首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract: Previous studies have established that dopamine (DA) can stimulate phosphoinositide (PI) metabolism in the CNS and in the periphery. The present study summarizes our attempt to find a cell line that expresses this dopaminergic system. We describe that the stable clonal HN33.11 cell line, established by fusion of mouse hippocampal cells with neuroblastoma cells (N18TG2) that originate from A/J mouse, natively expresses the D1 DA receptor system that couples to PI hydrolysis. In this cell line, 500 µM DA or SKF38393 produced 43 and 75% increases in inositol phosphate (IP) accumulations, respectively. In contrast, noradrenaline or 5-hydroxytryptamine did not affect IP accumulations. The formation of IP that was stimulated by DA or SKF38393 was selectively blocked by the D1 DA receptor antagonist SCH23390 with IC50 values of 13 and 16 µM. This response was not mediated by the D1A DA receptor and was cyclic AMP-independent, as HN33.11 cells did not express this receptor, and DA or SKF38393 was unable to stimulate the formation of cyclic AMP. In Ca2+-free/100 µM EGTA medium, basal IP level was reduced by 31.5%, but SKF38393-stimulated PI hydrolysis was not affected. SKF38393-stimulated IP accumulation was also not affected by pertussis toxin (PTX) treatment (200 ng/ml), suggesting that this dopaminergic response is mediated by PTX-insensitive G proteins. Co-immunoprecipitation studies indicated that in membranes of HN33.11 cells, D1-like binding sites are coupled to Gαq protein. Blockade of SKF38393-induced PI hydrolysis with antiserum against phospholipase C (PLC) isozymes, performed in permeabilized cells, as well as co-immunoprecipitation studies implicate PLCβ3 and PLCβ4 in this dopaminergically mediated PI hydrolysis cascade. The results indicate that HN33.11 cells express a D1-like DA receptor that couples to PLCβ3/4 via Gαq protein. These cells may therefore be a useful model system for investigating this receptor system.  相似文献   

2.
B Scatton 《Life sciences》1982,31(25):2883-2890
The relative involvement of D1 (cyclase linked) and D2 dopamine receptors in dopaminergic control of striatal cholinergic transmission has been investigated in the rat by comparing the effects of SKF 38393 and LY 141865 (which act as specific agonists at D1 and D2 dopamine receptors, respectively) on striatal acetylcholine and dopamine metabolite concentrations and on the potassium-evoked release of 3H-acetylcholine from rat striatal slices. LY 141865 given systemically produced a dose-dependent increase in acetylcholine concentrations and a concomitant reduction of homovanillic and dihydroxyphenylacetic acid levels in the striatum (ED50 0.1 mg/kg) whereas SKF 38393 (1–30 mg/kg) did not. SKF 38393 (30 mg/kg) also failed to modify the LY 141865 (1 mg/kg) induced alterations of striatal acetylcholine and dopamine metabolite levels when given concomitantly with the latter compound. In experiments in vitro, LY 141865 reduced (EC50 0.14 μM), whereas SKF 38393 (up to 100 μM) failed to affect, the potassium-evoked release of 3H-acetylcholine from striatal slices. When given concomitantly with LY 141865, SKF 38393 (10 μM) did not modify the ability of the former compound to diminish striatal 3H-acetylcholine release. Finally, SKF 38393 also failed to affect the release of striatal 3H-acetylcholine after chemical lesion of the nigro-striatal dopaminergic pathway. The present results provide evidence for the involvement of D2 but not D1 dopamine receptors in dopaminergic control of striatal cholinergic transmission and indicate that D1 dopamine receptors do not exert any modulatory influence on D2 dopamine receptor mediated dopaminergic transmission.  相似文献   

