首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Alien invasive plant species can affect pollination, reproductive success and population dynamics of co-flowering native species via shared pollinators. Consequences may range from reproductive competition to facilitation, but the ecological drivers determining the type and magnitude of such indirect interactions remain poorly understood. Here, we examine the role of the spatial scale of invader presence and spatially contingent behavioural responses of different pollinator groups as potential key drivers, using the invasive Oxalis pes-caprae and the self-incompatible native annual Diplotaxis erucoides as a model system. Three treatments were assigned to native focal plants: (1) invader present at the landscape scale (hectares) but experimentally removed at the floral neighbourhood scale (pa); (2) invader present at both scales (pp); (3) invader absent at both scales (aa). Interestingly, we found pronounced spatially contingent differences in the responses of pollinators: honeybees and bumblebees were strongly attracted into invaded sites at the landscape scale, translating into native plant visitation facilitation through honeybees, while bumblebees almost exclusively visited Oxalis. Non-corbiculate wild bees, in contrast, showed less pronounced responses in foraging behavior, primarily at the floral neighborhood scale. Average heterospecific (Oxalis) pollen deposition onto stigmas of Diplotaxis was low (<1 %), but higher in the pp than in the pa treatment. Hand-pollination of Diplotaxis with Oxalis and conspecific pollen, however, reduced seed set by more than half when compared to hand-pollination with only conspecific pollen. Seed set of Diplotaxis, finally, was increased by 14 % (reproductive facilitation) in the pp treatment, while it was reduced by 27 % (reproductive competition) in the pa treatment compared to uninvaded populations. Our study highlights the crucial role of spatial scale and pollinator guild driving indirect effects of invasive on co-flowering native plant species.  相似文献   

2.
Plant invasions disrupt native plant reproduction directly via competition for light and other resources and indirectly via competition for pollination. Furthermore, shading by an invasive plant may reduce pollinator visitation and therefore reproduction in native plants. Our study quantifies and identifies mechanisms of these direct and indirect effects of an invasive shrub on pollination and reproductive success of a native herb. We measured pollinator visitation rate, pollen deposition, and female reproductive success in potted arrays of native Geranium maculatum in deciduous forest plots invaded by the non-native shrub Lonicera maackii and in two removal treatments: removal of aboveground L. maackii biomass and removal of flowers. We compared fruit and seed production between open-pollinated and pollen-supplemented plants to test for pollen and light limitation of reproduction. Plots with L. maackii had significantly lower light, pollinator visitation rate, and conspecific pollen deposition to G. maculatum than biomass removal plots. Lonicera maackii flower removal did not increase pollinator visitation or pollen deposition compared to unmanipulated invaded plots, refuting the hypothesis of competition for pollinators. Thus, pollinator-mediated impacts of invasive plants are not limited to periods of co-flowering or pollinator sharing between potential competitors. Geranium maculatum plants produced significantly fewer seeds in plots containing L. maackii than in plant removal plots. Seed set was similar between pollen-supplemented and open-pollinated plants, but pollen-supplemented plants exhibited higher seed set in plant removal plots compared to invaded plots. Therefore, we conclude that the mechanism of impact of L. maackii on G. maculatum reproduction was increased understory shade.  相似文献   

3.
Floral displays of invasive plants have positive and negative impacts on native plant pollination. Invasive plants may also decrease irradiance, which can lead to reduced pollination of native plants. The effects of shade and flowers of invasive plant species on native plant pollination will depend on overlap in flowering phenologies. We examined the effect of the invasive shrub Lonicera maackii on female reproductive success of the native herb Hydrophyllum macrophyllum at two sites: one with asynchronous flowering phenologies (slight overlap) and one with synchronous (complete overlap). At each site, we measured light availability, pollinator visitation, pollen deposition, and seed set of potted H. macrophyllum in the presence and absence of L. maackii. At both sites, understory light levels were lower in plots containing L. maackii. At the asynchronous site, H. macrophyllum received fewer pollinator visits in the presence of L. maackii, suggesting shade from L. maackii reduced visitation to H. macrophyllum. Despite reduced visitation, H. macrophyllum seed set did not differ between treatments. At the synchronous site, H. macrophyllum received more pollinator visits and produced more seeds per flower in the presence of co-flowering L. maackii compared to plots in which L. maackii was absent, and conspecific pollen deposition was positively associated with seed set. Our results support the hypothesis that co-flowering L. maackii shrubs facilitated pollination of H. macrophyllum, thereby mitigating the negative impacts of shade, leading to increased seed production. Phenological overlap appears to influence pollinator-mediated interactions between invasive and native plants and may alter the direction of impact of L. maackii on native plant pollination.  相似文献   

4.

