首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Can sexual dimorphism evolve because of ecological differences between the sexes? Although several examples of this phenomenon are well known from studies on birds, the idea has often been dismissed as lacking general applicability. This dismissal does not stem from contradictory data so much as from the difficulties inherent in testing the hypothesis, and its apparent lack of parsimony, in comparison to the alternative explanation of sexual selection. The only unequivocal evidence for the evolution of sexual dimorphism through intersexual niche partitioning would be disproportionate dimorphism in trophic structures (e.g., mouthparts). This criterion offers a minimum estimate of the importance of ecological causes for dimorphism, because it may fail to identify most cases. A review of published literature reveals examples of sexually dimorphic trophic structures in most animal phyla. Many of these examples seem to be attributable to sexual selection, but others reflect adaptations for niche divergence between the sexes. For example, dwarf non-feeding males without functional mouthparts have evolved independently in many taxa. In other cases, males and females differ in trophic structures apparently because of differences in diets. Such divergence may often reflect specific nutritional requirements for reproduction in females, or extreme (sexually selected?) differences between males and females in habitats or body sizes. Ecological competition between the sexes may be responsible for intersexual niche divergence in some cases, but the independent evolution of foraging specializations by each sex may be of more general importance. If ecological causation for dimorphism can be demonstrated in so many cases, despite the inadequacies of the available criteria, the degree of sexual size dimorphism in many other animal species may well also have been influenced by ecological factors. Hence, it may be premature to dismiss this hypothesis, despite the difficulty of testing it.  相似文献   

2.
Animals facing seasonal food shortage and habitat degradation may adjust their foraging behaviour to reduce intraspecific competition. In the harsh environment of the world's southernmost forests in the Magellanic sub‐Antarctic ecoregion in Chile, we studied intersexual foraging differences in the largest South American woodpecker species, the Magellanic Woodpecker (Campephilus magellanicus). We assessed whether niche overlap between males and females decrease when food resources are less abundant or accessible, that is, during winter and in secondary forests, compared to summer and in old‐growth forests, respectively. We analysed 421 foraging microhabitat observations from six males and six females during 2011 and 2012. As predicted, the amount of niche overlap between males and females decreased during winter, when provisioning is more difficult. During winter, males and females (i) used trees with different diameter at breast height (DBH); (ii) fed in trunk sections with different diameters; and (iii) fed at different heights on tree trunks or branches. Vertical niche partitioning between sexes was found in both old‐growth and secondary forests. Such a niche partitioning during winter may be a seasonal strategy to avoid competition between sexes when prey resources are less abundant or accessible. Our results suggest that the conservation of this forest specialist, dimorphic and charismatic woodpecker species requires considering differences in habitat use between males and females.  相似文献   

3.
Olav  Hogstad 《Ibis》1976,118(1):41-50
Measurements of 48 males and 45 females of Three-toed Woodpeckers shot in Norway revealed that the mean lengths of wing, tail, bill and tarsus of males were significantly greater than those of females. Sexual dimorphism was most marked for the bill and tarsus.
Feeding observations of the species from spruce-dominated mixed forests during the October-March period indicated an intersexual partitioning of the foraging niche. The males exhibited a stereotyped foraging pattern of bark scaling low down on the main trunks of dead spruce, whilst females used a more differentiated feeding technique and utilized a greater variety of trunk and branch sizes of dead, decaying and living trees of several different species. Significant intersexual differences were found in tree height preference and in the diameter of trunks and branches. The males foraged almost exclusively on the trunks of trees over 10 m high and over 15 cm in diameter, whilst females often frequented dead spruce, under 5 m high, and foraged on thinner trunks and branches. Foraging height was significantly lower for males than for females.
The relationship between the sexual dimorphism, the intersexual partitioning of the feeding niche and their biological significance, is briefly discussed.  相似文献   

