首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: This study was performed to analyse the molecular characteristics of genes encoding for the major virulence factors in Bacillus anthracis vaccine strain 'Carbosap' compared with the wild B. anthracis strain, to evaluate the basis of attenuation. METHODS AND RESULTS: The molecular characteristics of the B. anthracis 'Carbosap' vaccine strain, used as vaccine in Italy, were analysed in comparison with a B. anthracis virulent strain. Despite the presence of the two virulence plasmids pXO1 and pXO2, the 'Carbosap' strain proved to be protective for cattle. The presence of the regulatory genes atxA and pagR and the gerX operon, known to be involved in the virulence, was verified. In addition, all genes were sequenced. The results showed that no molecular differences between 'Carbosap' and the virulent strain were evident. CONCLUSIONS: The results of this study indicate that the attenuation of the 'Carbosap' vaccine strain is not due to the lack of virulence genes or to modifications occurring on the sequence of these genes. Therefore, other virulence factors, still unknown, could be involved in the pathogenic mechanisms. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper adds new information regarding the molecular characteristics of the vaccine strain 'Carbosap' and highlights the need to better understand the virulence factors involved in the pathogenicity of B. anthracis strains.  相似文献   

2.
It was shown that spore germination of different Bacillus anthracis strains in macrophage-like cells J774A.1 depended on the genotype of the strains. The virulent B. anthracis strains contain plasmids pXO1 and pX02 responsible for the synthesis of a toxin and a capsule, respectively. The loss of one of the plasmids results in the reduction of strain virulence. It was shown that effective survival of germinating spores in macrophages occurred in the presence of plasmid pXO1 only. The spores of the B. anthracis strains ?Ames and STI-Rif deprived of plasmid pXO1 were least adapted to passing through the intracellular stage. The B. anthracis strains 81/1 and 71/12 (carrying plasmids pXO1 and pXO2 and synthesizing the toxin and capsule) less effectively survived in the cytoplasm of macrophages than the strain STI-1 which has only the plasmid pXO1. It was found that the rate of synthesis of the capsule consisting of polymer gamma-D-glutamic acid depended on the ability of bacterial cells to escape from macrophages. In the B. anthracis strains carrying plasmid pXO2, capsule synthesis by vegetative cells was activated within macrophages that promoted a rapid escape of the vegetative cells from the macrophages. On the contrary, most of capsule-free cells of the vaccine strain STI-1 remained inside macrophages during the whole period of observation. Thus, integrated regulation of two processes, namely synthesis of the toxin components participating in the transition of the germinating cell from phagosome into cytoplasm, and synthesis of the capsule whose presence promotes rapid escape of bacterial cells from macrophages by presently unknown mechanism play the key role in anthrax development at early stages.  相似文献   

3.
Comparative study of virulence of B. anthracis strains harbouring pXO1 and pXO2 plasmids in mice and guinea pigs showed that among six B. anthracis strains, three were 100-1000 times less virulent for guinea pigs. Genetic construction of B. anthracis strains using transduction and conjugation transfer of resident plasmids permitted us to rule out the effects of modified pXO1 and pXO2 replicons and to prove the existence of nonidentified chromosome locuses responsible for the development of an infectious process in anthrax, along with plasmid determinants of virulence.  相似文献   

4.
Abstract Bacillus anthracis can be identified on the basis of the detection of virulence factor genes located on two plasmids, pXO1 and pXO2. Thus isolates lacking both pXO1 and pXO2 are indistinguishable from closely related B. cereus group bacteria. We developed a multiplex PCR assay for characterization of B. anthracis isolates, and simultaneous confirmation of the species identity independent of plasmid content. The assay amplifies lef, cya, pag (pXO1) and cap (pXO2) genes, and a B. anthracis specific chromosomal marker, giving an easy-to-read profile. This system unambiguously identified virulent (pXO1+/2+) and avirulent (pXO1+/2, pXO1/2+ and pXO1/2) strains of B. anthracis and distinguished 'anthrax-like' strains from other B. cereus group bacteria.  相似文献   

