首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Borrelia burgdorferi encodes a functional homolog of canonical Lon protease termed Lon-2. To date, the contribution of Lon-2 to B. burgdorferi fitness and infection remains unexplored. Herein, we showed that expression of lon-2 was highly induced during animal infection, suggesting that Lon-2 is important for B. burgdorferi infection. We further generated a lon-2 deletion mutant. Compared with that of wild-type (WT) strain, the infectivity of the mutant was severely attenuated in a murine infection model. Although no growth defect was observed for the mutant in normal BSK-II medium, resistance of the lon-2 mutant to osmotic stress was markedly reduced. In addition, when exposed to tert-Butyl hydroperoxide, survival of the lon-2 mutant was impaired. In addition, we found that the protein levels of RpoS and RpoS-dependent OspC were decreased in the mutant. All these phenotypes were restored to WT or near-WT levels when lon-2 mutation was complemented in cis. Taken together, these results demonstrate that Lon-2 is critical for B. burgdorferi to establish infection and to cope with environmental stresses. This study provides a foundation for further uncovering the direct link between the dual roles of Lon-2 in protein quality control and bacterial pathogenesis.  相似文献   

2.
Lon ATP-dependent proteases are key components of the protein quality control systems of bacterial cells and eukaryotic organelles. Eubacterial Lon proteases contain an N-terminal domain, an ATPase domain, and a protease domain, all in one polypeptide chain. The N-terminal domain is thought to be involved in substrate recognition, the ATPase domain in substrate unfolding and translocation into the protease chamber, and the protease domain in the hydrolysis of polypeptides into small peptide fragments. Like other AAA+ ATPases and self-compartmentalising proteases, Lon functions as an oligomeric complex, although the subunit stoichiometry is currently unclear. Here, we present crystal structures of truncated versions of Lon protease from Bacillus subtilis (BsLon), which reveal previously unknown architectural features of Lon complexes. Our analytical ultracentrifugation and electron microscopy show different oligomerisation of Lon proteases from two different bacterial species, Aquifex aeolicus and B. subtilis. The structure of BsLon-AP shows a hexameric complex consisting of a small part of the N-terminal domain, the ATPase, and protease domains. The structure shows the approximate arrangement of the three functional domains of Lon. It also reveals a resemblance between the architecture of Lon proteases and the bacterial proteasome-like protease HslUV. Our second structure, BsLon-N, represents the first 209 amino acids of the N-terminal domain of BsLon and consists of a globular domain, similar in structure to the E. coli Lon N-terminal domain, and an additional four-helix bundle, which is part of a predicted coiled-coil region. An unexpected dimeric interaction between BsLon-N monomers reveals the possibility that Lon complexes may be stabilised by coiled-coil interactions between neighbouring N-terminal domains. Together, BsLon-N and BsLon-AP are 36 amino acids short of offering a complete picture of a full-length Lon protease.  相似文献   

3.
Intracellular accumulation of the inducible cell division inhibitor SulA is modulated by proteases that ensure its degradation, namely, the Lon protease and another ATP-dependent protease(s). Lon- cells are UV sensitive because SulA is stable. We asked whether these ATP-dependent proteases are more active when lon cells are grown at high temperature or in synthetic medium since these conditions decrease the UV sensitivity of lon cells. We found that these growth conditions have no direct effect on Lon-independent degradation of SulA. They may, instead, decrease the SulA-FtsZ interaction.  相似文献   

4.
In Escherichia coli, Lon is an ATP-dependent protease which degrades misfolded proteins and certain rapidly-degraded regulatory proteins. Given that oxidatively damaged proteins are generally degraded rather than repaired, we anticipated that Lon deficient cells would exhibit decreased viability during aerobic, but not anaerobic, carbon starvation. We found that the opposite actually occurs. Wild-type and Lon deficient cells survived equally well under aerobic conditions, but Lon deficient cells died more rapidly than the wild-type under anaerobiosis. Aerobic induction of the Clp family of ATP-dependent proteases could explain these results, but direct quantitation of Clp protein established that its level was not affected by Lon deficiency and overexpression of Clp did not rescue the cells under anaerobic conditions. We conclude that the Lon protease supports survival during anaerobic carbon starvation by a mechanism which does not depend on Clp. Shen Luo and Megan McNeill contributed equally to this research.  相似文献   