3.
Abstract: Dopamine and the D1, receptor agonist SKF 38393 activate the phospholipase C-rnediated hydrolysis of phosphoinositides in brain slices. This action is selectively inhibited by SCH-23390, thus suggesting its mediation through the dopamine D1 receptor. To determine if the dopamine receptor that mediates Phosphoinositide hydrolysis is the adenylyl, cyclase-linked D1 receptor or a different subtype of the dopamine D1 receptor, 20 benzazepine compounds that were previously characterized as selective dopamine D1 receptor agonists were tested for stimulation of Phosphoinositide hydrolysis in rat striatal slices and for activation of adenylyl cyclase in rat striatal membranes. The compounds displayed a range of potencies and efficacies in stimulating adenylyl cyclase or Phosphoinositide hydrolysis. Compounds such as SKF 81427 and SKF 38393 were as efficacious as dopamine in stimulating Phosphoinositide hydrolysis, whereas other compounds, including SKF 85174 and SKF 86284, although showing high efficacy in stimulating cyclic AMP, failed to stimulate inositol phosphate formation. There was no correlation between the potencies (r= 0.016; p < 0.95) or efficacies (r=?0.294; p < 0.24) of the tested compounds in stimulating cyclic AMP formation and phosphoinositide hydrolysis. These observations indicate that the D1-like dopamine receptor that mediates phosphoinositide hydrolysis is pharmacologically distinct from the classic D1 receptor that is coupled to stimulation of cyclic AMP formation.  相似文献   

4.
Although multiple roles of dopamine through D1-like (D1 and D5) and D2-like (D2, D3, and D4) receptors are initiated primarily through stimulation or inhibition of adenylyl cyclase via Gs/olf or Gi/o, respectively, there have been many reports indicating diverse signaling mechanisms that involve alternative G protein coupling. In this study, dopamine-induced Gαq activation in rat brain membranes was investigated. Agonist-induced Gαq activation was assessed by increase in guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding to Gαq determined by [35S]GTPγS binding/immunoprecipitation assay in rat brain membranes. Dopamine-stimulated Gαq functionality was highest in cortex as compared to hippocampus or striatum. In cerebral cortical membranes, this effect was mimicked by benzazepine derivatives with agonist properties at dopamine D1-like receptors, that is, SKF83959, SKF83822, R(+)-SKF81297, R(+)-SKF38393, and SKF82958, but not by the compounds with dopamine D2-like receptor agonist properties except for aripiprazole. Against expectation, stimulatory effects were also induced by SKF83566, R(+)-SCH23390, and pergolide. The pharmacological profiling by using a series of antagonists indicated that dopamine-induced response was mediated through dopamine D1-like receptor, which was distinct from the receptor involved in 5-HT-induced response (5-HT2A receptor). Conversely, the responses induced by SKF83566, R(+)-SCH23390, and pergolide were most likely mediated by 5-HT2A receptor, but not by dopamine D1-like receptor. Caution should be paid when interpreting the experimental data, especially in behavioral pharmacological research, in which SKF83566 or R(+)-SCH23390 is used as a standard selective dopamine D1-like receptor antagonist. Also, possible clinical implications of the agonistic effects of pergolide on 5-HT2A receptor has been mentioned.  相似文献   

5.
Abstract: We examined the effects of cyclic AMP on dopamine receptor-coupled activation of phosphoinositide hydrolysis in rat striatal slices. Forskolin, dibutyryl cyclic AMP, and the protein kinase A activator Sp -cyclic adenosine monophosphothioate ( Sp -cAMPS) significantly inhibited inositol phosphate formation stimulated by the dopamine D1 receptor agonist SKF 38393. Conversely, the protein kinase A antagonist Rp -cyclic adenosine monophosphothioate ( Rp -cAMPS) dose-dependently potentiated the SKF 38393 effect. In the presence of 200 µ M Rp -cAMPS, the dose-response curves of the dopamine D1 receptor agonists SKF 38393 and fenoldopam were shifted to the left and maximal agonist responses were markedly increased. The agonist EC50 values, however, were not significantly altered by protein kinase A inhibition. Neither Sp -cAMPS nor Rp -cAMPS significantly affected basal inositol phosphate accumulation. These findings demonstrate that dopaminergic stimulation of phosphoinositide hydrolysis is inhibited by elevations in intracellular cyclic AMP. Dopamine receptor agonists that stimulate adenylyl cyclase could suppress their activation of phosphoinositide hydrolysis by concomitantly stimulating the formation of cyclic AMP in striatal tissue. The interaction between dopamine D1 receptor-stimulated elevations in cyclic AMP and dopaminergic stimulation of inositol phosphate formation suggests a cellular colocalization of these dopamine-coupled transduction pathways in at least some cells of the rat striatum.  相似文献   

