of validating protein identifications. All of the search programs will produce a top ranked answer; however, only the credulous are willing to accept them carte blanche.  相似文献   

15.
Two proctolin-binding proteins solubilized from 1600 cockroach hindgut membranes were purified 1000-fold using five chromatography steps. Twenty-five micrograms of protein were recovered from the final size-exclusion chromatography as a single peak eluting at 74 kDa, whereas two major bands at 80 and 76 kDa were identified after silver staining of electrophoresis gels. The fragments, sequenced by tandem mass spectrometry and the Edman method, revealed a high homology with rat liver dipeptidyl aminopeptidase (DPP) III and a significant homology between the cockroach-purified proteins. From analysis of the Drosophila genome sequence database, it was possible to identify a putative DPP sharing high homology with the sequences obtained from the cockroach purified proteins and with the rat DPP III. Anti-(rat liver DPP III) Ig reacted specifically with both cockroach-purified proteins in Western blot analysis. The purified proteins removed the N-terminal dipeptide from the insect myotropic neuropeptide proctolin (Arg-Tyr-Leu-Pro-Thr) with a Km value of 3.8 +/- 1.1 microM. The specific DPP III inhibitor tynorphin prevented the degradation of proctolin by the purified insect DPP (IC50 = 0.68 microM). These results provide strong evidence that the cockroach-purified proteins represent an insect membrane DPP, presumably present in Drosophila, and that it is closely related to vertebrate DPP III.  相似文献   

16.

Background  

By definition, amyloplasts are plastids specialized for starch production. However, a proteomic study of amyloplasts isolated from wheat (Triticum aestivum Butte 86) endosperm at 10 days after anthesis (DPA) detected enzymes from many other metabolic and biosynthetic pathways. To better understand the role of amyloplasts in food production, the data from that study were evaluated in detail and an amyloplast metabolic map was outlined.  相似文献   

17.
对蛋白质质谱数据进行数据库比对和鉴定是蛋白质组学研究技术中的一个重要步骤。由于公共数据库蛋白质数据信息不全,有些蛋白质质谱数据无法得到有效的鉴定。而利用相关物种的EST序列构建专门的质谱数据库则可以增加鉴定未知蛋白的几率。本文介绍了利用EST序列构建Mascot本地数据库的具体方法和步骤,扩展了Mascot检索引擎对蛋白质质谱数据的鉴定范围,从数据库层面提高了对未知蛋白的鉴别几率,为蛋白质组学研究提供了一种较为实用的生物信息学分析技术。  相似文献   

18.
Gentzel M  Köcher T  Ponnusamy S  Wilm M 《Proteomics》2003,3(8):1597-1610
Liquid chromatography tandem mass spectrometry is a major tool for identifying proteins. The fragment spectra of peptides can be interpreted automatically in conjunction with a sequence database search. With the development of powerful automatic search engines, research now focuses on optimizing the result returned from database searches. We present a series of preprocessing steps for fragment spectra to increase the accuracy and specificity of automatic database searches. After processing, the correct amino acid sequences from the database can be related better to the fragment spectra. This increases the sensitivity and reliability of protein identifications, especially with very large genomic databanks, and can be important for the systematic characterization of post-translational modifications.  相似文献   

19.
Strategic proteome analysis of Candida magnoliae with an unsequenced genome   总被引:2,自引:0,他引:2  
Kim HJ  Lee DY  Lee DH  Park YC  Kweon DH  Ryu YW  Seo JH 《Proteomics》2004,4(11):3588-3599
Erythritol is a noncariogenic, low calorie sweetener. It is safe for people with diabetes and obese people. Candida magnoliae is an industrially important organism because of its ability to produce erythritol as a major product. The genome of C. magnoliae has not been sequenced yet, limiting the available proteome database. Therefore, systematic approaches were employed to construct the proteome map of C. magnoliae. Proteomic analysis with systematic approaches is based on two-dimensional electrophoresis, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), tandem mass spectrometry (MS/MS) and database interrogation. First, 24 spots were analyzed using peptide mass fingerprinting along with MALDI-TOF MS with high mass accuracy. Only four spots were reliably identified as carbonyl reductase and its isoforms. The reason for low sequence coverage seemed to be that these identification strategies were based on the presence of the protein database obtained from the publicly accessible genome database and the availability of cross-species protein identification. MS/MS (MS/MS ion search and de novo sequencing) in combination with similarity searches allowed successful identification of 39 spots. Several proteins including transaldolase identified by MS/MS ion searches were further confirmed by partial sequences from the expressed sequence tag database. In this study, 51 protein spots were analyzed and then potentially identified. The identified proteins were involved in glycolysis, stress response, other essential metabolisms and cell structures.  相似文献   

20.
Enzyme activities associated with maize kernel amyloplasts   总被引:15,自引:8,他引:7       下载免费PDF全文
Activities of the enzymes of gluconeogenesis and of starch metabolism were measured in extracts of amyloplasts isolated from protoplasts derived from 14-day-old maize (Zea mays L., cv Pioneer 3780) endosperm. The enzymes triosephosphate isomerase, fructose-1,6-bisphosphate aldolase, fructose-1,6-bisphosphatase, phosphohexose isomerase, phosphoglucomutase, ADPG pyrophosphorylase, UDPG pyrophosphorylase, soluble and bound starch synthases, and branching enzyme were found to be present in the amyloplasts. Of the above enzymes, ADPG pyrophosphorylase had the lowest activity per amyloplast. Invertase, sucrose synthase and hexokinase were not detected in similar amyloplast preparations. Only a trace of the cytoplasmic marker enzyme alcohol dehydrogenase could be detected in purified amyloplast fractions. In separate experiments, purified amyloplasts were lysed and then supplied with radioactively labeled glucose-6-phosphate, glucose-1-phosphate, fructose-1,6-bisphosphate, dihydroxyacetone phosphate, glucose, fructose, sucrose, and 3-0-methylglucose in the presence of adenosine triphosphate or uridine triphosphate. Of the above, only the phosphorylated substrates were incorporated into starch. Incorporation into starch was higher with added uridine triphosphate than with adenosine triphosphate. Dihydroxyacetone phosphate was the preferred substrate for uptake by intact amyloplasts and incorporation into starch. In preliminary experiments, it appeared that glucose-6-P and fructose-1,6-bisphosphate may also be taken up by intact amyloplasts. However, the rate of uptake and incorporation into starch was relatively low and variable. Additional study is needed to determine conclusively whether hexose phosphates will cross intact amyloplast membranes. From these data, we conclude that: (a) Triose phosphate is the preferred substrate for uptake by intact amyloplasts. (b) Amyloplasts contain all enzymes necessary to convert triose phosphates into starch. (c) Sucrose breakdown must occur in the cytosol prior to carbohydrate transfer into the amyloplasts. (d) Under the conditions of assay, amyloplasts are unable to convert glucose or fructose to starch. (e) Uridine triphosphate may be the preferred nucleotide for conversion of hexose phosphates to starch at this stage of kernel development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号