4.
OLAV HOGSTAD 《Ibis》1991,133(3):271-276
During the winter, female Three-toed Woodpeckers Picoides tridactylus , when unaccompanied by the male, foraged at a lower height above the ground and on tree trunks of greater diameter than when foraging together with a male. Among males, however, no such differences were found between those birds foraging in the absence of, or in company with, a female. The niche breadth of the males was less than that of the females, indicating a higher degree of specialization by the males. The niche overlap between the sexes was less when the birds foraged together in pairs, especially as regards foraging height and foraging site diameter. The intersexual segregation of foraging niche recorded for the Three-toed Woodpecker is therefore probably not determined genetically, but is due to social dominance by males which obliges the females to occupy the less preferred niche. Both sexes spent less time being vigilant when foraging together, than when alone.  相似文献   

5.
Sexual conflict may influence the shape and evolution of body structures that males use to grasp females during mating. Not only sexual coercion but also intersexual cooperation may be involved during clasping behavior. Among pholcid spiders, secondary sexual modifications of the male chelicerae, such as apophyses with spines or tooth-like processes, function to grasp the female by specific parts of her external genitalia such as grooves or apophyses of the epigynum. We analyzed how the female and the male respond when their structures for clasping are experimentally modified in the pholcid Physocyclus dugesi. We used three treatment groups for virgin females that differed in the manipulation of the epigynum apophyses (uncovered, partially covered, and fully covered by a plaster) and two groups of males (uncovered and fully covered cheliceral apophyses). We found that females are mainly cooperative to courting males not only when the female genital apophyses were experimentally covered but also when the male cheliceral apophyses were covered. The current data also indicate behavioral flexibility in males during courtship, especially when they had difficulty in genital intromission. Our experimental results, together with previous observational studies, support a modulated-cooperative scenario between the sexes for cheliceral clasping and genital intromission in pholcid spiders.  相似文献   

6.
From the elongated neck of the giraffe to the elaborate train of the peacock, extreme traits can result from natural or sexual selection (or both). The extreme chelicerae of the long‐jawed spiders (Tetragnatha) present a puzzle: do these exaggerated chelicerae function as weapons or genitalia? Bristowe first proposed that Tetragnatha chelicerae function as a holdfast because these spiders embrace chelicerae during mating. This hypothesis has remained untested until now. Here, we use functional allometry to examine how extreme chelicerae develop and perform in the long‐jawed spider Tetragnatha elongata. Similar to other Tetragnatha species, chelicerae were longer in adult males than in adult females. Overall, we confirm Bristowe's hypothesis: elongation only occurred in the adult stage. However, we propose that chelicerae function as more than a holdfast in T. elongata. Male chelicerae exhibited positive allometry, which suggests scaling as weapons rather than genitalia. However, fieldwork revealed that the operational sex ratio is female‐biased and both adult male–male competition and sexual cannibalism were rarely observed. Consequently, we propose that the positive allometry of male chelicerae may result from sexual selection to mechanically mesh with larger and more fecund females. Evidence for mechanical mesh includes multiple traits ranging from apophyses and grooves to guide teeth on the basal portion of the chelicerae. In contrast, we propose that chelicerae of females are analogous to the female peacock's tail: shortened by natural selection limiting the exaggeration of sexually selected traits. Indeed, females had increased foraging efficiency compared to males and exhibited negative cheliceral allometry. We discuss the implications for the evolution of elongated chelicerae in Tetragnatha.  相似文献   

7.
山地麻蜥个体发育过程中头部两性异形和食性的变化   总被引:14,自引:0,他引:14  
研究了山地麻蜥(Eremias brenchleyi)个体发育过程中头部两性异形和食性的变化.成体个体大小(SVL)无显著的两性差异,但雄体具有较大的头部(头长和头宽).头部两性异形在孵出幼体就已存在,成体头部两性异形比幼体(包括孵出幼体)更为显著,雄性较大的头部与其头部随SVL的增长速率大于雌性有关.两性头部总体上随SVL呈异速增长,表现为个体发育过程中头长和头宽与SVL的线性回归方程斜率有显著的变化.孵出幼体有相对较大的头部,这种形态特征是胚胎优先保证生态学意义更为显著的头部生长的结果,有利于孵出幼体的早期生存和生长.相对头部大小在个体发育过程中有显著的变化.不同性别和大小的山地麻蜥摄入食物的种类及各种食物在摄入食物中所占的比例有一定程度的差别,食物生态位宽度和重叠度因此有一定的差别.然而,没有直接的证据表明头部两性异形能导致两性食物生态位的明显分离,并有利于减缓两性个体对食物资源的竞争。  相似文献   

