首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The long terminal repeats (LTRs) that flank the retroviral DNA genome play a distinct role in the integration process by acting as specific substrates for the integrase (IN). The role of LTR sequences in providing substrate recognition and specificity to integration reactions was investigated for INs from human immunodeficiency virus type 1 (HIV-1), Moloney murine leukemia virus (M-MuLV), human T-cell leukemia virus type 1 (HTLV-1), and human T-cell leukemia virus type 2 (HTLV-2). Overall, these INs required specific LTR sequences for optimal catalysis of 3'-processing reactions, as opposed to strand transfer and disintegration reactions. It is of particular note that in strand transfer reactions the sites of integration were similar among the four INs. In the 3'-processing reaction, sequence specificity for each IN was traced to the three nucleotides proximal to the conserved CA. Reactions catalyzed by M-MuLV IN were additionally influenced by upstream regions. The nucleotide requirements for optimal catalysis differed for each IN. HIV-1 IN showed a broad range of substrate specificities, while HTLV-1 IN and HTLV-2 IN had more defined sequence requirements. M-MuLV IN exhibited greater activity with the heterologous LTR substrates than with its own wild-type substrate. This finding was further substantiated by the high levels of activity catalyzed by the IN on modified M-MuLV LTRs. This work suggests that unlike the other INs examined, M-MuLV IN has evolved with an IN-LTR interaction that is suboptimal.  相似文献   

2.
In order to study functional nucleotides in prototype foamy virus (PFV) DNA on specific recognition by PFV integrase (IN), we designed chimeric U5 long terminal repeat (LTR) DNA substrates by exchanging comparative sequences between human immunodeficiency virus type-1 (HIV-1) and PFV U5 LTRs, and investigated the 3'-end processing reactivity using HIV-1 and PFV INs, respectively. HIV-1 IN recognized the nucleotides present in the fifth and sixth positions at the 3'-end of the substrates more specifically than any other nucleotides in the viral DNA. However, PFV IN recognized the eighth and ninth nucleotides as distinctively as the fifth and sixth nucleotides in the reactions. In addition, none of the nucleotides present in the twelfth, sixteenth, seventeenth, eighteenth, nineteenth, and twentieth positions were not differentially recognized by HIV-1 and PFV INs, respectively. Therefore, our results suggest that the functional nucleotides that are specifically recognized by its own IN in the PFV U5 LTR are different from those in the HIV-1 U5 LTR in aspects of the positions and nucleotide sequences. Furthermore, it is proposed that the functional nucleotides related to the specific recognition by retroviral INs are present inside ten nucleotides from the 3'-end of the U5 LTR.  相似文献   

3.
Substrate specificity of Ty1 integrase.   总被引:6,自引:2,他引:4       下载免费PDF全文
Integration of the Saccharomyces cerevisiae retrotransposon Ty1 requires the element-encoded integrase (IN) protein, which is a component of cytoplasmic virus-like particles (VLPs). Using purified recombinant Ty1 IN and an oligonucleotide integration assay based on Ty1 long terminal repeat sequences, we have compared IN activity on substrates having either wild-type or altered donor ends. IN showed a marked preference for blunt-end substrates terminating in an A:T pair over substrates ending in a G:C pair or a 3' dideoxyadenosine. VLP activity on representative substrates also showed preference for donor strands which have an adenosine terminus. Staggered-end substrates showed little activity when nucleotides were removed from the end of the wild-type donor strand, but removal of one nucleotide from the complementary strand did not significantly diminish activity. Removal of additional nucleotides from the complementary strand reduced activity to minimal detection levels. These results suggest that the sequence specificity of Ty1 IN is not stringent in vitro. The absence of Ty1 IN-mediated 3' dinucleotide cleavage, a characteristic of retroviral integrases, was demonstrated by using selected substrates. In addition to the forward reaction, both recombinant IN and VLP-associated IN carry out the reverse disintegration reaction with long terminal repeat-based dumbbell substrates. Disintegration activity exhibits sequence preferences similar to those observed for the forward reaction.  相似文献   