6.
Dopamine agonist-stimulated [35S]GTPγS binding to membrane G proteins was studied in select brain regions under experimental conditions that permit the activation of receptor coupling to the G proteins Gi, Gs, or Gq. Agents studied were agonists known to be effective at various dopamine receptor/effector systems and included quinelorane (D2-like/Gi), SKF38393 (D1-like/Gq, D1-like/Gs), SKF85174 (D1-like/Gs), and SKF83959 (D1-like/Gq). Dopamine and SKF38393 significantly stimulated [35S]GTPγS binding to normal striatal membranes by 161% and 67% above controls. Deoxycholate, which enhances agonist-induced phospholipase C (PLC) stimulation, markedly enhanced the agonistic effects of dopamine and SKF38393 to 530% and 637% above controls, respectively. The enhancing effects of deoxycholate were reversed if it was washed off the membranes before agonist addition. The thiol-reducing agent, dithiothreitol, completely abolished the effects of SKF38393 and SKF83959, whereas SKF85174 effects were augmented. Agonist responses were concentration-related, and highest efficacies were obtained in the hippocampus, thus paralleling both the brain regional distribution and agonist efficacies previously observed in phosphoinositide hydrolysis assays. These findings suggest that D1-like receptor conformations that mediate agonist stimulation of Gs/adenylylcyclase may be structurally different from those that mediate Gq/PLC activation. Although the exact mechanism of deoxycholate's effect awaits elucidation, the results are consistent with the emerging concept of functional selectivity whereby deoxycholate could create a membrane environment that facilitates the transformation of the receptor from a conformation that activates Gs/adenylylcyclase to one that favors Gq/PLC signaling.  相似文献   

7.
The hypothermia induced by apomorphine, a mixed dopamine (DA) agonist in male Swiss-Webster mice, was not blocked by the selective D-1 antagonist SCH 23390 but was completely blocked by the selective D-2 antagonists haloperidol, sulpiride and YM-09151-2. The selective D-1 agonist SKF 38393 did not elicit hypothermic response but the selective D-2 agonist quinpirole caused a marked lowering of rectal temperature. D-2 antagonists blocked this response to quinpirole. SCH 23390 enhanced and SKF 38393 attenuated the hypothermia induced by quinpirole. Ineffective doses of haloperidol and SKF 38393, when given together, completely blocked the effect of quinpirole. It was concluded that hypothermia is a D-2 receptor mediated response but modulated by the D-1 receptor system. In another series of experiments the influence of neuroleptics and antidepressants on the hypothermic effect of apomorphine and quinpirole was investigated. The hypothermic effect of a low dose (1 mg/kg) of apomorphine was blocked by the D-2 receptor antagonists, but not by classical antidepressants. However, the response to a high dose (10 mg/kg) of apomorphine was blocked by both classical antidepressants and D-2 antagonists (except haloperidol). These drugs did not show similar effect on quinpirole-induced hypothermia. It is clear that the hypothermic response, especially that of quinpirole, is not a suitable model for testing either neuroleptics or antidepressants.  相似文献   