8.
Male and female sooty oystercatchers (subspecies Haematopus fuliginosus fuliginosus; Haematopodidae) have an average difference in bill length of 19%. We studied the relationship between this sexual dimorphism and foraging ecology at coastal sites in southern New South Wales, Australia. Intersexual foraging divergence was most striking in diet, with seven prey classes eaten exclusively by one sex (male: 4, female: 3), and all shared prey classes eaten in different proportions. Intersexual diet partitioning was also observed in energetic rewards gained from foraging, with females gaining highest energetic benefits from eating ascidians and males from eating limpets. Furthermore, within the most commonly consumed prey item, limpets, females gained higher energetic benefit from eating smaller sizes while males gained greater rewards from the largest limpet sizes. Intersexual divergence was also observed in several aspects of foraging behaviour. Finally, there was a significant effect of tidal cycles upon intersexual niche partitioning in this species; the degree of diet divergence varied between tide conditions and females had a consistently more efficient dietary intake on neap tides than males. Diet divergence in the sooty oystercatcher is greater than previously observed in any oystercatcher, and is correlated with the largest sexual bill dimorphism recorded in this family. It is argued that intersexual competition between territorial pairs is operating to diverge male and female bill morphology.  相似文献   

9.
Sexual dimorphism of phenotypic traits associated with resource use is common in animals, and may result from niche divergence between sexes. Snakes have become widely used in studies of the ecological basis of sexual dimorphism because they are gape‐limited predators and their head morphology is likely to be a direct indicator of the size and shape of prey consumed. We examined sexual dimorphism of body size and head morphology, as well as sexual differences in diet, in a population of Mexican lance‐headed rattlesnakes, Crotalus polystictus, from the State of México, Mexico. The maximum snout–vent length of males was greater than that of females by 21%. Males had relatively larger heads, and differed from females in head shape after removing the effects of head size. In addition, male rattlesnakes showed positive allometry in head shape: head width was amplified, whereas snout length was truncated with increased head size. By contrast, our data did not provide clear evidence of allometry in head shape of females. Adults of both males and females ate predominately mice and voles; however, males also consumed a greater proportion of larger mammalian species, and fewer small prey species. The differences in diet correspond with dimorphism in head morphology, and provide evidence of intersexual niche divergence in the study population. However, because the sexes overlapped greatly in diet, we hypothesize that diet and head dimorphisms in C. polystictus are likely related to different selection pressures in each sex arising from pre‐existing body size differences rather than from character displacement for reducing intersexual competition. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 633–640.  相似文献   

10.
  1. Generalistic interactions between predator and prey may vary with ecosystem type, predator traits, and prey traits, but the interplay of these factors has not been assessed in ground food webs.
  2. We investigated trophic interactions of ground-dwelling spiders across eight forests in European Russia associated with body size, hunting strategy, microhabitat specialization, potential prey type, potential prey population density, and forest type (coniferous vs. broadleaved). We analyzed 128 individual spiders, including juveniles, all identified to the family level with two complementary methods: molecular gut content analysis, and stable isotope analysis of carbon and nitrogen.
  3. The results suggest that feeding frequency of spiders is affected by predator body size and by selection of certain prey type. Stable isotope analysis showed similar trophic niches among spider families, varying moderately with forest type. Larger spiders had higher Δ13C values than smaller ones, but similar Δ15N values, suggesting that different size classes of spiders belong to different food chains. Results based on stable isotope and molecular gut content analyses were weakly linked, indicating them targeting different trophic niche dimensions.
  4. At least for the group-level interactions, family identity and hunting strategy of predator has little predictive power while predator body size and prey traits affected trophic niche dimensions calling for future studies in this direction. Large spiders feed more and rely on different basal resources than small spiders, suggesting that including small species and juveniles provides a more comprehensive picture of food web organization.
  相似文献   