4.
5.
6.
7.
The disintegration activity of Moloney murine leukemia virus (M-MuLV) integrase (IN) was investigated through structural and sequence modifications of a Y substrate that resembles an integration intermediate. The Y substrates, constructed from individual oligonucleotides, contain a single viral long terminal repeat (LTR) joined to a nicked target DNA. Truncation of the double-stranded LTR sequences distal to the conserved 5'-CA-3' dinucleotide progressively diminished disintegration activity. M-MuLV IN was also able to catalyze disintegration of a heterologous double-stranded LTR sequence. Significantly, the activity of M-MuLV IN on single-stranded LTR Y substrates was more dependent on the sequence and length of the LTR strand than that reported for human immunodeficiency virus type 1 (HIV-1) IN. Modifications introduced at the Y-substrate junction demonstrated that the 3'-hydroxyl group at the terminus of the target strand was necessary for efficient joining of the target DNA strands. The presence of a 2'-hydroxyl group at the 3' end of the target strand, as well as a single-nucleotide gap at the LTR-target junction, reduced disintegration activity. The absence of hydroxyl groups on the terminal nucleotide abolished joining of the target strands. The results presented here suggest that M-MuLV IN disintegration activity is dependent on substantially different LTR sequence requirements than those reported for HIV-1 IN and may be mediated primarily through a structural recognition event.  相似文献   

8.
Propagation of long terminal repeat (LTR)-bearing retrotransposons and retroviruses requires integrase (IN, EC 2.7.7.-), encoded by the retroelements themselves, which mediates the insertion of cDNA copies back into the genome. An active retrotransposon family, BARE-1, comprises approximately 7% of the barley (Hordeum vulgare subsp. vulgare) genome. We have generated models for the secondary and tertiary structure of BARE-1 IN and demonstrate their similarity to structures for human immunodeficiency virus 1 and avian sarcoma virus INs. The IN core domains were compared for 80 clones from 28 Hordeum accessions representative of the diversity of the genus. Based on the structural model, variations in the predicted, aligned translations from these clones would have minimal structural and functional effects on the encoded enzymes. This indicates that Hordeum retrotransposon IN has been under purifying selection to maintain a structure typical of retroviral INs. These represent the first such analyses for plant INs.   相似文献   

9.
Insertion of the linear retrovirus DNA genome into the host DNA by the virus-encoded integrase (IN) is essential for efficient replication. We devised an efficient virus-like DNA plasmid integration assay which mimics the standard oligonucleotide assay for integration. It permitted us to study, by electron microscopy and sequence analysis, insertion of a single long terminal repeat terminus (LTR half-site) of one plasmid into another linearized plasmid. The reaction was catalyzed by purified avian myeloblastosis virus IN in the presence of Mg2+. The recombinant molecules were easily visualized and quantitated by agarose gel electrophoresis. Agarose gel-purified recombinants could be genetically selected by transformation of ligated recombinants into Escherichia coli HB101 cells. Electron microscopy also permitted the identification and localization of IN-DNA complexes on the virus-like substrate in the absence of the joining reaction. Intramolecular and intermolecular DNA looping by IN was visualized. Although IN preferentially bound to AT-rich regions in the absence of the joining reaction, there was a bias towards GC-rich regions for the joining reaction. Alignment of 70 target site sequences 5' of the LTR half-site insertions with 68 target sites previously identified for the concerted insertion of both LTR termini (LTR full-site reaction) indicated similar GC inflection patterns with both insertional events. Comparison of the data suggested that IN recognized only half of the target sequences necessary for integration with the LTR half-site reaction.  相似文献   

10.
11.
A tetramer model for HIV-1 integrase (IN) with DNA representing 20 bp of the U3 and U5 long terminal repeats (LTR) termini was assembled using structural and biochemical data and molecular dynamics simulations. It predicted amino acid residues on the enzyme surface that can interact with the LTR termini. A separate structural alignment of HIV-1, simian sarcoma virus (SIV), and avian sarcoma virus (ASV) INs predicted which of these residues were unique. To determine whether these residues were responsible for specific recognition of the LTR termini, the amino acids from ASV IN were substituted into the structurally equivalent positions of HIV-1 IN, and the ability of the chimeras to 3 ' process U5 HIV-1 or ASV duplex oligos was determined. This analysis demonstrated that there are multiple amino acid contacts with the LTRs and that substitution of ASV IN amino acids at many of the analogous positions in HIV-1 IN conferred partial ability to cleave ASV substrates with a concomitant loss in the ability to cleave the homologous HIV-1 substrate. HIV-1 IN residues that changed specificity include Val(72), Ser(153), Lys(160)-Ile(161), Gly(163)-Val(165), and His(171)-Leu(172). Because a chimera that combines several of these substitutions showed a specificity of cleavage of the U5 ASV substrate closer to wild type ASV IN compared with chimeras with individual amino acid substitutions, it appears that the sum of the IN interactions with the LTRs determines the specificity. Finally, residues Ser(153) and Val(72) in HIV-1 IN are among those that change in enzymes that develop resistance to naphthyridine carboxamide- and diketo acid-related inhibitors in cells. Thus, amino acid residues involved in recognition of the LTRs are among these positions that change in development of drug resistance.  相似文献   