Background and Aims

Invasive plants are potential agents of disruption in plant–pollinator interactions. They may affect pollinator visitation rates to native plants and modify the plant–pollinator interaction network. However, there is little information about the extent to which invasive pollen is incorporated into the pollination network and about the rates of invasive pollen deposition on the stigmas of native plants.

Methods

The degree of pollinator sharing between the invasive plant Carpobrotus affine acinaciformis and the main co-flowering native plants was tested in a Mediterranean coastal shrubland. Pollen loads were identified from the bodies of the ten most common pollinator species and stigmatic pollen deposition in the five most common native plant species.

Key Results

It was found that pollinators visited Carpobrotus extensively. Seventy-three per cent of pollinator specimens collected on native plants carried Carpobrotus pollen. On average 23 % of the pollen on the bodies of pollinators visiting native plants was Carpobrotus. However, most of the pollen found on the body of pollinators belonged to the species on which they were collected. Similarly, most pollen on native plant stigmas was conspecific. Invasive pollen was present on native plant stigmas, but in low quantity.

Conclusions

Carpobrotus is highly integrated in the pollen transport network. However, the plant-pollination network in the invaded community seems to be sufficiently robust to withstand the impacts of the presence of alien pollen on native plant pollination, as shown by the low levels of heterospecific pollen deposition on native stigmas. Several mechanisms are discussed for the low invasive pollen deposition on native stigmas.Key words: Alien plant, Carpobrotus aff. acinaciformis, competition for pollinators, invasion, Mediterranean shrubland, plant-pollinator network, pollen loads, pollinator visits, stigma  相似文献   

5.
Feldman TS 《Oecologia》2008,156(4):807-817
Plants may experience reduced reproductive success at low densities, due to lower numbers of pollinator visits or reduced visit quality. Co-occurring plant species that share pollinators have the potential to facilitate pollination by either increasing numbers of pollinator visits or increasing the quality of visits, but also have the potential to reduce plant reproductive success through competition for pollination. I used a field experiment with a common distylous perennial (Piriqueta caroliniana) in the presence and absence of a co-flowering species (Coreopsis leavenworthii) in plots with one of four different distances between conspecific plants. I found strong negative effects of increasing interplant distance (related to conspecific density) on several components of P. caroliniana reproductive success: pollinator visits to plants per plot visit, visits received by individual plants, conspecific pollen grains on stigmas, outcross pollen grains on stigmas, and probability of fruit production. Although P. caroliniana and C. leavenworthii share pollinators, the co-flowering species did not affect visitation, pollen receipt or reproductive effort in P. caroliniana. Pollinators moved very infrequently between species in this experiment, so floral constancy might explain the lack of effect of the co-flowering species on P. caroliniana reproductive success at low densities. In co-occurring self-incompatible plants with floral rewards, reproductive success at low density may depend more on conspecific densities than on the presence of other species.  相似文献   

6.
Movement of pollinators between coflowering plant species may influence conspecific pollen deposition and seed set. Interspecific pollinator movements between native and showy invasive plants may be particularly detrimental to the pollination and reproductive success of native species. We explored the effects of invasive Lythrum salicaria on the reproductive success of Mimulus ringens, a wetland plant native to eastern North America. Pollinator flights between these species significantly reduced the amount of conspecific pollen deposited on Mimulus stigmas and the number of seeds in Mimulus fruits, suggesting that pollen loss is an important mechanism of competition for pollination. Although pollen loss is often attributed to pollen wastage on heterospecific floral structures, our novel findings suggest that grooming by bees as they forage on a competitor may also significantly reduce outcross pollen export and seed set in Mimulus ringens.  相似文献   

7.
Variation in within-population floral density can affect interactions between plants and pollinators, resulting in variable pollen export for plants. We investigated the effects of conspecific and heterospecific floral densities on pollination success both of two related, self-compatible, nectar-rewarding orchid species in Ireland, Spiranthes romanzoffiana (rare and listed as endangered) and its congener, S. spiralis (more abundant and not of conservation concern). Floral densities, insect visitation rates, and orchid pollen transport were recorded in multiple quadrats in four populations of both orchid species over their flowering season. We found that conspecific and heterospecific co-flowering plant density affected pollination in both orchid species. For S. romanzoffiana, higher heterospecific density increased pollen removal. For S. spiralis, higher conspecific visitation increased pollen removal and increased heterospecific density decreased pollen deposition. In addition, increased conspecific density increased pollen deposition in both species. This study shows that plants may interact to facilitate or compete for different components of the pollination process, namely; pollinator attraction, pollen removal and deposition. Such interactions have immediate consequences for endangered plant species, as increases in both conspecific and heterospecific coflowering density may ameliorate the negative effects of rarity on pollination, hence overall reproductive success.  相似文献   