5.
Su W  Lin C  Wu J  Li K  He G  Qian X  Wei C  Yang J 《Biotechnology letters》2006,28(12):923-927
The ATP-dependent Lon protease is a highly conserved enzyme that is present in archeae, eubacteria, and eukaryotes, and plays an important role in intracellular protein degradation. We have isolated a Lon protease gene, OsLon1, from Oryza sativa. The cDNA contained a 2,655 bp ORF. Comparative analysis showed that OsLon1 shared significant similarity with the previously reported Lon proteases from maize, Arabidopsis, human, and bacteria. Tissue expression pattern analysis revealed that OsLon1 was highly expressed in young leaves, mature leaves, and leaf sheaths but only weakly in young roots, mature roots, and young panicles. The OsLon1 gene was successfully expressed in E. coli and the detected protein size, about 120 kDa, matched the expected molecular mass of the His-tagged OsLon1 protein.  相似文献   

6.
Escherichia coli Lon, an ATP-dependent AAA+ protease, recognizes and degrades many different substrates, including the RcsA and SulA regulatory proteins. More than a decade ago, the E240K mutation in the N domain of Lon was shown to prevent degradation of RcsA but not SulA in vivo. Here, we characterize the biochemical properties of the E240K mutant in vitro and present evidence that the effects of this mutation are complex. For example, LonE240K exists almost exclusively as a dodecamer, whereas wild-type Lon equilibrates between hexamers and dodecamers. Moreover, LonE240K displays degradation defects in vitro that do not correlate in any simple fashion with degron identity, substrate stability, or dodecamer formation. The Lon sequence segment near residue 240 is known to undergo nucleotide-dependent conformational changes, and our results suggest that this region may be important for coupling substrate binding with allosteric activation of Lon protease and ATPase activity.  相似文献   

7.
Studies of the protein function of Borrelia burgdorferi have been limited by a lack of tools for manipulating borrelial DNA. We devised a system to study the function of a B. burgdorferi oligopeptide permease (Opp) orthologue by complementation with Escherichia coli Opp proteins. The Opp system of E. coli has been extensively studied and has well defined substrate specificities. The system is of interest in B. burgdorferi because analysis of its genome has revealed little identifiable machinery for synthesis or transport of amino acids and only a single intact peptide transporter operon. As such, peptide uptake may play a major role in nutrition for the organism. Substrate specificity for ABC peptide transporters in other organisms is determined by their substrate binding protein. The B. burgdorferi Opp operon differs from the E. coli Opp operon in that it has three separate substrate binding proteins, OppA-1, -2 and -3. In addition, B. burgdorferi has two OppA orthologues, OppA-4 and -5, encoded on separate plasmids. The substrate binding proteins interact with integral membrane proteins, OppB and OppC, to transport peptides into the cell. The process is driven by two ATP binding proteins, OppD and OppF. Using opp-deleted E. coli mutants, we transformed cells with B. burgdorferi oppA-1, -2, -4 or -5 and E. coli oppBCDF. All of the B. burgdorferi OppA proteins are able to complement E. coli OppBCDF to form a functional Opp transport system capable of transporting peptides for nutritional use. Although there is overlap in substrate specificities, the substrate specificities for B. burgdorferi OppAs are not identical to that of E. coli OppA. Transport of toxic peptides by B. burgdorferi grown in nutrient-rich medium parallels borrelial OppA substrate specificity in the complementation system. Use of this complementation system will pave the way for more detailed studies of B. burgdorferi peptide transport than currently available tools for manipulating borrelial DNA will allow.  相似文献   