11.
Giant petrels ( Macronectes spp.) are the most sexually dimorphic of all seabirds. We used satellite-tracking and mass change during incubation to investigate the influence of sexual size dimorphism, in terms of the intersexual food competition hypothesis, on foraging and fasting strategies of northern giant petrels at South Georgia. Females foraged at sea whereas males foraged mainly on the South Georgia coast, scavenging on seal and penguin carcasses. Foraging effort (flight speed, distance covered, duration of foraging trips) was greater for females than for males. In contrast, foraging efficiency (proportionate daily mass gain while foraging) was significantly greater for males than for females. Females were significantly closer to the desertion mass threshold than males and could not compensate for the mass loss during the incubation fast while foraging, suggesting greater incubation costs for females than for males. Both sexes regulated the duration and food intake of foraging trips depending on the depletion of the body reserves. In males the total mass gain was best explained by mass at departure and body size. We suggest that sexual segregation of foraging strategies arose from size-related dominance at carcasses, promoting sexual size dimorphism. Our results indicate that sex-specific differences in fasting endurance, contest competition over food and flight metabolic rates are key elements in maintenance of sexual size dimorphism, segregating foraging strategies and presumably reducing competition between sexes.  相似文献   

12.
Intra-specific foraging niche partitioning can arise due to gender differences or individual specialisation in behaviour or prey selection. These may in turn be related to sexual size dimorphism or individual variation in body size through allometry. These variables are often inter-related and challenging to separate statistically. We present a case study in which the effects of sex, body mass and individual specialisation on the dive depths of the South Georgia shag on Bird Island, South Georgia are investigated simultaneously using a linear mixed model. The nested random effects of trip within individual explained a highly significant amount of the variance. The effects of sex and body mass were both significant independently but could not be separated statistically owing to them being strongly interrelated. Variance components analysis revealed that 45.5% of the variation occurred among individuals, 22.6% among trips and 31.8% among Dives, while R2 approximations showed gender explained 31.4% and body mass 55.9% of the variation among individuals. Male dive depths were more variable than those of females at the levels of individual, trip and dive. The effect of body mass on individual dive depths was only marginally significant within sexes. The percentage of individual variation in dive depths explained by mass was trivial in males (0.8%) but substantial in females (24.1%), suggesting that differences in dive depths among males was largely due to them adopting different behavioural strategies whereas in females allometry played an additional role. Niche partitioning in the study population therefore appears to be achieved through the interactive effects of individual specialisation and gender upon vertical foraging patch selection, and has the potential to interact in complex ways with other axes of the niche hypervolume such as foraging locations, timing of foraging and diet.  相似文献   

13.
Evolutionary radiations are one plausible explanation for the rich biodiversity on Earth. Adaptive radiations are the most studied form of evolutionary radiations, and ecological opportunity has been identified as one factor permitting them. Competition among individuals is supposedly highest in populations of conspecifics. Divergent modes of resource use might minimize trophic overlap, and thus intersexual competition, resulting in ecological character displacement between sexes. However, the role of intersexual differentiation in speciation processes is insufficiently studied. The few studies available suggest that intersexual niche differentiation exists in adaptive radiations, but their role within the radiation, and the extent of differentiation within the organism itself, remains largely unexplored. Here, we test the hypothesis that multiple morphological structures are affected by intersexual niche differentiation in “roundfin” Telmatherina, the first case where intersexual niche differentiation was demonstrated in an adaptive fish radiation. We show that sexes of two of the three morphospecies differ in several structural components of the head, all of these are likely adaptive. Sexual dimorphism is linked to the respective morphospecies‐specific ecology and affects several axes of variation. Trait variation translates into different feeding modes, processing types, and habitat usages that add to interspecific variation in all three morphospecies. Intrasexual selection, that is, male–male competition, may contribute to variation in some of the traits, but appears unlikely in internal structures, which are invisible to other individuals. We conclude that intersexual variation adds to the adaptive diversity of roundfins and might play a key role in minimizing intersexual competition in emerging radiations.  相似文献   