8.
The entorhinal cortex plays an important role in temporal lobe processes including learning and memory, object recognition, and contextual information processing. The alteration of the strength of synaptic inputs to the lateral entorhinal cortex may therefore contribute substantially to sensory and mnemonic functions. The neuromodulatory transmitter dopamine exerts powerful effects on excitatory glutamatergic synaptic transmission in the entorhinal cortex. Interestingly, inputs from midbrain dopamine neurons appear to specifically target clusters of excitatory cells located in the superficial layers of the entorhinal cortex. We have previously demonstrated that dopamine facilitates synaptic transmission through the activation of D1-like receptors. This facilitation of synaptic transmission is dependent on both activation of classical D1-like-receptors, and upon activation of dopamine receptors linked to increases in phospholipase C, inositol triphosphate (IP3), and intracellular calcium. In the present study we combined electrophysiological recordings of evoked excitatory postsynaptic currents with imaging of intracellular calcium using the fluorescent indicator fluo-4 to monitor calcium transients evoked by dopamine in electrophysiologically identified putative fan and pyramidal cells of the lateral entorhinal cortex. Bath application of dopamine (1 μM), or the phosphatidylinositol (PI)-linked D1-like-receptor agonist SKF83959 (5 μM), induced reliable and reversible increases in fluo-4 fluorescence and excitatory postsynaptic currents in fan cells, but not in pyramidal cells. In contrast, application of the classical D1-like-receptor agonist SKF38393 (10 μM) did not result in significant increases in fluorescence. Blocking release of calcium from internal stores by loading cells with the IP3 receptor blocker heparin (1 mM) or the ryanodine receptor blocker dantrolene (20 μM) abolished both the calcium transients and the facilitation of evoked synaptic currents induced by dopamine. Dopamine also induced calcium transients in fan cells when calcium was excluded from the extracellular medium, further indicating that the calcium transients are linked to release from internal stores. These results indicate that following D1-like-receptor binding, dopamine selectively induces transient elevations in intracellular calcium via activation of IP3 and ryanodine receptors, and that these elevations are linked to the facilitation of synaptic responses in putative layer II entorhinal cortex fan cells.  相似文献   

9.
Abstract: We applied in vivo microdialysis to assess the effects of dopaminergic and β-adrenergic receptor stimulation on cyclic AMP efflux in rat striatum under chloral hydrate anesthesia. Dopamine (up to 1 mM) infused for 20 min through the probe did not increase cyclic AMP, whereas both the selective dopamine D1 agonist SKF 38393 and D2 antagonist sulpiride produced modest increases. It is interesting that the β-adrenoceptor agonist isoproterenol produced a marked increase (204.7% of basal level at 1 mM) which was antagonized by the β-adreno-ceptor antagonist propranolol. Pretreatment with a glial selective metabolic inhibitor, fluorocitrate (1 mM), by a 5-h infusion through the probe attenuated basal cyclic AMP efflux by 30.3% and significantly blocked the response to isoproterenol. By contrast, striatal injection of a neuro-toxin, kainic acid (2.5 μg), 2 days before the dialysis experiment did not affect basal cyclic AMP or the response to isoproterenol, but blocked the response to SKF 38393. These data demonstrate that β-adrenoceptors as well as dopamine receptors contribute to cyclic AMP efflux in rat striatum in vivo. They also suggest that basal and β-adre-noceptor-stimulated cyclic AMP efflux are substantially dependent on intact glial cells.  相似文献   

10.
Dopamine (DA), a neurotransmitter in the nervous system, has been shown to modulate immune function. We have previously reported that five subtypes of DA receptors, including D1R, D2R, D3R, D4R and D5R, are expressed in T lymphocytes and they are involved in regulation of T cells. However, roles of these DA receptor subtypes and their coupled signal-transduction pathway in modulation of natural killer (NK) cells still remain to be clarified. The spleen of mice was harvested and NK cells were isolated and purified by negative selection using magnetic activated cell sorting. After NK cells were incubated with various drugs for 4 h, flow cytometry measured cytotoxicity of NK cells against YAC-1 lymphoma cells. NK cells expressed the five subtypes of DA receptors at mRNA and protein levels. Activation of D1-like receptors (including D1R and D5R) with agonist SKF38393 enhanced NK cell cytotoxicity, but activation of D2-like receptors (including D2R, D3R and D4R) with agonist quinpirole attenuated NK cells. Simultaneously, SKF38393 elevated D1R and D5R expression, cAMP content, and phosphorylated cAMP-response element-binding (CREB) level in NK cells, while quinpirole reduced D3R and D4R expression, cAMP content, and phosphorylated CREB level in NK cells. These effects of SKF38393 were blocked by SCH23390, an antagonist of D1-like receptors, and quinpirole effects were abolished by haloperidol, an antagonist of D2-like receptors. In support these results, H89, an inhibitor of phosphokinase A (PKA), prevented the SKF38393-dependent enhancement of NK cells and forskolin, an activator of adenylyl cyclase (AC), counteracted the quinpirole-dependent suppression of NK cells. These findings show that DA receptor subtypes are involved in modulation of NK cells and suggest that D1-like receptors facilitate NK cells by stimulating D1R/D5R-cAMP-PKA-CREB signaling pathway and D2-like receptors suppress NK cells by inhibiting D3R/D4R-cAMP-PKA-CREB signaling pathway. The results may provide more targets of therapeutic strategy for neuroimmune diseases.  相似文献   