5.
rpoB and gyr genes (and their fragments) of chromosomal DNA of bacteria from Bacillus cereus group - B. anthracis, B. cereus, and B. thuringiensis - which are the potential markers for their genotyping were sequenced and phylogenetic trees were constructed. Sets of primers for species-specific detection of B. anthracis, B. cereus, and B. thuringiensis by multiplex polymerase chain reaction were designed. Also primers sets, which allow to differentiate strains of B. anthracis with various plasmid profiles (containing both plasmids (pXO1+, pXO2+), and without one (pXO1+, pXO2- or pXO1-, pXO2+) or both plasmids (pXO1-, pXO2-), determining pathogenic characteristics of the strains, were developed. For multiplex PCR primer sets were optimized on the annealing temperature of primers and amplicon length. Itwas shown that phylogenetic tree can be applied as an indicator of reliability and accuracy of taxonomical classification of microorganisms' species and subspecies. Comparison of pXO1 and pXO2 plasmid sequences of B. anthracis showed that these plasmids contain 18 and 4 palindrome sequences respectively which can potentially form thermodynamically stable hairpin-loop structures.  相似文献   

6.
Bacillus anthracis has four plasmid possible virulence genotypes: pXO1+/pXO2+, pXO1+/pXO2-, pXO1-/pXO2+ or pXO1-/pXO2-. Due to the lack of a specific chromosomal marker for B. anthracis, differentiation of the pXO1-/pXO2- form of B. anthracis from closely related Bacillus cereus group species is difficult. In this study, we evaluate the ability of sspE, pXO1 and pXO2 primers to discriminate individual B. anthracis and the B. cereus group genotypes using multiplex real-time PCR and melting curve analysis. Optimal conditions for successful multiplex assays have been established. Purified DNAs from 38 bacterial strains including 11 strains of B. anthracis and 18 B. cereus group strains were analyzed. Nine of the B. cereus group near-neighbor strains were shown by multilocus sequence typing to be phylogenetically proximate to the B. anthracis clade. We have demonstrated that the four plasmid genotypes of B. anthracis and B. cereus group near-neighbors were differentially and simultaneously discriminated by this assay.  相似文献   

7.
Bacillus anthracis but not always anthrax.   总被引:12,自引:0,他引:12  
Gram-positive bacilli isolated during epidemiological investigations which, on the basis of conventional tests, resemble Bacillus anthracis but which fail to produce the capsule or to induce anthrax in test animals have long been dismissed in clinical and veterinary laboratories as B. cereus or simply as unidentified Bacillus spp. and thereupon discarded as inconsequential. In this study, the application of newly available DNA probe, polymerase chain reaction and specific toxin antigen detection technology has revealed that a proportion of such strains are B. anthracis which lack the plasmid carrying the capsule gene (pXO2). While these techniques cannot, of course, be used to confirm the identities of strains resembling B. anthracis but which also lack the plasmid carrying the toxin genes (pXO1), the likelihood that these also are bona fide B. anthracis becomes more acceptable. (As yet no naturally occurring pXO1-/2+ strains have been found.) At this point, the significance of the presence of such avirulent forms of B. anthracis in specimens can only be a subject for speculation, but the possibility that they may be indicators of virulent parents somewhere in the system being examined must be considered.  相似文献   

8.
Liu X  Wang D  Wang H  Feng E  Zhu L  Wang H 《PloS one》2012,7(1):e29875
The large plasmid pXO1 encoding the anthrax toxin is important for the virulence of Bacillus anthracis. It is essential to cure pXO1 from B. anthracis to evaluate its role in the pathogenesis of anthrax infection. Because conventional methods for curing plasmids (e.g., curing agents or growth at elevated temperatures) can induce mutations in the host chromosomal DNA, we developed a specific and reliable method to eliminate pXO1 from B. anthracis using plasmid incompatibility. Three putative replication origins of pXO1 were inserted into a temperature-sensitive plasmid to generate three incompatible plasmids. One of the three plasmids successfully eliminated the large plasmid pXO1 from B. anthracis vaccine strain A16R and wild type strain A16. These findings provided additional information about the replication/partitioning of pXO1 and demonstrated that introducing a small incompatible plasmid can generate plasmid-cured strains of B. anthracis without inducing spontaneous mutations in the host chromosome.  相似文献   

