首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Short interfering RNAs (siRNAs) are a class of regulatory effectors that enforce gene silencing through formation of RNA duplexes. Although progress has been made in identifying the capabilities of siRNAs in silencing foreign RNA and transposable elements, siRNA functions in endogenous gene regulation have remained mysterious. In certain organisms, siRNA biosynthesis involves novel enzymes that act as RNA-directed RNA polymerases (RdRPs). Here we analyze the function of a Caenorhabditis elegans RdRP, RRF-3, during spermatogenesis. We found that loss of RRF-3 function resulted in pleiotropic defects in sperm development and that sperm defects led to embryonic lethality. Notably, sperm nuclei in mutants of either rrf-3 or another component of the siRNA pathway, eri-1, were frequently surrounded by ectopic microtubule structures, with spindle abnormalities in a subset of the resulting embryos. Through high-throughput small RNA sequencing, we identified a population of cellular mRNAs from spermatogenic cells that appear to serve as templates for antisense siRNA synthesis. This set of genes includes the majority of genes known to have enriched expression during spermatogenesis, as well as many genes not previously known to be expressed during spermatogenesis. In a subset of these genes, we found that RRF-3 was required for effective siRNA accumulation. These and other data suggest a working model in which a major role of the RRF-3/ERI pathway is to generate siRNAs that set patterns of gene expression through feedback repression of a set of critical targets during spermatogenesis.REPRESSION of gene expression by small RNAs of ∼20–30 nt in length is important for many aspects of multicellular eukaryotic development. A variety of classes of small RNA with distinct structural features, modes of biogenesis, and biological functions have been identified (reviewed in Hutvagner and Simard 2008). We are particularly interested in a class of small RNAs, called endogenous short interfering RNAs (siRNAs), that are similar to intermediates in exogenously triggered RNA interference (RNAi) in their perfect complementarity to mRNA targets. High-throughput sequencing technology has provided a valuable tool for characterization of endogenous siRNA populations from many diverse sources, including mouse embryonic stem cells (Babiarz et al. 2008), Drosophila heads (Ghildiyal et al. 2008), and Arabidopsis pollen (Slotkin et al. 2009). These siRNAs have been proposed to function in the regulation of both cellular processes and genome defense through downregulation of gene expression. Caenorhabditis elegans, like plants and fungi, utilizes RNA-copying enzymes called RNA-directed RNA polymerases (RdRPs) as part of the RNAi machinery (Smardon et al. 2000; Sijen et al. 2001). While two of the C. elegans RdRPs are nonessential (RRF-1 and RRF-2), mutations in either of the remaining two (EGO-1 or RRF-3) lead to fertility defects (Smardon et al. 2000; Simmer et al. 2002). RRF-3 is functionally distinct from EGO-1 in that the RRF-3 requirement in fertility is temperature dependent. In addition, RRF-3 activity has an inhibitory effect on exogenously triggered RNAi (resulting in an ERI, or enhanced RNAi, mutant phenotype in rrf-3 mutants). Mutants lacking either RRF-3 or another ERI factor, ERI-1, have been used as experimental tools because of their enhanced sensitivity in RNAi-based screens. One proposed mechanism for the enhancement in RNAi in rrf-3 and eri mutants has been a competition for cofactors between the exogenously triggered RNAi pathway and an endogenous RNAi pathway. Consistent with this hypothesis, siRNAs corresponding to several genes have been shown by Northern analysis to depend upon RRF-3 and other ERI factors for their accumulation (Duchaine et al. 2006; Lee et al. 2006; Yigit et al. 2006). Global microarray analyses have also been undertaken to identify messenger RNAs whose expression is affected by RRF-3 and ERI-1 (Lee et al. 2006; Asikainen et al. 2007).A functional significance of the RRF-3/ERI pathway has been inferred by the inability of rrf-3, eri-1, eri-3, and eri-5 mutant strains to propagate at a high growth temperature (Simmer et al. 2002; Duchaine et al. 2006). Rather than producing temperature-sensitive mutant protein effects, RRF-3 and other ERI proteins are thought to act in a temperature-sensitive process, as evidenced by the predicted truncated and presumed nonfunctional protein fragments that would result from the available deletion alleles and by their shared temperature-sensitive phenotypes. rrf-3 mutant animals have been observed to exhibit X-chromosome missegregation (Simmer et al. 2002) and an unusual persistence of a chromatin mark on the X chromosome during male spermatogenesis (Maine et al. 2005). X-chromosome missegregation and defective spermatogenesis have been referred to in previous studies of eri-1 (Kennedy et al. 2004) and eri-3 and eri-5 (Duchaine et al. 2006). Furthermore, eri-3 mutant sterility can be rescued by insemination with wild-type sperm (Duchaine et al. 2006).Here we investigated the role of RRF-3 during spermatogenesis. We found defects evident at multiple stages, including after fertilization, where defects in rrf-3 mutant sperm can produce subsequent nonviable embryos. By using high-throughput sequencing, we characterized a large population of siRNAs present in spermatogenic cells and found a strong enrichment for antisense siRNAs from genes with known mRNA expression during spermatogenesis. While the majority of siRNA production during spermatogenesis does not require RRF-3, we found a set of genes for which siRNA production was dependent upon RRF-3. Existing data indicate increased expression for these genes in rrf-3 and/or eri-1 mutants. Taken together, our analyses suggest a working model in which the RRF-3/ERI pathway generates siRNAs that downregulate specific genes during spermatogenesis, with this regulation playing a key role in generating functional sperm.  相似文献   