8.
Exotic entomophilous plants need to establish effective pollinator interactions in order to succeed after being introduced into a new community, particularly if they are obligatory outbreeders. By establishing these novel interactions in the new non-native range, invasive plants are hypothesised to drive changes in the composition and functioning of the native pollinator community, with potential impacts on the pollination biology of native co-flowering plants. We used two different sites in Portugal, each invaded by a different acacia species, to assess whether two native Australian trees, Acacia dealbata and Acacia longifolia, were able to recruit pollinators in Portugal, and whether the pollinator community visiting acacia trees differed from the pollinator communities interacting with native co-flowering plants. Our results indicate that in the invaded range of Portugal both acacia species were able to establish novel mutualistic interactions, predominantly with generalist pollinators. For each of the two studied sites, only two other co-occurring native plant species presented partially overlapping phenologies. We observed significant differences in pollinator richness and visitation rates among native and non-native plant species, although the study of β diversity indicated that only the native plant Lithodora fruticosa presented a differentiated set of pollinator species. Acacias experienced a large number of visits by numerous pollinator species, but massive acacia flowering resulted in flower visitation rates frequently lower than those of the native co-flowering species. We conclude that the establishment of mutualisms in Portugal likely contributes to the effective and profuse production of acacia seeds in Portugal. Despite the massive flowering of A. dealbata and A. longifolia, native plant species attained similar or higher visitation rates than acacias.  相似文献   

9.

Background and Aims

Plants surrounded by individuals of other co-flowering species may suffer a reproductive cost from interspecific pollen transfer (IPT). However, differences in floral architecture may reduce or eliminate IPT.

Methods

A study was made of Pedicularis densispica (lousewort) and its common co-flowering species, Astragalus pastorius, to compare reproductive and pollination success of lousewort plants from pure and mixed patches. Floral architecture and pollinator behaviour on flowers of the two plants were compared along with the composition of stigmatic pollen load of the louseworts. The extent of pollen limitation of plants from pure and mixed patches was also explored through supplemental pollination with self- and outcross pollen (PLs and PLx).

Key Results

Mixed patches attracted many more nectar-searching individuals of Bombus richardsi. These bumble-bees moved frequently between flowers of the two species. However, they pollinated P. densispica with their dorsum and A. pastorius with their abdomen. This difference in handling almost completely eliminated IPT. Lousewort plants from mixed patches yielded more seeds, and seeds of higher mass and germinability, than those from pure patches. Moreover, louseworts from mixed patches had lower PLs and PLx compared with those from pure patches.

Conclusions

Differences in floral architecture induced differences in pollinator behaviour that minimized IPT, such that co-flowering plants significantly enhanced quantity and quality of pollinator visits for the lousewort plants in patchy habitat. These findings add to our understanding of the mechanisms of pollination facilitation.  相似文献   

10.
When exotic plant species share pollinators with native species, competition for pollination may lower the reproductive success of natives by reducing the frequency and/or quality of visits they receive. Exotic species often become numerically dominant in plant communities, and the relative abundance of these potential competitors for pollination may be an important determinant of their effects on the pollination and reproductive success of co-occurring native species. Our study experimentally tests whether the presence and abundance of an invasive exotic, Lythrum salicaria L. (Lythraceae), influences reproductive success of a co-flowering native species, Mimulus ringens L. (Phrymaceae). We also examine the mechanisms of competition for pollination and how they may be altered by changes in competitor abundance. We found that the presence of Lythrum salicaria lowered mean seed number in Mimulus ringens fruits. This effect was most pronounced when the invasive competitor was highly abundant, decreasing the number of seeds per fruit by 40% in 2006 and 33% in 2007. Reductions in the number of seeds per fruit were likely due to reduced visit quality resulting from Mimulus pollen loss when bees foraged on neighboring Lythrum plants. This study suggests that visit quality to natives may be influenced by the presence and abundance of invasive flowering plants.  相似文献   

