首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
During development individual cells in tissues undergo complex cell-shape changes to drive the morphogenetic movements required to form tissues. Cell shape is determined by the cytoskeleton and cell-shape changes critically depend on a tight spatial and temporal control of cytoskeletal behavior. We have used the formation of the salivary glands in the Drosophila embryo, a process of tubulogenesis, as an assay for identifying factors that impinge on cell shape and the cytoskeleton. To this end we have performed a gain-of-function screen in the salivary glands, using a collection of fly lines carrying EP-element insertions that allow the overexpression of downstream-located genes using the UAS-Gal4 system. We used a salivary-gland-specific fork head-Gal4 line to restrict expression to the salivary glands, in combination with reporters of cell shape and the cytoskeleton. We identified a number of genes known to affect salivary gland formation, confirming the effectiveness of the screen. In addition, we found many genes not implicated previously in this process, some having known functions in other tissues. We report the initial characterization of a subset of genes, including chickadee, rhomboid1, egalitarian, bitesize, and capricious, through comparison of gain- and loss-of-function phenotypes.  相似文献   

4.
Historically, duplicate genes have been regarded as a major source of novel genetic material. However, recent work suggests that chimeric genes formed through the fusion of pieces of different genes may also contribute to the evolution of novel functions. To compare the contribution of chimeric and duplicate genes to genome evolution, we measured their prevalence and persistence within Drosophila melanogaster. We find that ~80.4 duplicates form per million years, but most are rapidly eliminated from the genome, leaving only 4.1% to be preserved by natural selection. Chimeras form at a comparatively modest rate of ~11.4 per million years but follow a similar pattern of decay, with ultimately only 1.4% of chimeras preserved. We propose two mechanisms of chimeric gene formation, which rely entirely on local, DNA-based mutations to explain the structure and placement of the youngest chimeric genes observed. One involves imprecise excision of an unpaired duplication during large-loop mismatch repair, while the other invokes a process akin to replication slippage to form a chimeric gene in a single event. Our results paint a dynamic picture of both chimeras and duplicate genes within the genome and suggest that chimeric genes contribute substantially to genomic novelty.  相似文献   

5.
《Fly》2013,7(3):172-181
Using a FLP/FRT-based method to create germline clones, we screened Drosophila chromosome arms 2L and 3R for new female meiotic mutants. The screen was designed to recover mutants with severe effects on meiotic exchange and/or segregation. This screen yielded 11 new mutants, including six alleles of previously known meiotic genes (c(2)M and ald/mps1). The remaining five mutants appear to define at least four new genes whose ablation results in severe meiotic defects. Three of the novel meiotic mutants were identified at the molecular level. Two of these, mcm5A7 and tremF9, define roles in meiotic recombination, while a third, conaA12, is important for synaptonemal complex assembly. Surprisingly, five of the nine mutants for which the lesion has been identified at the molecular level are not the result of mutations characteristic of EMS mutagenesis, but rather due to the insertion of the transposable element Doc. This study demonstrates the utility of germline clone-based screens for the discovery of strong meiotic mutants, including mutations in essential genes, and the use of molecular genetic techniques to map the loci.  相似文献   

6.
The polar coordinate model for pattern regulation in epimorphicfields (French et al., 1976) predicts that bilaterally symmetricalfields will show different kinds of regulative behavior dependingon the direction of the cut. These predictions have been testedusing the male genital disc of Drosophila melanogaster. First,a detailed fate map was established by examining the fate ofdisc fragments subjected to immediate metamorphosis in hostlarvae. Then the regulative abilities of various fragments wereexamined by culturing them for seven days in adult abdomens,before transfer to larvae for metamorphosis. When the disc wasbisected by a vertical cut (parallel to the line of symmetry)then fragments smaller than half of the disc underwent duplicationwith some simultaneous regeneration, while fragments largerthan half of the disc underwent regeneration. If the disc wasbisected by a bilaterally symmetrical cut across the line ofsymmetry, wound healing resulted in the confrontation of cellsfrom similar positions on the right and left sides of the fragment,and no regulation occurred. With the exception of regenerationoccurring during duplication of small lateral fragments, theseresults are as predicted by the polar coordinate model.  相似文献   

7.
Gene duplication by retrotransposition duplicates only the coding and untranslated regions of a gene and, thus, biases retroduplicated genes toward having different expression patterns from their parental genes. As such, genes duplicated by retrotransposition are more likely to develop novel expression domains. To explore this idea further, we used the Prat/Prat2 gene duplication in Drosophila as a case study to examine the aftermath of a retrotransposition event that resulted in both the parent and the child gene becoming essential for survival. We used the Gal4-UAS transgene system with EGFP as a reporter to determine the developmental expression patterns of Prat and Prat2 from D. melanogaster (DmPrat and DmPrat2) and Prat from D. virilis (DvPrat). We also tested the functional equivalence of the protein products of DmPrat and DmPrat2. We found that each of the proteins could rescue DmPrat mutations, showing that the requirement for both Prat and Prat2 in Drosophila is not simply due to differences in protein function. In contrast, we found that the DmPrat and DmPrat2 genes have developed nonoverlapping patterns of expression, which correlate with their respective loss-of-function phenotypes. We further found that DvPrat expression is similar to DmPrat during development but differs in adult gonads. Thus, the function of the Prat retrogene has not diverged in the D. melanogaster and D. virilis lineages, while some aspects of its expression pattern have evolved. Finally, we have identified promoter elements, conserved upstream of DmPrat and DvPrat, that this retrogene has acquired to drive its expression.  相似文献   