2.
The use of bioinformatics tools require different sequence formats at various instances. Every tool uses specific set of formats for processing. Sequence in one format is often required in another format. Thus, there is a need for sequence format conversion. A number of such tools are available in the public domain. Here, we describe BIOFFORC as a file format converter. The tool is developed with a graphical user interface in PERL.

Availability

http://www.winningpath.com/biofforc/  相似文献   

3.
Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new “designability”-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license).
This is a PLOS Computational Biology Software Article
  相似文献   

4.
Tn-seq is a high throughput technique for analysis of transposon mutant libraries. Tn-seq Explorer was developed as a convenient and easy-to-use package of tools for exploration of the Tn-seq data. In a typical application, the user will have obtained a collection of sequence reads adjacent to transposon insertions in a reference genome. The reads are first aligned to the reference genome using one of the tools available for this task. Tn-seq Explorer reads the alignment and the gene annotation, and provides the user with a set of tools to investigate the data and identify possibly essential or advantageous genes as those that contain significantly low counts of transposon insertions. Emphasis is placed on providing flexibility in selecting parameters and methodology most appropriate for each particular dataset. Tn-seq Explorer is written in Java as a menu-driven, stand-alone application. It was tested on Windows, Mac OS, and Linux operating systems. The source code is distributed under the terms of GNU General Public License. The program and the source code are available for download at http://www.cmbl.uga.edu/downloads/programs/Tn_seq_Explorer/ and https://github.com/sina-cb/Tn-seqExplorer.  相似文献   

5.
6.
7.
Chemically synthesized small interfering RNA (siRNA) is a widespread molecular tool used to knock down genes in mammalian cells. However, designing potent siRNA remains challenging. Among tools predicting siRNA efficacy, very few have been validated on endogenous targets in realistic experimental conditions. We previously described a tool to assist efficient siRNA design (DSIR, Designer of siRNA), which focuses on intrinsic features of the siRNA sequence. Here, we evaluated DSIR’s performance by systematically investigating the potency of the siRNA it designs to target ten cancer-related genes. mRNA knockdown was measured by quantitative RT-PCR in cell-based assays, revealing that over 60% of siRNA sequences designed by DSIR silenced their target genes by at least 70%. Silencing efficacy was sustained even when low siRNA concentrations were used. This systematic analysis revealed in particular that, for a subset of genes, the efficiency of siRNA constructs significantly increases when the sequence is located closer to the 5′-end of the target gene coding sequence, suggesting the distance to the 5′-end as a new feature for siRNA potency prediction. A new version of DSIR incorporating these new findings, as well as the list of validated siRNA against the tested cancer genes, has been made available on the web (http://biodev.extra.cea.fr/DSIR).  相似文献   