11.
Aggregations of resource-rich plants can act as “magnets” drawing pollinators from other plants. Magnets can have positive and negative impacts on co-flowering neighbours: enhanced pollination via a ‘spillover-effect’ or a reduction in pollination via competition. Support for the importance of magnets largely comes from studies conducted in the northern hemisphere. We used a comparative approach to test two hypotheses for three pairs of Australian native plants: (1) putative magnets attract a greater number and more diverse suites of pollinators than co-flowering species; and (2) the quantity, diversity and specificity of pollinators varies with distance from putative magnets. We surveyed pollinator activity on co-flowering plants before and after bagging to experimentally exclude pollinators from putative magnets, dominant flowering species with populations ranging in size from 700 to 4000 m2. Selected focal species were found to be pollinator magnets, but did not appear to influence the pollination of neighbours. Prior to bagging, putative magnets received more visits but visitors were predominantly (90–100%) exotic honeybees (Apis mellifera). The number and diversity of pollinators on co-flowering species did not consistently increase when magnets were bagged. Moreover, pollinator visitation, diversity and constancy did not vary with distance from putative magnets before or after bagging. All sampled (n = 388) honeybees had pollen of only one plant species on their bodies and no honeybee sampled on a co-flowering species carried pollen of magnet species (n = 212). We found that interactions between pollinators and co-flowering Australian plants differ substantially from those reported for the northern hemisphere; this is most likely due to the impact of abundant, introduced honeybees.  相似文献   

12.
Euscepes postfasciatus (Fairmaire) is an invasive pest of the sweet potato (Ipomoea batatas) and is also parasitic to other wild host plants of the Ipomoea genus. The population density of E. postfasciatus is sometimes greater in Ipomoea pes-caprae L. than in Ipomoea indica (Burm. f.). We investigated the desirability of I. pes-caprae as a host plant for E. postfasciatus in terms of reproductive and developmental potential. Females laid fewer eggs on I. pes-caprae, and the eclosion of their larvae was delayed compared with on I. indica. Furthermore, the larval growth rate was slower on I. pes-caprae than on I. indica. These results suggest that I. pes-caprae is not always the preferred host for egg laying and growth rate in the early developmental stages. However, the larval survival rate after the initial period of development was markedly better on I. pes-caprae than on I. indica. The present simulation study demonstrated that the population density of E. postfasciatus on I. pes-caprae overwhelmed that on I. indica over generations. Comparing the two wild host plant species, I. pes-caprae outweighs I. indica with respect to total population growth, but reproduction on I. indica may be advantageous for the colonization of the new habitat.  相似文献   

13.
Pollinating insects are not only important in wild plant pollination, but also in the production of a large number of crops. Oilseed rape production is increasing globally due to demands for biofuels which may have impacts on pollinating insects which visit the crop and on the pollination services delivered to co-flowering wild plants. In this study, we tested (1) the degree of pollinator sharing between oilseed rape and native wild plants in field margins and hedgerows and (2) the effects of oilseed rape on the quality of pollination service delivered to these wild plants. We found large overlap between flower visitors of wild plants and oilseed rape, but the composition of species overlap differed with respect to each wild plant species. Nearly all individual visitors caught on both the crop and foraging on wild species carried crop pollen, but more than half the insects also carried pollen from wild plants. However, very little oilseed rape pollen was deposited on wild plant stigmas. This shows that (1) oilseed rape overlaps in pollinator niche with most co-flowering wild plants, and (2) crop pollen deposition on wild plant stigmas is low which may indicate that it is unlikely to cause reductions in seed set of wild plants, although this was not measured here. Furthermore, wild plants in field margins and hedgerows are important sources of alternative forage for pollinating insects even when a crop is mass flowering, and we suggest maintenance and augmentation of field margins and hedgerows to provide alternative forage for pollinator conservation to continue provision of pollination services to both crops and wild plants.  相似文献   