14.
Sexual selection drives the evolution of exaggerated traits in males of many animal species. Nevertheless, the response to this selective pressure can be constrained by genetic correlation between sexes. This hypothesis predicts that costly ornamental structures selected for only in males appear also in females, at least because both sexes share most of their genomes. If a trait bears no fitness advantages to females, its expression should reflect a compromise between selection for hypertrophy in males and natural selection favouring reduction of ornamentation in females. Therefore, extravagant male ornaments should evolve predominantly under weak intersexual genetic correlation. Here, we explore the role and evolutionary stability of the constraint imposed by intersexual genetic correlation in the evolution of body colouration in three species-rich families of killifishes. Across most killifish lineages, the evolutionary changes in male and female variegation were correlated, which identifies intersexual genetic correlation as an important factor in the evolution of killifish colouration. Several lineages overcame the constraining intersexual genetic correlation and evolved extremely conspicuous colouration in males together with plain colouration in females. Hormonal manipulations in two species from closely related genera (Nothobranchius and Fundulopanchax) differing in magnitude of sexual dichromatism suggest that pronounced sexual dimorphism in variegation evolved via disappearance of vivid body colours in females and extension of androgen-linked vivid colouration over body surface in males.  相似文献   

15.
Although it is often assumed that males and females have mating preferences for larger individuals of the other sex, potential underlying differences between male and female preferences for body size are not commonly investigated. Here, sexual differences in body size preferences are examined in the poeciliid fish, Brachyrhaphis rhabdophora. Females preferred larger males to smaller males, but preference did not appear to be affected by female size. One population-level analysis for males did not indicate an overall preference for larger females. A closer examination, however, revealed an effect of male size on preference; larger males preferred larger females, while smaller males preferred smaller females. It appears then that females, regardless of size, share a preference for large males, but males differ in their behaviour, depending on their body size. In addition, while the degree of difference in size between paired females did not appear to affect male preference, the degree of difference in size between paired males strongly affected female preference; the greater the difference, the more strongly females preferred the larger male. Thus, intersexual selection is found to operate in both sexes, but how it operates appears to differ. Intrasexual and intersexual differences in mating behaviour may be missed when evaluating population-wide preferences. That is, there can be underlying differences in how the sexes respond and the consequences of such differences should be considered when investigating mate choice. The results are considered in terms of the evolution of mating preferences, alternative mating strategies, assortative mating, the maintenance of trait variation in a population, and current methods to evaluate mating preferences.  相似文献   

16.
In sexual reproduction one sex can increase its reproductive success at the cost of the other, a situation known as intersexual conflict. In the marine isopod Idotea baltica, males guard females before copulation. The guarding phase is preceded by struggles as females resist males’ attempts to initiate guarding. We determined whether the struggle and/or mate‐guarding result in fitness costs in the form of decreasing fecundity and lower levels of the energy storage compounds, glycogen and lipids. Females that underwent the period of struggles with males had decreased glycogen levels compared with females maintained alone. No such cost was found for males. Females guarded by a male also had smaller eggs than females that were not guarded. Thus the intersexual conflict, imposed by the fitness maximization strategy of the males, gave rise to both a fecundity cost and an energetic cost for females. The fecundity cost confirms the existence of intersexual conflict in I. baltica. This cost is shared by males, suggesting that the intersexual conflict restrains the reproductive output of both sexes.  相似文献   

17.
Sex differences in foraging behavior have been widely reported in the ornithological literature, but few examples are available from tropical avifaunas. Differences between males and females in foraging behavior have been hypothesized to be a byproduct of sexual size dimorphism or a result of niche partitioning to reduce intersexual competition for food or different reproductive roles. From 2010 to 2013, I used foraging data and mist‐net capture rates from multiple study sites to examine possible sex differences in the foraging behavior of two New Guinean Pachycephala whistlers. I found that male Regent (Pachycephala schlegelii) and Sclater's (Pachycephala soror) whistlers consistently foraged in higher strata than females. It is unlikely that these differences are due to sexual dimorphism because these species exhibit little sexual dimorphism. Sex differences in foraging behavior were consistent across years and study sites and did not appear linked to breeding behavior, supporting the food‐competition hypothesis, but not the reproductive‐roles hypothesis. Male territorial defense often occurs in relatively high strata in Pachycephala whistlers, possibly influencing male foraging strata. However, male territorial behavior cannot explain why females predominately forage in lower strata. Instead, intersexual competition for food resources is likely the primary driver of differences in the foraging behavior of male and female Regent and Sclater's whistlers.  相似文献   