9.
Bacillus anthracis but not always anthrax   总被引:1,自引:0,他引:1  
Gram-positive bacilli isolated during epidemiological investigations which, on the basis of conventional tests, resemble Bacillus anthracis but which fail to produce the capsule or to induce anthrax in test animals have long been dismissed in clinical and veterinary laboratories as B. cereus or simply as unidentified Bacillus spp. and thereupon discarded as inconsequential. In this study, the application of newly available DNA probe, polymerase chain reaction and specific toxin antigen detection technology has revealed that a proportion of such strains are B. anthracis which lack the plasmid carrying the capsule gene (pXO2). While these techniques cannot, of course, be used to confirm the identities of strains resembling B. anthracis but which also lack the plasmid carrying the toxin genes (pXO1), the likelihood that these also are bonajide B. anthracis becomes more acceptable. (As yet no naturally occurring pXOl-/2+ strains have been found.) At this point, the significance of the presence of such avirulent forms of B. anthracis in specimens can only be a subject for speculation, but the possibility that they may be indicators of virulent parents somewhere in the system being examined must be considered.  相似文献   

10.
We demonstrate that disruption of the htrA (high temperature requirement A) gene in either the virulent Bacillus anthracis Vollum (pXO1(+) , pXO2(+) ), or in the ΔVollum (pXO1(-), pXO2(-), nontoxinogenic and noncapsular) strains, affect significantly the ability of the resulting mutants to withstand heat, oxidative, ethanol and osmotic stress. The ΔhtrA mutants manifest altered secretion of several proteins, as well as complete silencing of the abundant extracellular starvation-associated neutral protease A (NprA). VollumΔhtrA bacteria exhibit delayed proliferation in a macrophage infection assay, and despite their ability to synthesize the major B. anthracis toxins LT (lethal toxin) and ET (oedema toxin) as well as the capsule, show a decrease of over six orders of magnitude in virulence (lethal dose 50% = 3 × 10(8) spores, in the guinea pig model of anthrax), as compared with the parental wild-type strain. This unprecedented extent of loss of virulence in B. anthracis, as a consequence of deletion of a single gene, as well as all other phenotypic defects associated with htrA mutation, are restored in their corresponding trans-complemented strains. It is suggested that the loss of virulence is due to increased susceptibility of the ΔhtrA bacteria to stress insults encountered in the host. On a practical note, it is demonstrated that the attenuated Vollum ΔhtrA is highly efficacious in protecting guinea pigs against a lethal anthrax challenge.  相似文献   

11.
We present the microbiological and molecular characterization of bacteria isolated from four chimpanzees and one gorilla thought to have died of an anthrax-like disease in C?te d'Ivoire and Cameroon. These isolates differed significantly from classic Bacillus anthracis by the following criteria: motility, resistance to the gamma phage, and, for isolates from Cameroon, resistance to penicillin G. A capsule was expressed not only after induction by CO(2) and bicarbonate but also under normal growth conditions. Subcultivation resulted in beta-hemolytic activity and gamma phage susceptibility in some subclones, suggesting differences in gene regulation compared to classic B. anthracis. The isolates from C?te d'Ivoire and Cameroon showed slight differences in their biochemical characteristics and MICs of different antibiotics but were identical in all molecular features and sequences analyzed. PCR and Southern blot analyses confirmed the presence of both the toxin and the capsule plasmid, with sizes corresponding to the B. anthracis virulence plasmids pXO1 and pXO2. Protective antigen was expressed and secreted into the culture supernatant. The isolates possessed variants of the Ba813 marker and the SG-749 fragment differing from that of classic B. anthracis strains. Multilocus sequence typing revealed a close relationship of our atypical isolates with both classic B. anthracis strains and two uncommonly virulent Bacillus cereus and Bacillus thuringiensis isolates. We propose that the newly discovered atypical B. anthracis strains share a common ancestor with classic B. anthracis or that they emerged recently by transfer of the B. anthracis plasmids to a strain of the B. cereus group.  相似文献   