11.
There is a lot of controversy in the literature about the role of dopamine D1 and D2 receptor stimulation on the turnover of phosphoinositols, and phosphoinositols are one of the important second messenger. In order to resolve this controversy, the effect of dopamine receptor stimulation on turnover of phosphoinositols was studied by estimation of the accumulation of individual labelled inositols in rat striatal slices which were prelabelled with [3H]myoinositol. Incubation of the prelabelled striatal slices with 1 microM of quinpirole, D2 specific agonist or with 1 microM of SKF-38393, D1 specific agonist, did not affect the accumulation of basal level of either inositol monophosphate, or inositol biphosphate, or inositol triphosphate. In addition, in conclusion of D1 specific antagonist cis-flupentixol or D2 specific antagonist sulpiride did not affect the basal levels of inositol phosphates. The activity of enzyme phospholipase-C which produces these inositol phosphates was also measured in rat striatal membrane. Incubation of rat striatal membrane with either agonist quinpirole or SKF-38393 did not change the basal level of phospholipase C. Our data thus indicate that occupation of dopamine receptors did not affect the inositol phosphate system in rat striatum.  相似文献   

12.
Abstract: The direct effect of melatonin and related agonists on Li+-amplified phosphoinositide breakdown was studied in chick brain slices prelabeled with myo-[2-3H]-inositol. The melatonin receptor agonist 6-chloromelatonin (10–100 µM) increased, in a concentration-dependent manner, the accumulation of inositol phosphates (IP) in chick brain slices. This effect of 6-chloromelatonin (10 µM) was rapid as transient increases in IP3/IP4 (maximal increase, 29% at 20 s) and IP2 levels (maximal increase, 36% at 1 min) were observed, followed by a slower but sustained increase in IP1 level (30% at 5 min), when the amount of IP3/IP4 and IP2 had already been decreased to the control level. The phosphoinositide response elicited by 6-chloromelatonin (10 µM) was dependent on the presence of extracellular calcium. Direct stimulation of membrane phospholipase C by 6-chloromelatonin (10 µM) in isolated myo-[2-3H]inositol-prelabeled optic tectum membranes was dependent on the presence of guanosine-5′-O-(3-thio)triphosphate (1 µM), thus suggesting that G protein(s) link melatonin receptor activation to phospholipase C stimulation. The competitive melatonin receptor antagonist luzindole (10–100 µM) inhibited in a concentration-dependent manner the IP1 accumulation stimulated by 6-chloromelatonin (10–100 µM); however, it did not affect the accumulation stimulated by 5-hydroxytryptamine (10 µM). By contrast, methysergide (10 µM) completely inhibited 5-hydroxytryptamine (10 µM)-, but not 6-chloromelatonin (10 µM)-, induced IP1 accumulation. Melatonin receptor agonists increased IP1 accumulation in a concentration-dependent manner reaching different maximal responses. N-Acetyl-5-hydroxytryptamine was more potent than melatonin in increasing IP1 accumulation, suggesting activation of a melatonin receptor site other than the ML-1 melatonin receptor (i.e., N-acetyl-5-hydroxytryptamine ≥ melatonin). In conclusion, these results demonstrate that activation of a melatonin receptor with pharmacological characteristics different from those of the ML-1 subtype leads to activation of the phospholipase C-mediated signal transduction pathway.  相似文献   