14.
Oxalis pes-caprae, a tristylous flowering plant native to South Africa, is described in the western Mediterranean basin as an asexual—only 5x short-styled morph (5x S-morph) invasive weed losing all mating partners after introduction. The objective of this study was to reassess the patterns of floral morph and cytotype distribution and the sexual reproduction ability in this invaded range. For that, floral morph and cytotype composition were evaluated in 39 populations of O. pes-caprae in a methodical sampling. The reproductive success of natural populations was assessed as fruit and seed production and seed germination for all floral morphs and cytotypes detected. Self- and morph-incompatibility were also studied with controlled hand pollinations. A remarkable diversity in floral morph and cytotype composition was observed. Furthermore, we observed successful sexual reproduction in several localities across the surveyed area. The S-morph is still dominant in this invaded area, and although it was mostly 5x, an additional cytotype (4x) was also recorded. Records of both a mid-styled morph (M-morph) and an area with trimorphic populations of this species are reported here for the first time in the invasive range of the Mediterranean basin. The long-styled morph appears to occur randomly across the surveyed area, while the M-morph is concentrated mainly in Estremadura province (Portugal), where a breakdown in the incompatibility system was observed. These distribution patterns may result from events of sexual reproduction after incompatibility breakdown and/or from multiple introduction events from the native area. The ability to reproduce sexually, undetected so far, may have important impacts in the population dynamics and major consequences for the adaptation and selection potential of O. pes-caprae in this invaded area.  相似文献   

15.
夏婧  郭友好 《生物多样性》2012,20(3):330-336
开花物候是物种间相互作用的重要生活史特征和适合度因子,在全球气候变化的背景下而备受关注.为探讨开花时间如何存种内和种间水平上影响植物的传粉和生殖成功,我们连续3年(2003-2005)对不同花期和伴生种存在情况下的鹤首马先蒿(Pedicularis gruina)的传粉者访花忠实度、受粉率、坐果率、单果种子产量和果实被啃食频率进行了比较研究.结果表明鹤首马先蒿的坐果率主要受其传粉环境的影响:在没有伴生种时,不同时期鹤首马先蒿的坐果率没有显著差异,34-38%的花可以坐果;在有伴生种存在时既可以显著提高其坐果率,也可显著降低其坐果率,这取决于传粉者类型以及伴生种密穗马先蒿(P.densispica)花期的差异.密穗马先蒿具有花蜜和花粉双重报酬,在群落中可以作为主体物种吸引传粉者并间接促进与其伴生的鹤首马先蒿的传粉和生殖成功.同样无蜜的管花马先蒿(P.siphonantha)和鹤首马先蒿伴生,则是通过提高群落水平对传粉者的吸引力进而直接促进鹤首马先蒿的传粉和生殖成功.此外,研究结果也表明开花时间对坐果率没有显著影响,但是显著影响单果种子产量和果实被啃食的频率.在相同的传粉条件下早花期植株单果种子产量显著高于晚花期的种子产量,同时早花期的果实被啃食的频率显著增加.  相似文献   

16.
Many food crops depend on animal pollination to set fruit. In light of pollinator declines there is growing recognition of the need for agro-ecosystems that can sustain wild pollinator populations, ensuring fruit production and pollinator conservation into the future. One method of supporting resident wild pollinator populations within agricultural landscapes is to encourage and maintain floral diversity. However, pollinator visitation to crop plants can be affected either positively (facilitation) or negatively (competition) by the presence of co-flowering plants. The strength and direction of the facilitative/competitive relationship is driven by multiple factors, including floral abundance and the degree of overlap in pollinator visitation networks. We sought to determine how plant-pollinator networks, within and surrounding sweet cherry (Prunus avium) orchards, change across key time points during the cherry flowering season, in three growing regions in Australia. We found significant overlap in the suite of flower visitors, with seven taxa (including native bees, flies, hoverflies and introduced honey bees, Apis mellifera) observed visiting cherry and other co-flowering species within the orchard and/or the wider surrounding matrix. We found evidence of pollinator facilitation with significantly more total cherry flower visits with increasing percent cover of co-flowering plants within the wider landscape matrix and increased visitation to cherry by honey bees with increasing co-flowering plant richness within the orchard. During the cherry flowering period there was a significant positive relationship between pollinator richness on cherry and pollinator richness on co-flowering plants within the orchard and the area of native vegetation surrounding orchards. Outside of the crop flowering season, co-flowering plants within the orchard and wider landscape matrix supported the same pollinator taxa that were recorded visiting cherry when the crop was flowering. This shows wild plants help support the pollinators important to crop pollination, outside of the crop flowering season, highlighting the role of co-flowering plants within pollinator-dependent cropping systems.  相似文献   