12.
Bacillus anthracis can be identified by detecting virulence factor genes located on two plasmids, pXO1 and pXO2. Combining multiplex PCR with arrayed anchored primer PCR and biotin-avidin alkaline phosphatase indicator system, we developed a qualitative DNA chip method for characterization of B. anthracis, and simultaneous confirmation of the species identity independent of plasmid contents. The assay amplifies pag gene (in pXO1), cap gene (in pXO2) and Ba813 gene (a B. anthracis specific chromosomal marker), and the results were indicated by an easy-to-read profile based on the color reaction of alkaline phosphatase. About 1 pg of specific DNA fragments on the chip wells could be detected after PCR. With the proposed method, the avirulent (pXO1+/2-, pXO1-/2+ and pXO1-/2-) strains of B. anthracis and distinguished 'anthrax-like' strains from other B. cereus group bacteria were unambiguously identified, while the genera other than Bacillus gave no positive signal.  相似文献   

13.
The secretomes of a virulent Bacillus anthracis strain and of avirulent strains (cured of the virulence plasmids pXO1 and pXO2), cultured in rich and minimal media, were studied by a comparative proteomic approach. More than 400 protein spots, representing the products of 64 genes, were identified, and a unique pattern of protein relative abundance with respect to the presence of the virulence plasmids was revealed. In minimal medium under high CO(2) tension, conditions considered to simulate those encountered in the host, the presence of the plasmids leads to enhanced expression of 12 chromosome-carried genes (10 of which could not be detected in the absence of the plasmids) in addition to expression of 5 pXO1-encoded proteins. Furthermore, under these conditions, the presence of the pXO1 and pXO2 plasmids leads to the repression of 14 chromosomal genes. On the other hand, in minimal aerobic medium not supplemented with CO(2), the virulent and avirulent B. anthracis strains manifest very similar protein signatures, and most strikingly, two proteins (the metalloproteases InhA1 and NprB, orthologs of gene products attributed to the Bacillus cereus group PlcR regulon) represent over 90% of the total secretome. Interestingly, of the 64 identified gene products, at least 31 harbor features characteristic of virulence determinants (such as toxins, proteases, nucleotidases, sulfatases, transporters, and detoxification factors), 22 of which are differentially regulated in a plasmid-dependent manner. The nature and the expression patterns of proteins in the various secretomes suggest that distinct CO(2)-responsive chromosome- and plasmid-encoded regulatory factors modulate the secretion of potential novel virulence factors, most of which are associated with extracellular proteolytic activities.  相似文献   

14.
Here we describe the characterization of a lipoprotein previously proposed as a potential Bacillus anthracis virulence determinant and vaccine candidate. This protein, designated MntA, is the solute-binding component of a manganese ion ATP-binding cassette transporter. Coupled proteomic-serological screen of a fully virulent wild-type B. anthracis Vollum strain, confirmed that MntA is expressed both in vitro and during infection. Expression of MntA is shown to be independent of the virulence plasmids pXO1 and pXO2. An mntA deletion, generated by allelic replacement, results in complete loss of MntA expression and its phenotypic analysis revealed: (i) impaired growth in rich media, alleviated by manganese supplementation; (ii) increased sensitivity to oxidative stress; and (iii) delayed release from cultured macrophages. The DeltamntA mutant expresses the anthrax-associated classical virulence factors, lethal toxin and capsule, in vitro as well as in vivo, and yet the mutation resulted in severe attenuation; a 10(4)-fold drop in LD(50) in a guinea pig model. MntA expressed in trans allowed to restore, almost completely, the virulence of the DeltamntA B. anthracis strain. We propose that MntA is a novel B. anthracis virulence determinant essential for the development of anthrax disease, and that B. anthracisDeltamntA strains have the potential to serve as platform for future live attenuated vaccines.  相似文献   