8.
Influenza A virus (IAV) subtypes against which little or no pre-existing immunity exists in humans represent a serious threat to global public health. Monitoring of IAV in animal hosts is essential for early and rapid detection of potential pandemic IAV strains to prevent their spread. Recently, the increased pandemic potential of the avian-like swine H1N1 IAV A/swine/Guangdong/104/2013 has been suggested. The virus is infectious in humans and the general population seems to lack neutralizing antibodies against this virus. Here we present an in silico analysis that shows a strong human propensity of this swine virus further confirming its pandemic potential. We suggest mutations which would further enhance its human propensity. We also propose conserved antigenic determinants which could serve as a component of a prepandemic vaccine. The bioinformatics tool, which can be used to further monitor the evolution of swine influenza viruses towards a pandemic virus, are described here and are made publically available (http://www.vin.bg.ac.rs/180/tools/iav_mon.php; http://www.biomedprotection.com/iav_mon.php).  相似文献   

9.
10.
11.
Comparative analyses of the control of mammalian microbiomes by host genetic architecture reveal striking conserved features that have implications for the evolution of host–microbiome interactions.See related Research article: http://www.genomebiology.com/2015/16/1/191  相似文献   

12.
The spliceosome is a huge molecular machine that assembles dynamically onto its pre-mRNA substrates. A new study based on interactome analysis provides clues about how splicing-regulatory proteins modulate assembly of the spliceosome to either activate or repress splicing.Please see related Research article: http://www.genomebiology.com/2015/16/1/119/abstract  相似文献   

13.
The par genes of Caenorhabditis elegans are essential for establishment and maintenance of early embryo polarity and their homologs in other organisms are crucial polarity regulators in diverse cell types. Forward genetic screens and simple RNAi depletion screens have identified additional conserved regulators of polarity in C. elegans; genes with redundant functions, however, will be missed by these approaches. To identify such genes, we have performed a genome-wide RNAi screen for enhancers of lethality in conditional par-1 and par-4 mutants. We have identified 18 genes for which depletion is synthetically lethal with par-1 or par-4, or both, but produces little embryo lethality in wild type. Fifteen of the 18 genes identified in our screen are not previously known to function in C. elegans embryo polarity and 11 of them also increase lethality in a par-2 mutant. Among the strongest synthetic lethal genes, polarity defects are more apparent in par-2 early embryos than in par-1 or par-4, except for strd-1(RNAi), which enhances early polarity phenotypes in all three mutants. One strong enhancer of par-1 and par-2 lethality, F25B5.2, corresponds to nop-1, a regulator of actomyosin contractility for which the molecular identity was previously unknown. Other putative polarity enhancers identified in our screen encode cytoskeletal and membrane proteins, kinases, chaperones, and sumoylation and deubiquitylation proteins. Further studies of these genes should give mechanistic insight into pathways regulating establishment and maintenance of cell polarity.  相似文献   

14.
SNUFER is a software for the automatic localization and generation of tables used for the presentation of single nucleotide polymorphisms (SNPs). After input of a fasta file containing the sequences to be analyzed, a multiple sequence alignment is generated using ClustalW ran inside SNUFER. The ClustalW output file is then used to generate a table which displays the SNPs detected in the aligned sequences and their degree of similarity. This table can be exported to Microsoft Word, Microsoft Excel or as a single text file, permitting further editing for publication. The software was written using Delphi 7 for programming and FireBird 2.0 for sequence database management. It is freely available for noncommercial use and can be downloaded from http://www.heranza.com.br/bioinformatica2.htm.  相似文献   