17.
Invasive plants can impact biodiversity and ecosystem functioning by displacing native plants and crop species due to competition for space, nutrients, water and light. The presence of co-flowering invasives has also been shown to affect some native plants through the reduction in pollinator visitation or through the deposition of heterospecific pollen on the native’s stigmas leading to stigma clogging. We examined the impact of the invasive plant Solanum elaeagnifolium Cavanilles (silver-leafed nightshade), native to South and Central America and South-western parts of North America, on the seed set of the native Glaucium flavum Crantz (yellow-horned poppy) on Lesvos Island, Greece. To do this we measured seed set and visitation rates to G. flavum before and after the placement of potted individuals of the invasive near the native plants. In addition, we hand-crossed G. flavum flowers with super-optimal amounts of conspecific pollen, bagged flowers to measure the rate of spontaneous selfing, and applied self-pollen to measure self-compatibility of G. flavum. The hand-selfing treatment resulted in very low seed set, which indicates that G. flavum is to a large degree self-incompatible and highlights the plant’s need for insect-mediated outcrossing. We show that the presence of the invasive significantly enhanced pollen limitation, although the overall visitation rates were not reduced and that this increase is due to a reduction in honeybee visitation in the presence of the invasive resulting in reduced pollination.  相似文献   

18.
Bees collect pollen as an important resource for offspring development while acting as pollen vectors for the plants visited. Foraging preferences of pollinators together with plant species availability shape the web of interactions at the local scale. In this study, we focused on the bee pollinator community of a population of the rare protected perennial herb Dictamnus albus, with the aim to characterise the pollen preferences and the foraging niche overlap among species through time. Bees were sampled during four consecutive years in a natural population of D. albus, throughout the blooming period of the plant species. We performed an analysis of insect pollen loads to investigate the interactions with the study species and the co-flowering plants in the area, and to evaluate the degree of foraging overlap among pollinators. Over the study years, all bee species showed a high fidelity to D. albus (60–80%), even if some taxa preferentially collected pollen from other flowering species. The foraging niche overlap in the pollinator community decreased together with an increased diversity of co-flowering plant species. The results obtained indicate that bees preferentially forage on D. albus in the studied area, but that co-flowering species contribute to complement their diet and likely reduce competition for foraging resources. It appears therefore important to maintain a high diversity of co-flowering plants to preserve the diversity in the studied pollinator community of D. albus.  相似文献   

19.
Invasive plants may threaten the reproductive success of native sympatric plants by modifying the pollination process. One potential mechanism takes place through the deposition of invasive pollen onto native stigmas when pollinators are shared among species. We explore how pollen from the invasive plant Brassica nigra influences pre- and post-fertilization stages in the native plant Phacelia parryi, through a series of hand pollination experiments. These two species share pollinators to a high degree. P. parryi flowers were hand-pollinated with either pure conspecific pollen (the control) or with B. nigra pollen applied prior to, simultaneously with, or following conspecific pollen. Application of B. nigra pollen lowered seed set, with the simultaneous application resulting in the highest reduction. Pollen tube growth was also influenced by the presence of invasive pollen, with fewer conspecific pollen tubes reaching the base of P. parryi styles in treatments where B. nigra pollen was applied prior to or simultaneously with conspecific pollen. The deleterious effects of invasive pollen on native seed set in this study are likely not due to loss of stigmatic receptivity since seed set was less affected when heterospecific pollen was applied prior to conspecific pollen, but may instead involve interactions between interspecific pollen grains on the stigma or within the style. Our study highlights the importance of timing of foreign pollen deposition on native stigmas and suggests that interspecific pollen transfer between native and exotic plants may be an important mechanism of competition for pollination in invaded plant communities.  相似文献   

20.
Floral orientation may affect pollinator attraction and pollination effectiveness, and its influences may differ among pollinator species. We, therefore, hypothesized that, for plant species with a generalized pollination system, changes in floral orientation would affect the composition of pollinators and their relative contribution to pollination. Geranium refractum, an alpine plant with downward floral orientation was used in this study. We created upward-facing flowers by altering the flower angle. We compared the pollinator diversity, pollination effectiveness, and pollinator importance, as well as female reproductive success between flowers with downward- and upward-facing orientation. Results indicated that the upward-facing flowers were visited by a wider spectrum of pollinators (classified into functional groups), with higher pollinator diversity than natural flowers. Moreover, due to influences on visitation number and pollen removal, the pollinator importance exhibited by the main pollinator groups differed between flower types. Compared with natural flowers, the pollination contribution of principal pollinators (i.e., bumblebees) decreased in upward-facing flowers and other infrequent pollinators, such as solitary bees and muscoid flies, removed more pollen. Consequently, stigmatic pollen loads were lower in upward- than in downward-facing flowers. These findings reveal that floral orientation may affect the level of generalization of a pollination system and the relative importance of diverse pollinators. In this species, the natural downward-facing floral orientation may increase pollen transfer by effective pollinators and reduce interference by inferior pollinators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号