15.
AIMS: To investigate the molecular characterization of Bacillus anthracis strains by multiplex PCR, enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) and random amplification of polymorphic DNA (RAPD). METHODS AND RESULTS: Three primers were used to amplify the cya, cap and cereolysinAB genes in the multiplex PCR. Two distinct ERIC-PCR and RAPD fragments, which separated B. anthracis into two groups, were used as probes in Southern hybridization experiments. The probes hybridized only to the cya+ B. anthracis strains identified by the multiplex PCR. Nucleotide sequence analysis of the two cloned fragments showed they were from the pXO1 plasmid of B. anthracis. CONCLUSION: Multiplex PCR simultaneously identified isolates of the Bacillus cereus group and the B. anthracis virulence factors. ERIC-PCR and RAPD, combined with the Southern hybridization analyses, differentiated B. anthracis strains and separated them from the closely related B. cereus group bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: ERIC-PCR and RAPD assay could be effective in differentiating virulent from avirulent B. anthracis. Our results also show that the amplification of the large plasmids was allowed in the ERIC-PCR and RAPD assay.  相似文献   

16.
Bacillus anthracis is generally considered non-haemolytic, when cultured on the solid media. However, strains capable to lyse sheep erythrocytes have been reported. Anthrolysin O, an orthologue of cereolysin was proposed as a putative haemolysin of B. anthracis. AIM: to determine whether anthrolysin O, haemolytic enterotoxin HBL and the pleiotropic regulator PlcR that activates antrholysin O production are associated with a haemolytic activity of B. anthracis strains isolated in Poland. MATERIAL: in total 8 B. anthracis strains - the fully virulent BL1 and seven the pXO2 lacking strains including: a vaccine strain Sterne 34F2 together with three haemolytic and three non-haemolytic strains isolated from different samples of the same animal died from anthrax in Poland. METHODS: The haemolytic activity was detected using Columbia agar plates supplemented with 5% of sheep blood. Anthrolvsin O, cereolysin and gene hblA encoding the key subunit of the HBL were detected by PCR. In addition, the plcR gene fragment containing the B. anthracis specific non-sense mutation was analysed by the DNA sequencing. Ten marker loci based MLVA genotyping was performed to distinguish tested strains. RESULTS: The alo gene encoding anthrolysin O was detected in both the haemolytic and non-haemolytic strains while hblA was absent. The B. anthracis specific plcR non-sense mutation was detected in both the groups of tested strains, suggesting that the haemolysis in tested strains may rather be conferred by the PlcR-independent factors. Moreover, haemolytic and non-haemolytic strains were indistinguishable by the MLVA. Obtained results may argue the haemolytic and non-haemolytic strains are isogenic and most probably a single mutational event is responsible for the haemolytic phenotype induction.  相似文献   

17.
Bacillus anthracis produces a number of extracellular proteases that impact the integrity and yield of other proteins in the B. anthracis secretome. In this study we show that anthrolysin O (ALO) and the three anthrax toxin proteins, protective antigen (PA), lethal factor (LF), and edema factor (EF), produced from the B. anthracis Ames 35 strain (pXO1?, pXO2?), are completely degraded at the onset of stationary phase due to the action of proteases. An improved Cre-loxP gene knockout system was used to sequentially delete the genes encoding six proteases (InhA1, InhA2, camelysin, TasA, NprB, and MmpZ). The role of each protease in degradation of the B. anthracis toxin components and ALO was demonstrated. Levels of the anthrax toxin components and ALO in the supernatant of the sporulation defective, pXO1? A35HMS mutant strain deleted for the six proteases were significantly increased and remained stable over 24 h. A pXO1-free variant of this six-protease mutant strain, designated BH460, provides an improved host strain for the preparation of recombinant proteins. As an example, BH460 was used to produce recombinant EF, which previously has been difficult to obtain from B. anthracis. The EF protein produced from BH460 had the highest in vivo potency of any EF previously purified from B. anthracis or Escherichia coli hosts. BH460 is recommended as an effective host strain for recombinant protein production, typically yielding greater than 10mg pure protein per liter of culture.  相似文献   