8.
ATP-dependent proteases from three families have been identified experimentally in Arabidopsis mitochondria: four FtsH proteases (AtFtsH3, AtFtsH4, AtFtsH10, and AtFtsH11), two Lon proteases (AtLon1 and AtLon4), and one Clp protease (AtClpP2 with regulatory subunit AtClpX). In this review we discuss their submitochondrial localization, expression profiles and proposed functions, with special emphasis on their impact on plant growth and development. The best characterized plant mitochondrial ATP-dependent proteases are AtLon1 and AtFtsH4. It has been proposed that AtLon1 is necessary for proper mitochondrial biogenesis during seedling establishment, whereas AtFtsH4 is involved in maintaining mitochondrial homeostasis late in rosette development under short-day photoperiod.  相似文献   

9.
Although most Lyme disease patients can be cured with antibiotics doxycycline or amoxicillin using 2-4 week treatment durations, some patients suffer from persistent arthritis or post-treatment Lyme disease syndrome. Why these phenomena occur is unclear, but possibilities include host responses, antigenic debris, or B. burgdorferi organisms remaining despite antibiotic therapy. In vitro, B. burgdorferi developed increasing antibiotic tolerance as morphology changed from typical spirochetal form in log phase growth to variant round body and microcolony forms in stationary phase. B. burgdorferi appeared to have higher persister frequencies than E. coli as a control as measured by SYBR Green I/propidium iodide (PI) viability stain and microscope counting. To more effectively eradicate the different persister forms tolerant to doxycycline or amoxicillin, drug combinations were studied using previously identified drugs from an FDA-approved drug library with high activity against such persisters. Using a SYBR Green/PI viability assay, daptomycin-containing drug combinations were the most effective. Of studied drugs, daptomycin was the common element in the most active regimens when combined with doxycycline plus either beta-lactams (cefoperazone or carbenicillin) or an energy inhibitor (clofazimine). Daptomycin plus doxycycline and cefoperazone eradicated the most resistant microcolony form of B. burgdorferi persisters and did not yield viable spirochetes upon subculturing, suggesting durable killing that was not achieved by any other two or three drug combinations. These findings may have implications for improved treatment of Lyme disease, if persistent organisms or detritus are responsible for symptoms that do not resolve with conventional therapy. Further studies are needed to validate whether such combination antimicrobial approaches are useful in animal models and human infection.  相似文献   

10.
《Gene》1997,186(2):227-235
Borrelia burgdorferi rpoB, the gene encoding the β-subunit of RNA polymerase, has been cloned and sequenced. The full-length gene encodes a protein of 1154 amino acids with a calculated molecular mass of 129.8 kDa. The amino-acid sequence is 49% identical to the corresponding protein from Escherichia coli. B. burgdorferi rpoB is a component of a gene cluster, which includes rplJ, rplL and rpoC. A temperature-sensitive E. coli rpoB mutant could be complemented by introduction of the B. burgdorferi gene, indicating that the B. burgdorferi rpoB is expressed in E. coli and the β-subunit can be assembled into functional holoenzyme. The wild-type amino-acid sequence of the B. burgdorferi β-subunit is consistent with those of spontaneously arising rifampicin-resistant mutants of E. coli and Mycobacterium tuberculosis at certain critical residues. This suggests that the natural resistance of B. burgdorferi to rifampicin may be due to the primary amino-acid sequence of its β-subunit.  相似文献   