12.
Recombinant human immunodeficiency virus type 1 (HIV-1) integrase (IN) produced in Escherichia coli efficiently cleaves two nucleotides from the 3' end of synthetic oligonucleotide substrates which mimic the termini of HIV-1 proviral DNA. Efficient cleavage was restricted to HIV-1 substrates and did not occur with substrates derived from other retroviruses. Mutagenesis of the U5 long terminal repeat (LTR) terminus revealed only moderate effects of mutations outside the terminal four bases of the U5 LTR and highlighted the critical nature of the conserved CA dinucleotide motif shared by all retroviral termini. Integration of the endonuclease cleavage products occurs subsequent to cleavage, and evidence that the cleavage and integration reactions may be uncoupled is presented. Competition cleavage reactions demonstrated that IN-mediated processing of an LTR substrate could be inhibited by competition with LTR and non-LTR oligonucleotides.  相似文献   

13.
HIV-1 integrase (IN) catalyses integration of a DNA copy of the viral genome into the host genome. Specific interactions between retroviral IN and long terminal repeats (LTR) are required for this insertion. To characterize quantitatively the influence of the determinants of DNA substrate specificity on the oligomerization status of IN, we used the small-angle X-ray scattering (SAXS) technique. Under certain conditions in the absence of ODNs IN existed only as monomers. IN preincubation with specific ODNs led mainly to formation of dimers, the relative amount of which correlated well with the increase in the enzyme activity in the 3′-processing reaction. Under these conditions, tetramers were scarce. Non-specific ODNs stimulated formation of catalytically inactive dimers and tetramers. Complexes of monomeric, dimeric and tetrameric forms of IN with specific and non-specific ODNs had varying radii of gyration (Rg), suggesting that the specific sequence-dependent formation of IN tetramers can probably occur by dimerization of two dimers of different structure. From our data we can conclude that the DNA-induced oligomerization of HIV-1 IN is probably of importance to provide substrate specificity and to increase the enzyme activity.  相似文献   

14.
15.
Integrases (INs) of retroviruses and long terminal repeat retrotransposons possess a C-terminal domain with DNA binding activity. Other than this binding activity, little is known about how the C-terminal domain contributes to integration. A stretch of conserved amino acids called the GP(Y/F) domain has been identified within the C-terminal IN domains of two distantly related families, the gamma-retroviruses and the metavirus retrotransposons. To enhance understanding of the C-terminal domain, we examined the function of the GP(Y/F) domain in the IN of Tf1, a long terminal repeat retrotransposon of Schizosaccharomyces pombe. The activities of recombinant IN were measured with an assay that modeled the reverse of integration called disintegration. Although deletion of the entire C-terminal domain disrupted disintegration activity, an alanine substitution (P365A) in a conserved amino acid of the GP(Y/F) domain did not significantly reduce disintegration. When assayed for the ability to join two molecules of DNA in a reaction that modeled forward integration, the P365A substitution disrupted activity. UV cross-linking experiments detected DNA binding activity in the C-terminal domain and found that this activity was not reduced by substitutions in two conserved amino acids of the GP(Y/F) domain, G364A and P365A. Gel filtration and cross-linking of a 71-amino acid fragment containing the GP(Y/F) domain revealed a surprising ability to form dimers, trimers, and tetramers that was disrupted by the G364A and P365A substitutions. These results suggest that the GP(Y/F) residues may play roles in promoting multimerization and intermolecular strand joining.  相似文献   

16.
Retroviral integration requires cis-acting sequences at the termini of linear double-stranded viral DNA and a product of the retroviral pol gene, the integrase protein (IN). IN is required and sufficient for generation of recessed 3' termini of the viral DNA (the first step in proviral integration) and for integration of the recessed DNA species in vitro. Human immunodeficiency virus type 1 (HIV-1) IN, expressed in Escherichia coli, was purified to near homogeneity. The substrate sequence requirements for specific cleavage and integration of retroviral DNA were studied in a physical assay, using purified IN and short duplex oligonucleotides that correspond to the termini of HIV DNA. A few point mutations around the IN cleavage site substantially reduced cleavage; most other mutations did not have a drastic effect, suggesting that the sequence requirements are limited. The terminal 15 bp of the retroviral DNA were demonstrated to be sufficient for recognition by IN. Efficient specific cutting of the retroviral DNA by IN required that the cleavage site, the phosphodiester bond at the 3' side of a conserved CA-3' dinucleotide, be located two nucleotides away from the end of the viral DNA; however, low-efficiency cutting was observed when the cleavage site was located one, three, four, or five nucleotides away from the terminus of the double-stranded viral DNA. Increased cleavage by IN was detected when the nucleotides 3' of the CA-3' dinucleotide were present as single-stranded DNA. IN was found to have a strong preference for promoting integration into double-stranded rather than single-stranded DNA.  相似文献   