18.
Understanding how marine top predators exploit their environment is a central topic in marine ecology. Among all methodologies used to investigate this part of ecology, electronic devices are very useful to track animals' movements and foraging habitats, but they do not provide any dietary information. Stable isotopes provide information on trophic levels but remain imprecise to identify small spatial‐scale habitats. In this study, we combined the two approaches to obtain a synoptic view of the foraging behaviour variability of southern elephant seals Mirounga leonina. Our results suggested marked differences in distribution, diving behaviour, foraging habitats, trophic levels, and dietary habits of elephant seals according to their sex and age. Thus, we characterized main foraging habitats over the Kerguelen‐Heard Plateau and the Antarctic shelf for juvenile males, while females foraged mainly in oceanic waters of the Polar Frontal Zone and the Antarctic Zone. In addition, we highlighted the ontogeny of niche partitioning in this sexually dimorphic species. While females did not exhibit a major dietary shift in relation to their age and their breeding status, a different picture emerged for males. Young males had a trophic level identical to that of all females. However, at 3–4 yr of age, males showed a progressive increase in trophic level. The inter‐annual combination of bio‐logging and stable isotopes could provide a powerful tool to investigate possible shifts in ecological niche between years according to environmental changes.  相似文献   

19.
Even though most bird species with a raptorial feeding habit express varying extents of reversed sexual dimorphism (RSD: females bigger than males), the evolutionary basis for its maintenance, as well as its possible secondary consequences for the ecological adaptations of the different sexes, is debated. We studied pairs of tawny owls, Strix aluco (females 20% heavier than males), throughout the year by telemetry to test whether any inter-sexual differences in movement patterns, resource partitioning and breeding effort correlated with RSD. Females were larger than males in all body size measures and were 16% heavier than would be expected from the difference in wing length alone. In accordance with predictions from flight economics, males moved longer distances per time unit than females, in particular during the post-fledging season, when they also fed chicks more often than the females. Males had larger home ranges than females during the post-fledging period, whereas the sexes had home ranges of equal size during the non-breeding season. Until 10 days after fledging, females foraged much closer to the offspring than males, apparently balancing their distance to offspring between the needs of offspring guarding and foraging. In males, the parent–offspring distance only increased with decreasing brood condition. The sexes did not differ in habitat use or feeding habits, rendering no indications of food niche partitioning. The study provides further evidence that selection for males to be light and energetically efficient foragers is the main evolutionary force behind RSD in raptorial birds, even when the prey base is confined by territoriality.  相似文献   

20.
The feeding habits and trophic ecology of Mustelus lunulatus and Mustelus henlei in the central coast of the Colombian Pacific were evaluated and compared to determine whether there was trophic niche overlap or resource partitioning between these two sympatric shark species. A total of 59 prey items were identified and grouped into 10 taxonomic categories. Mustelus lunulatus fed in large proportion on Stomatopoda and Brachyura, whereas M. henlei fed almost exclusively on Teleostei. Dendrobranchiata, Cephalopoda, Anomura and Polychaeta complemented the diets of both species. There were significant differences in diet between the two species, and there was an ontogenetic diet shift in Mustelus lunulatus, with Stomatopoda being the main prey item of juveniles and Brachyura the main prey item of adults. Dietary overlap (by sex and size) was low between species, but it was high for each species, with significant overlap between juveniles and adults of M. lunulatus and M. henlei, and between males and females of M. henlei. There were differences in the trophic levels of the species, sexes and sizes. This study suggests there is food resource partitioning, and differing ecological function of the two Mustelus species in the food web of the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号