13.
Brain ischemia in gerbils was induced by ligation of both common carotid arteries for 1 min or 10 min. Sham-operated animals served as controls. Intracerebral injection of [3H]inositol into gerbil brain 16 hr before ischemic insult resulted in equilibration of the label between inositol lipids and water-soluble inositol phosphate.A short ischemic period (1 min) resulted in a statistically significant increase in the radioactivity of inositol triphosphate (IP3) and inositol monophosphate (IP), by about 48% and 79%, respectively, with little change in that of the intermediate inositol biphosphate (IP2), which increased by about 16%. When the ischemic period was prolonged (10 min), an increase in the radioactivity of inositol monophosphate exclusively, by about 84%, was observed. The level of radioactivity in inositol phosphates IP2 and IP3 decreased by about 50%, probably as a consequence of phosphatase activation by the ischemic insult.The agonist of the cholinergic receptor, carbachol, injected intracerebrally (40 g per animal) increased accumulation of radioactivity in all inositol phosphates. The level of radioactivity in IP3, IP2, and IP was elevated by about 40, 23, and 147%, respectively.The muscarinic cholinergic antagonist, atropine, injected intraperitoneally in doses of 100 mg/kg body wt. depressed phosphoinositide metabolism in control animals. The level of radioactivity in water-soluble inositol metabolites in the brain of animals pretreated with atropine was evidently about 32% lower than in untreated animals.Pretreatment with atropine decreased the radioactivity of all inositol phosphates in the brain of animals subjected to 1-min ischemia and the radioactivity of IP in the case of 10-min brain ischemia. Gammabutyrolactone (GBL) administered intraperitoneally in the anesthetic dose 300 mg/kg body wt. diminished inositol monophosphate accumulation induced by either ischemic condition.Results from these in vivo studies are evidence that the blockage of cholinergic receptors by atropine depresses the response of phosphoinositides to physiological and particularly pathological stimuli.The results suggest that stimulation of the cholinergic receptor system is involved in the degradation of polyphosphoinositides during ischemia.  相似文献   

14.
Fractional [3H]acetylcholine (ACh) release and regulation of release process by muscarinic receptors were studied in corpus striatum of young and aged rat brains. [3H] Quinuclidinyl benzilate (QNB) binding and carbachol stimulated phosphoinositide turnover, on the other hand, were compared in striatal, hippocampal and cortical tissues. High potassium (10 mM)-induced fractional [3H]ACh release from striatal slices was reduced by aging. Although inhibition of acetylcholinesterase with eserine (20 M) significantly decreased stimulation-induced fractional [3H]ACh release in two groups of rats, this inhibition slightly lessened with aging. Incubation of striatal slices with muscarinic antagonists reversed eserine-induced inhibition in fractional [3H]ACh release with a similar order of potency (atropine = 4-DAMP > AF-DX 116 > pirenzepine) in young and aged rat striatum, but age-induced difference in stimulated ACh release was not abolish by muscarinic antagonists. These results suggested that fractional [3H]ACh release from striatum of both age groups is modulated mainly by M3 muscarinic receptor subtype. Although both muscarinic receptor density and labeling of inositol lipids with [myo-3H]inositol decreased with aging, carbachol-stimulated [3H]myo inositol-1-fosfat (IP1) accumulation was found similar in striatal, cortical and hippocampal slices.  相似文献   