11.
In the genome of a thermophilic bacterium, Thermus thermophilus HB27, three genes, TTC0418, TTC0746 and TTC1975, were annotated as ATP-dependent protease La (Lon). Sequence comparisons indicated that TTC0418 and TTC0746 showed significant similarities to bacterial LonA-type proteases, such as Escherichia coli Lon protease, especially in regions corresponding to domains for ATP-binding and hydrolysis, and for proteolysis, but TTC1975 exhibited a similarity only at the C-terminal proteolytic domain. The enzymatic analyses, using purified recombinant proteins produced by E. coli, revealed that TTC0418 and TTC0746 exhibited peptidase and protease activities against two synthetic peptides and casein, respectively, in an ATP-dependent manner, and at the same time, both the enzymes had significant ATPase activities in the presence of substrates. On the other hand, TTC1975 possessed a protease activity against casein, but addition of ATP did not enhance this activity. Moreover, a T. thermophilus mutant deficient in both TTC0418 and TTC0746 showed a similar growth characteristic to an E. coli lon mutant, i.e., a growth defect lag after a nutritional downshift. These results indicate that TTC0418 and TTC0746 are actually members of bacterial LonA-type proteases with different substrate specificities, whereas TTC1975 should not be classified as a Lon protease. Finally, the effects of mutations deficient in these proteases were assessed on production of several heterologous gene products from Pyrococcus horikoshii and Geobacillus stearothermophilus. It was shown that TTC0746 mutation was more effective in improving production than the other two mutations, especially for production of P. horikoshii α-mannosidase and G. stearothermophilus α-amylase, indicating that the TTC0746 mutant of T. thermophilus HB27 may be useful for production of heterologous proteins from thermophiles and hyperthermophiles.  相似文献   

12.
Proteolysis is a vital mechanism to regulate the cellular proteome in all kingdoms of life, and ATP-dependent proteases play a crucial role within this process. In Escherichia coli, ClpYQ is one of the primary ATP-dependent proteases. In addition to function with removals of abnormal peptides in the cells, ClpYQ degrades regulatory proteins if necessary and thus let cells adjust to various environmental conditions. In E. coli, SulA, RcsA, RpoH and TraJ as well as RNase R, have been identified as natural protein substrates of ClpYQ. ClpYQ contains ClpY and ClpQ. The ATPase ClpY is responsible for protein recognition, unfolding, and translocation into the catalytic core of ClpQ. In this study, we use an indirect identification strategy to screen possible ClpY targets with E. coli K12 proteome chips. The chip assay results showed that YbaB strongly bound to ClpY. We used yeast two-hybrid assay to confirm the interactions between ClpY and YbaB protein and determined the Kd between ClpY and YbaB by quartz crystal microbalance. Furthermore, we validated that YbaB was successfully degraded by ClpYQ protease activity using ClpYQ in vitro and in vivo degradation assay. These findings demonstrated the YbaB is a novel substrate of ClpYQ protease. This work also successfully demonstrated that with the use of recognition element of a protease can successfully screen its substrates by indirect proteome chip screening assay.  相似文献   