17.
Sequences at the left terminus of U3 in the left long terminal repeat (LTR) and at the right terminus of U5 in the right LTR are important for integration of retroviral DNA. In the infectious pathogenic molecular clone of simian immunodeficiency virus strain mac239 (SIVmac239), 10 of the 12 terminal base pairs form an imperfect inverted repeat structure (5' TGGAAGGGATTT 3' [nucleotides 1 to 12] and 3' ACGATCCCTAAA 5' [nucleotides 10279 to 10268]). Nineteen different mutant forms of SIVmac239 proviral DNA with changes at one or more of the positions in each of the 12-terminal-base-pair regions were constructed. Viral replication was severely or completely compromised with nine of these mutants. Revertants appeared 40 to 50 days after transfection in two independent experiments with mutant 7, which contained changes of AGG to TAC at positions 5 to 7 in U3 and TCC to GAA at positions 10275 to 10273 in U5. Virus produced at these times from mutant 7 transfection replicated upon reinfection with only a slight delay when compared to the wild type. Sequence analysis of the LTR and integrase regions from infected cultures revealed two predominant changes: G to A at position 10275 in U5 and Glu to Lys at position 136 in integrase. Derivatives of clone 7 in which these changes were introduced individually and together were constructed by site-specific mutagenesis. Each change individually restored replication capacity only partially. However, the combination of both mutations restored replicative capacity to that of the original revertants. These results indicate that changes in integrase can compensate for mutations in the terminal nucleotides of the SIV LTR. The results further indicate that resistance to integrase inhibitors may include both integrase and LTR mutations.  相似文献   

18.
The human T-cell leukemia virus type-2 (HTLV-2) integrase (IN) catalyzes the insertion of the viral genome into the host chromosome. HTLV-2 IN was expressed as an N-terminal hexa-histidine tagged protein in the methylotrophic yeast Pichia pastoris and as a C-terminal hexa-histidine fusion in Escherichia coli. Maximal IN expression was observed at 48h post-induction for the yeast system and 2h post-induction for E. coli. Effective purification strategies were developed using non-ionic and zwitterionic detergents for initial protein extraction, followed by a one-step nickel-chelating chromatography purification. IN from both sources was routinely greater than 90% pure with yields exceeding 1.5mg of purified IN per liter of culture for P. pastoris. The relative pI was defined for both INs, pH 5.0-5.4, by 2D-gel electrophoresis. Specific activities for IN purified from E. coli and P. pastoris were calculated from in vitro 3(') processing assays and were comparable. In vitro IN assays were also performed to optimize reaction buffer pH and metal concentrations for both 3(') processing and strand transfer assays. Strand transfer was optimal from pH 6.2-6.8, more than 1.5 pH units below the optimal 3(') processing pH of 8.3. IN from both sources showed no enhancement in activity with MnCl(2) concentrations greater than 5mM. The specific activity of P. pastoris purified IN was 0.35 product (pmol)/h/microg IN, and E. coli produced IN was 0.48 product (pmol)/h/microg IN.  相似文献   

19.
In vitro activities of purified visna virus integrase.   总被引:7,自引:5,他引:2       下载免费PDF全文
Although integration generally is considered a critical step in the retrovirus life cycle, it has been reported that visna virus, which causes degenerative neurologic disease in sheep, can productively infect sheep choroid plexus cells without detectable integration. To ascertain whether the integrase (IN) of visna virus is an inherently defective enzyme and to create tools for further study of integration of the phylogenetically related human immunodeficiency virus type 1 (HIV-1), we purified visna virus IN by using a bacterial expression system and applied various in vitro oligonucleotide-based assays to studying this protein. We found that visna virus IN demonstrates the full repertoire of in vitro functions characteristic of retroviral integrases. In particular, visna virus IN exhibits site-specific endonuclease activity following the invariant CA found two nucleotides from the 3' ends of viral DNA (processing activity), joins processed oligonucleotides to various sites on other oligonucleotides (strand transfer or integration activity), and reverses the integration reaction by resolving a complex that mimics one end of viral DNA integrated into host DNA (disintegration activity). In addition, although it has been reported that purified HIV-1 IN cannot specifically nick visna virus DNA ends, purified visna virus IN does specifically process and integrate HIV-1 DNA ends.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号