15.
In rat brain slices the synthesis of [3H]phosphoinositides and the production of [3H]inositol monophosphate (IP1) induced by norepinephrine (NE) were inhibited by glutamate. Calcium concentrations were varied to test if these inhibitory effects of glutamate were mediated by a calcium-dependent process. Although reducing calcium or addition of the calcium antagonist verpamil reduced the inhibitory effects of glutamate, these results were equivocal because reduced calcium directly decreased agonist-induced [3H]phosphoinositide synthesis. The inhibitory effects of glutamate were mimicked by quisqualate in a dose-dependent manner, but none of a variety of excitatory amino acid receptor antagonists modified the inhibition caused by quisqualate. It is suggested that glutamate activates a quisqualate-sensitive receptor (for which an antagonist is not available) and causes inhibition of phosphoinositide hydrolysis mediated in part by a direct or indirect inhibitory effect of calcium on phosphoinositide synthesis. Modulatory effects of arachidonic acid were examined because glutamate and calcium can activate phospholipase A2. Arachidonic acid caused a rapid and dose-dependent inhibition of [3H]phosphoinositide synthesis and of NE-stimulated [3H]IP1 production. A similar inhibition of the response to carbachol also occurred. The inhibition caused by arachidonic acid was unchanged by addition of inhibitors of cyclooxygenase or lipoxygenase. Activation of phospholipase A2 with melittin caused inhibitory effects similar to those of arachidonic acid. Inhibitors of phospholipase A2 were found to impair phosphoinositide metabolism, likely due to their lack of specificity for phospholipase A2. Further studies were carried out in slices that were prelabelled with [3H]inositol in an attempt to separate modulatory effects on [3H]phosphoinositide synthesis and agonist-stimulated [3H]IP1 production. Several excitatory amino acid agonists inhibited NE-stimulated [3H]IP1 production. This inhibitory inter-action could be due to impaired synthesis of [3H]phosphoinositides because, even though the slices were prelabeled, addition of unlabelled inositol reduced NE-stimulated [3H]IP1 production, indicating that continuous regeneration of [3H]phosphoinositides is required. In contrast to the inhibitory effects of the excitatory amino acids, gamma-aminobutyric acid (GABA) enhanced the response to NE in cortical and hippocampal slices. GABA also enhanced the response to carbachol in hippocampal and striatal slices and to ibotenic acid in hippocampal slices. Baclofen potentiated the response to NE similarly to the effect of GABA and baclofen partially blocked the inhibitory effect of arachidonic acid but did not alter that of quisqualate.Abbreviations AMPA -amino-3-hydroxy-5-methyl-4-isoxazolepropionic - acid AP4 dl-2-amino-4-phosphonobutyric acid - BPB bromphenacyl bromide - BSA bovine serum albumin - CNQX 6-cyano-7-nitroquinoxaline-2,3-dione - DFMO -difluoromethylornithine - DIDS diisothiocyanotostilbene-2,2-disulfonic acid - EGTA ethyleneglycol-bis-N - N, N N-tetraacetic acid - GABA -aminobutyric acid - GDEE glutamate diethyl ether - -GG -glutamylglycine - IP1 inositol monophosphate - IP2 inositol bisphosphate - IP3 inositol trisphosphate - NDGA nordihydroguaiaretic acid - NE norepinephrine - NMDA N-methyl-d-aspartate  相似文献   

16.
Extracellular ATP caused a dose-dependent accumulation of inositol phosphates and a rise in cytosolic free Ca2+ ([Ca2+]i) in C6 glioma cells with an EC50 of 60±4 and 10±5 M, respectively. The threshold concentration of ATP (3 M) for increasing [Ca2+]i was approximately 10-fold less than that for stimulating phosphoinositide (PI) turnover. The PI response showed a preference for ATP; ADP was about 3-fold less potent than ATP but had a comparable maximal stimulation (11-fold of the control). AMP and adenosine were without effect at concentrations up to 1 mM. ATP-stimulated PI metabolism was found to be partially dependent on extracellular Ca2+ and Na+ but was resistant to tetrodotoxin, saxitoxin, amiloride, ouabain, and inorganic blockers of Ca2+ channels (Co2+, Mn2+, La3+, or Cd2+). In Ca2+-free medium, ATP caused only a transient increase in [Ca2+]i as opposed to a sustained [Ca2+]i increase in normal medium. The ATP-induced elevation of [Ca2+]i was resistant to Na+ depletion and treatment with saxitoxin, verapamil and nisoldipine, but was attentuated by La3+. The differences in the characteristics of ATP-caused P1 hydrolysis and [Ca2+]i rise suggest that ATP receptors are independently coupled to phospholipase C and receptor-gated Ca2+ channels. Because of the robust effect of ATP in stimulating PI turnover and the apparent absence of P1-purinergic receptors, the C6 glioma cell line provides a useful model for investigating the transmembrane signalling pathway induced by extracellular ATP. The mechanisms underlying the unexpected finding of [Na+]o dependency for ATP-induced PI turnover require further investigation.Abbreviations PI phosphoinositide - [Ca2+]i cytosolic free Ca2+ concentration - PDBu phorbol 12, 13-dibutyrate - PSS physiological saline solution - IP inositol phosphates - IP1 inositol monophosphate - IP2 inositol bisphosphate - IP3 inositol trisphosphate - IP4 inositol (1,3,4,5) tetrakisphosphate - PLC phospholipase C  相似文献   