13.
14.
The restriction-modification (R-M) systems of many bacteria present a barrier to the stable introduction of foreign DNA. The Lyme disease spirochete Borrelia burgdorferi has two plasmid-borne putative R-M genes, bbe02 and bbq67, whose presence limits transformation by shuttle vector DNA from Escherichia coli. We show that both the bbe02 and bbq67 loci in recipient B. burgdorferi limit transformation with shuttle vector DNA from E. coli, irrespective of its dam, dcm, or hsd methylation status. However, plasmid DNA purified from B. burgdorferi transformed naïve B. burgdorferi much more efficiently than plasmid DNA from E. coli, particularly when the bbe02 and bbq67 genotypes of the B. burgdorferi DNA source matched those of the recipient. We detected adenine methylation of plasmid DNA prepared from B. burgdorferi that carried bbe02 and bbq67. These results indicate that the bbe02 and bbq67 loci of B. burgdorferi encode distinct R-M enzymes that methylate endogenous DNA and cleave foreign DNA lacking the same sequence-specific modification. Our findings have basic implications for horizontal gene transfer among B. burgdorferi strains with distinct plasmid contents. Further characterization and identification of the nucleotide sequences recognized by BBE02 and BBQ67 will facilitate efficient genetic manipulation of this pathogenic spirochete.Borrelia burgdorferi sensu lato is a zoonotic pathogen whose natural infectious cycle alternates between a tick vector and rodent or bird reservoir hosts (1, 7, 8, 14, 32, 33, 36). Transmission of B. burgdorferi to humans occurs through the bite of an infected tick and can lead to Lyme disease, which is a major public health concern in areas of North America and Europe where B. burgdorferi is endemic (8, 53).The genomic structure of the spirochete B. burgdorferi is unique, consisting of a linear chromosome of approximately 900 kb and more than 20 linear (lp) and circular (cp) plasmids, ranging in size from ∼5 kb to 56 kb, in the type strain B31 (9, 10, 11, 19, 42). The plasmids of B. burgdorferi are present at unit copy number relative to the chromosome (22), and some are relatively unstable during in vitro propagation (52, 57). The loss of linear plasmids lp25, lp28-1, and lp36 by strain B31 was found to correlate with the loss of infectivity in mice (20, 31, 45, 56), leading to the identification of genes carried on these plasmids that are dispensable in vitro but required in vivo during an experimental infectious cycle (21, 26, 35, 44, 47). The loss of two linear plasmids, lp25 and lp56, was shown to correlate with enhanced shuttle vector transformation, suggesting that specific lp25 and lp56 gene products present a barrier to stable introduction of foreign DNA (34). Further studies linked the transformation phenotype of B. burgdorferi strain B31 with the bbe02 and bbq67 genes on lp25 and lp56, respectively, and the putative restriction-modification (R-M) enzymes that they encode (11, 27, 29, 34). The recent demonstration by Chen and colleagues of enhanced transformation of B. burgdorferi following in vitro methylation of DNA (13) further supports the hypothesis that these B. burgdorferi plasmids encode R-M enzymes that degrade foreign DNA lacking the appropriate modification.The barrier to foreign DNA presented by the bbe02 and bbq67 loci of B. burgdorferi implies that genomic DNA should be modified in spirochetes carrying these plasmid genes. To test this hypothesis, we compared the transformation of B. burgdorferi with shuttle vector DNA isolated from either Escherichia coli or B. burgdorferi, as outlined in Fig. Fig.1.1. We also examined whether and how the presence of putative R-M genes in either the donor or recipient B. burgdorferi strain influenced transformation. Finally, we analyzed the type of modification present on DNA isolated from B. burgdorferi with different plasmid or gene contents. Our data indicate that the bbe02 and bbq67 loci of B. burgdorferi encode enzymes that both methylate endogenous DNA and restrict foreign DNA lacking these modifications. These findings have basic implications regarding horizontal gene transfer among B. burgdorferi strains with distinct plasmid contents. These results also help elucidate the molecular mechanisms underlying the relative inefficiency of genetic transformation of B. burgdorferi and suggest ways in which genetic manipulation of this pathogenic spirochete could be enhanced.Open in a separate windowFIG. 1.Shuttle vector transformations. Schematic representation of the various DNA sources, strains and methods used to assess the contributions of bbe02 and bbq67 to the restriction-modification (R-M) systems of B. burgdorferi.  相似文献   

15.
16.
17.
Pathogenic spirochetes cause clinically relevant diseases in humans and animals, such as Lyme disease and leptospirosis. The causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of leptospirosis, Leptospria interrogans, encounter reactive oxygen species (ROS) during their enzootic cycles. This report demonstrated that physiologically relevant concentrations of pyruvate, a potent H2O2 scavenger, and provided passive protection to B. burgdorferi and L. interrogans against H2O2. When extracellular pyruvate was absent, both spirochetes were sensitive to a low dose of H2O2 (≈0.6 µM per h) generated by glucose oxidase (GOX). Despite encoding a functional catalase, L. interrogans was more sensitive than B. burgdorferi to H2O2 generated by GOX, which may be due to the inherent resistance of B. burgdorferi because of the virtual absence of intracellular iron. In B. burgdorferi, the nucleotide excision repair (NER) and the DNA mismatch repair (MMR) pathways were important for survival during H2O2 challenge since deletion of the uvrB or the mutS genes enhanced its sensitivity to H2O2 killing; however, the presence of pyruvate fully protected ΔuvrB and ΔmutS from H2O2 killing further demonstrating the importance of pyruvate in protection. These findings demonstrated that pyruvate, in addition to its classical role in central carbon metabolism, serves as an important H2O2 scavenger for pathogenic spirochetes. Furthermore, pyruvate reduced ROS generated by human neutrophils in response to the Toll-like receptor 2 (TLR2) agonist zymosan. In addition, pyruvate reduced neutrophil-derived ROS in response to B. burgdorferi, which also activates host expression through TLR2 signaling. Thus, pathogenic spirochetes may exploit the metabolite pyruvate, present in blood and tissues, to survive H2O2 generated by the host antibacterial response generated during infection.  相似文献   