15.
PathVisio is a commonly used pathway editor, visualization and analysis software. Biological pathways have been used by biologists for many years to describe the detailed steps in biological processes. Those powerful, visual representations help researchers to better understand, share and discuss knowledge. Since the first publication of PathVisio in 2008, the original paper was cited more than 170 times and PathVisio was used in many different biological studies. As an online editor PathVisio is also integrated in the community curated pathway database WikiPathways.Here we present the third version of PathVisio with the newest additions and improvements of the application. The core features of PathVisio are pathway drawing, advanced data visualization and pathway statistics. Additionally, PathVisio 3 introduces a new powerful extension systems that allows other developers to contribute additional functionality in form of plugins without changing the core application.PathVisio can be downloaded from http://www.pathvisio.org and in 2014 PathVisio 3 has been downloaded over 5,500 times. There are already more than 15 plugins available in the central plugin repository. PathVisio is a freely available, open-source tool published under the Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0). It is implemented in Java and thus runs on all major operating systems. The code repository is available at http://svn.bigcat.unimaas.nl/pathvisio. The support mailing list for users is available on https://groups.google.com/forum/#!forum/wikipathways-discuss and for developers on https://groups.google.com/forum/#!forum/wikipathways-devel.
This is a PLOS Computational Biology software article.
  相似文献   

16.
A Genomic Target Database (GTD) has been developed having putative genomic drug targets for human bacterial pathogens. The selected pathogens are either drug resistant or vaccines are yet to be developed against them. The drug targets have been identified using subtractive genomics approaches and these are subsequently classified into
  1. Drug targets in pathogen specific unique metabolic pathways,
  2. Drug targets in host-pathogen common metabolic pathways, and
  3. Membrane localized drug targets.
HTML code is used to link each target to its various properties and other available public resources. Essential resources and tools for subtractive genomic analysis, sub-cellular localization, vaccine and drug designing are also mentioned. To the best of authors knowledge, no such database (DB) is presently available that has listed metabolic pathways and membrane specific genomic drug targets based on subtractive genomics. Listed targets in GTD are readily available resource in developing drug and vaccine against the respective pathogen, its subtypes, and other family members. Currently GTD contains 58 drug targets for four pathogens. Shortly, drug targets for six more pathogens will be listed.

Availability

GTD is available at IIOAB website http://www.iioab.webs.com/GTD.htm. It can also be accessed at http://www.iioabdgd.webs.com.GTD is free for academic research and non-commercial use only. Commercial use is strictly prohibited without prior permission from IIOAB.  相似文献   

17.
18.

Background

High-throughput RNA interference (RNAi) screening has become a widely used approach to elucidating gene functions. However, analysis and annotation of large data sets generated from these screens has been a challenge for researchers without a programming background. Over the years, numerous data analysis methods were produced for plate quality control and hit selection and implemented by a few open-access software packages. Recently, strictly standardized mean difference (SSMD) has become a widely used method for RNAi screening analysis mainly due to its better control of false negative and false positive rates and its ability to quantify RNAi effects with a statistical basis. We have developed GUItars to enable researchers without a programming background to use SSMD as both a plate quality and a hit selection metric to analyze large data sets.

Results

The software is accompanied by an intuitive graphical user interface for easy and rapid analysis workflow. SSMD analysis methods have been provided to the users along with traditionally-used z-score, normalized percent activity, and t-test methods for hit selection. GUItars is capable of analyzing large-scale data sets from screens with or without replicates. The software is designed to automatically generate and save numerous graphical outputs known to be among the most informative high-throughput data visualization tools capturing plate-wise and screen-wise performances. Graphical outputs are also written in HTML format for easy access, and a comprehensive summary of screening results is written into tab-delimited output files.

Conclusion

With GUItars, we demonstrated robust SSMD-based analysis workflow on a 3840-gene small interfering RNA (siRNA) library and identified 200 siRNAs that increased and 150 siRNAs that decreased the assay activities with moderate to stronger effects. GUItars enables rapid analysis and illustration of data from large- or small-scale RNAi screens using SSMD and other traditional analysis methods. The software is freely available at http://sourceforge.net/projects/guitars/.  相似文献   

19.
Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号