17.
Haloperidol is an antipsychotic agent that primarily acts as an antagonist of D2 dopamine receptors. Besides other receptor systems, it targets sigma 1 receptors (σ1Rs) and inositol 1,4,5-trisphosphate receptors (IP3Rs). Aim of this work was to investigate possible changes in IP3Rs and σ1Rs resulting from haloperidol treatment and to propose physiological consequences in differentiated NG-108 cells, i.e., effect on cellular plasticity. Haloperidol treatment resulted in up-regulation of both type 1 IP3Rs (IP3R1s) and σ1Rs at mRNA and protein levels. Haloperidol treatment did not alter expression of other types of IP3Rs. Calcium release from endoplasmic reticulum (ER) mediated by increased amount of IP3R1s elevated cytosolic calcium and generated ER stress. IP3R1s were bound to σ1Rs, and translocation of this complex from ER to nucleus occurred in the group of cells treated with haloperidol, which was followed by increased nuclear calcium levels. Haloperidol-induced changes in cytosolic, reticular, and nuclear calcium levels were similar when specific σ1 blocker -BD 1047- was used. Changes in calcium levels in nucleus, ER, and cytoplasm might be responsible for alterations in cellular plasticity, because length of neurites increased and number of neurites decreased in haloperidol-treated differentiated NG-108 cells.  相似文献   

18.
19.
Recent evidences indicate the existence of an atypical D1 dopamine receptor other than traditional D1 dopamine receptor in the brain that mediates PI hydrolysis via activation of phospholipase Cβ (PLCβ). To further understand the basic physiological function of this receptor in brain, the effects of a selective phosphoinositide (PI)-linked D1 dopamine receptor agonist SKF83959 on cytosolic free calcium concentration ([Ca2+]i) in cultured rat prefrontal cortical astrocytes were investigated by calcium imaging. The results indicated that SKF83959 caused a transient dose-dependent increase in [Ca2+]i. Application of D1 receptor, but not D2, α1 adrenergic, 5-HT receptor, or cholinergic antagonist prevented SKF83959-induced [Ca2+]i rise, indicating that activation of the D1 dopamine receptor was essential for this response. Increase in [Ca2+]i was a two-step process characterized by an initial increase in [Ca2+]i mediated by release from intracellular stores, supplemented by influx through voltage-gated calcium channels, receptor-operated calcium channels, and capacitative Ca2+ entry. Furthermore, SKF83959-stimulated increase in [Ca2+]i was abolished following treatment with a PLC inhibitor. Overall, these results suggested that activation of D1 receptor by SKF83959 mediates a dose-dependent mobilization of [Ca2+]i via the PLC signaling pathway in cultured rat prefrontal cortical astrocytes.  相似文献   

20.
A body of evidence supports the idea that the mesolimbic dopamine (DA) system modulates the natural increase in responsiveness female rats show toward offspring (biological or foster) at birth. In the absence of the full hormonal changes associated with pregnancy and birth, female rats do not show immediate responsiveness toward foster offspring. Activation of the mesolimbic DA system can produce an immediate onset of maternal behavior in these females. For example, female rats that are hysterectomized and ovariectomized on day 15 of pregnancy (15HO) and presented with pups 48 hours later normally show maternal behavior after 2-3 days of pup exposure, but will show maternal behavior on day 0 of testing after microinjection of the DA D1 receptor agonist, SKF 38393, into the nucleus accumbens (NA) at the time of pup presentation. DA D1 receptor stimulation is known to activate cAMP intracellular signaling cascades via its stimulation of adenylyl cyclase (AC). However, some DA D1 receptors are also linked to phospholipase C (PLC) and are capable of activating phosphatidylinositol signaling cascades. SKF 38393 stimulates both types of D1 receptors. Here we provide evidence that the facilitatory effects of DA D1 receptor stimulation in the NA on maternal behavior are mediated by AC-linked DA D1 receptors. By examining the effects of intra-NA application of SKF 83822, a drug which selectively binds DA D1-AC receptors, or SKF 83959, a drug which selectively activates D1-PLC-linked receptors, we find that only SKF 83822 facilitates maternal behavior onset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号