18.
Lipoteichoic acid (LTA), a glycerol phosphate polymer, is a component of the envelope of Gram-positive bacteria that has hitherto not been identified in Bacillus anthracis, the causative agent of anthrax. LTA synthesis in Staphylococcus aureus and other microbes is catalyzed by the product of the ltaS gene, a membrane protein that polymerizes polyglycerol phosphate from phosphatidyl glycerol. Here we identified four ltaS homologues, designated ltaS1 to -4, in the genome of Bacillus anthracis. Polyglycerol phosphate-specific monoclonal antibodies were used to detect LTA in the envelope of B. anthracis strain Sterne (pXO1(+) pXO2(-)) vegetative forms. B. anthracis mutants lacking ltaS1, ltaS2, ltaS3, or ltaS4 did not display defects in growth or LTA synthesis. In contrast, B. anthracis strains lacking both ltaS1 and ltaS2 were unable to synthesize LTA and exhibited reduced viability, altered envelope morphology, aberrant separation of vegetative forms, and decreased sporulation efficiency. Expression of ltaS1 or ltaS2 alone in B. anthracis as well as in other microbes was sufficient for polyglycerol phosphate synthesis. Thus, similar to S. aureus, B. anthracis employs LtaS enzymes to synthesize LTA, an envelope component that promotes bacterial growth and cell division.  相似文献   

19.
The transfer of plasmids by mating from four Bacillus thuringiensis subspecies to Bacillus anthracis and Bacillus cereus recipients was monitored by selecting transcipients which acquired plasmid pBC16 (Tcr). Transcipients also inherited a specific large plasmid from each B. thuringiensis donor at a high frequency along with a random array of smaller plasmids. The large plasmids (ca. 50 to 120 megadaltons), pXO13, pXO14, pXO15, and pXO16, originating from B. thuringiensis subsp. morrisoni, B. thuringiensis subsp. toumanoffi, B. thuringiensis subsp. alesti, and B. thuringiensis subsp. israelensis, respectively, were demonstrated to be responsible for plasmid mobilization. Transcipients containing any of the above plasmids had donor capability, while B. thuringiensis strains cured of each of them were not fertile, indicating that the plasmids confer conjugation functions. Confirmation that pXO13, pXO14, and pXO16 were self-transmissible was obtained by the isolation of fertile B. anthracis and B. cereus transcipients that contained only pBC16 and one of these plasmids. pXO14 was efficient in mobilizing the toxin and capsule plasmids, pXO1 and pXO2, respectively, from B. anthracis transcipients to plasmid-cured B. anthracis or B. cereus recipients. DNA-DNA hybridization experiments suggested that DNA homology exists among pXO13, pXO14, and the B. thuringiensis subsp. thuringiensis conjugative plasmids pXO11 and pXO12. Matings performed between strains which each contained the same conjugative plasmid demonstrated reduced efficiency of pBC16 transfer. However, in many instances when donor and recipient strains contained different conjugative plasmids, the efficiency of pBC16 transfer appeared to be enhanced.  相似文献   

20.
Polymorphism of five tandem repeats that are monomorphic in Bacillus anthracis was investigated in 230 isolates of the B. cereus group and in 5 sequenced B. cereus genomes in search for markers allowing identification of B. cereus and B. thuringiensis strains most closely related to B. anthracis. Using this multiple-locus variable number of tandem repeat analysis (MLVA), a cluster of 30 strains was selected for further characterization. Eventually, six of these were characterized by multilocus sequence type analysis. One of the strains is only six point mutations (of almost 3,000 bp) away from B. anthracis and was also proposed to be closest to B. anthracis by MLVA analysis. However, this strain remains separated from B. anthracis by a number of significant genetic events observed in B. anthracis, including the loss of the hemolysin activity, the presence of four prophages, and the presence of the two virulence plasmids, pXO1 and pXO2. One particular minisatellite marker provides an efficient assay to identify the subset of B. cereus and B. thuringiensis strains closely related to B. anthracis. Based on these results, a very simple assay is proposed that allows the screening of hundreds of strains from the B. cereus complex, with modest equipment and at a low cost, to eventually fill the gap with B. anthracis and better understand the origin and making of this dangerous pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号