18.
Regulation of gene expression is critical for the ability of Borrelia burgdorferi to adapt to different environments during its natural infectious cycle. Reporter genes have been used successfully to study gene regulation in multiple organisms. We have introduced a lacZ gene into B. burgdorferi, and we show that B. burgdorferi produces a protein with detectable β-galactosidase activity in both liquid and solid media when lacZ is expressed from a constitutive promoter. Furthermore, when lacZ is expressed from the ospC promoter, β-galactosidase activity is detected only in B. burgdorferi clones that express ospC, and it accurately monitors endogenous gene expression. The addition of lacZ to the repertoire of genetic tools available for use in B. burgdorferi should contribute to a better understanding of how B. burgdorferi gene expression is regulated during the infectious cycle.Borrelia burgdorferi sensu lato, the pathogen that causes Lyme disease (7), alternates between two distinct environments, an arthropod vector and a vertebrate host. As B. burgdorferi moves from one milieu to the other, its ability to adapt and survive requires dramatic changes in gene expression. Many studies have shown that different B. burgdorferi gene products are upregulated or downregulated at specific times during the infectious cycle (19, 31) and in response to host and environmental signals (6, 8a, 15, 24, 25). Although it is clear that B. burgdorferi alters gene expression to adapt to different environments, the genetic tools for studying gene regulation in B. burgdorferi are limited.Within the last 2 decades, the complete genomic sequence of B. burgdorferi strain B31 was published (10, 14) and techniques for basic genetic manipulation of B. burgdorferi became available (5, 11, 13, 27-29, 36). A chloramphenicol acetyltransferase (CAT) gene was the first reporter gene that was fused to B. burgdorferi promoters for analysis of promoter strength (33). The development of luciferase (4) and multiple fluorescent proteins (9, 11, 30) as reporter systems in B. burgdorferi followed. Although these systems have value, there are limitations with each. β-Galactosidase, encoded by lacZ, has been used extensively as a convenient reporter gene in Escherichia coli and is still applicable to a broad range of organisms, both prokaryotic and eukaryotic, but has not yet been used with B. burgdorferi. β-Galactosidase activity can be monitored easily and quickly by simple colorimetric assays in both liquid and solid media, neither of which require expensive or specialized equipment. Additionally, a wide variety of substrates for β-galactosidase allow for different levels of sensitivity in either in vitro or in vivo detection formats (17). Having lacZ available as a genetic tool for B. burgdorferi would enhance investigation of the complex regulatory events that are integral to the spirochete''s infectious cycle. To this end, we developed lacZ as a reporter gene in B. burgdorferi and demonstrated its utility.  相似文献   

19.
The truncated form of E. coli LonA protease (EcLon) lacking the N-terminal fragment 1–172 (Lon173) and the variant with deleted coiled-coil (CC) fragment 173–283 (dCC-Lon, a deletion form) are produced and characterized to study the role of the N-terminal region in the functioning of this protease. A comparative analysis of the properties of full-length EcLon protease, dCC-Lon, and Lon173 as well as an earlier produced form with retained C-terminal region (235–280) of CC fragment, Lon235, is performed. As is shown, fragment 1–280 plays an important role in both formation of the ATPase site and maintenance of a stable EcLon protease conformation. Fragment 107–172 is of a paramount importance for implementation of the processive mechanism of ATP-dependent proteolysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号