8.
9.
10.
There are 11 Polycomb group genes known in Drosophila. These genes are negative regulators of homeotic gene expression, and may act by modifying chromatin structure. It is not clear how many members of the Polycomb group of genes exist. Many were discovered because of their homeotic phenotypes, or because they enhance homeotic mutations. Systematic screens for enhancers of Polycomb have identified previously known members of the Polycomb group. In an attempt to discover cytological locations of new Polycomb group genes, we crossed deletions uncovering about 20% of the genome to Polycomb-like and Polycomb and scored for enhancement of the extra sex combs phenotype. Haploidy for four regions, 36F7-37A, 43E18; 44B5-9, 70C2-6, and 70C6-15; 70D enhanced the extra sex comb phenotype associated with strong Polycomb group mutations. These regions have homeotic phenotypes either as homozygous embryos or heterozy-gous adults, or both. We also show that spalt enhances Polycomb group mutations. These results are discussed with respect to previous estimates of Polycomb group gene number. © 1994 Wiley-Liss, Inc.  相似文献   

11.
The formation of straight compartment boundaries separating groups of cells with distinct fates and functions is an evolutionarily conserved strategy during animal development. The physical mechanisms that shape compartment boundaries have recently been further elucidated, however, the molecular mechanisms that underlie compartment boundary formation and maintenance remain poorly understood. Here, we report on the outcome of an RNA interference screen aimed at identifying novel genes involved in maintaining the straight shape of the anteroposterior compartment boundary in Drosophila wing imaginal discs. Out of screening 3114 transgenic RNA interference lines targeting a total of 2863 genes, we identified a single novel candidate that interfered with the formation of a straight anteroposterior compartment boundary. Interestingly, the targeted gene encodes for the Eph receptor tyrosine kinase, an evolutionarily conserved family of signal transducers that has previously been shown to be important for maintaining straight compartment boundaries in vertebrate embryos. Our results identify a hitherto unknown role of the Eph receptor tyrosine kinase in Drosophila and suggest that Eph receptors have important functions in shaping compartment boundaries in both vertebrate and insect development.  相似文献   

12.
Genes for tRNALys5 from Drosophila melanogaster.   总被引:2,自引:1,他引:1       下载免费PDF全文
The sequences of two cloned genes from Drosophila which hybridize with tRNALys5 are reported. One gene, in plasmid pDt39, has a sequence which corresponds to the sequence of tRNA. The other gene, in pDt59R, differs in three nucleotides pairs. Both plasmids are transcribed in vitro with extracts of Drosophila Kc cells to give full-sized tRNA precursors with four additional nucleotides at the 5'-end as well as truncated molecules containing 35 nucleotides. This premature termination occurs in a block of four T residues within the mature coding region. Sequences flanking the tRNA genes show little in common except for the blocks of five or more T-residues beyond the 3'-end of the gene. pDt39 hybridizes to 84AB on the polytene chromosomes of Drosophila and pDt59R hybridizes to 29A.  相似文献   

13.

Background

An excess of caffeine is cytotoxic to all eukaryotic cell types. We aim to study how cells become tolerant to a toxic dose of this drug, and the relationship between caffeine and oxidative stress pathways.

Methodology/Principal Findings

We searched for Schizosaccharomyces pombe mutants with inhibited growth on caffeine-containing plates. We screened a collection of 2,700 haploid mutant cells, of which 98 were sensitive to caffeine. The genes mutated in these sensitive clones were involved in a number of cellular roles including the H2O2-induced Pap1 and Sty1 stress pathways, the integrity and calcineurin pathways, cell morphology and chromatin remodeling. We have investigated the role of the oxidative stress pathways in sensing and promoting survival to caffeine. The Pap1 and the Sty1 pathways are both required for normal tolerance to caffeine, but only the Sty1 pathway is activated by the drug. Cells lacking Pap1 are sensitive to caffeine due to the decreased expression of the efflux pump Hba2. Indeed, ?hba2 cells are sensitive to caffeine, and constitutive activation of the Pap1 pathway enhances resistance to caffeine in an Hba2-dependent manner.

Conclusions/Significance

With our caffeine-sensitive, genome-wide screen of an S. pombe deletion collection, we have demonstrated the importance of some oxidative stress pathway components on wild-type tolerance to the drug.  相似文献   

14.
Centric regions of eukaryotic genomes are packaged into heterochromatin, which possesses the ability to spread along the chromosome and silence gene expression. The process of spreading has been challenging to study at the molecular level due to repetitious sequences within centric regions. A heterochromatin protein 1 (HP1) tethering system was developed that generates “ectopic heterochromatin” at sites within euchromatic regions of the Drosophila melanogaster genome. Using this system, we show that HP1 dimerization and the PxVxL interaction platform formed by dimerization of the HP1 chromo shadow domain are necessary for spreading to a downstream reporter gene located 3.7 kb away. Surprisingly, either the HP1 chromo domain or the chromo shadow domain alone is sufficient for spreading and silencing at a downstream reporter gene located 1.9 kb away. Spreading is dependent on at least two H3K9 methyltransferases, with SU(VAR)3-9 playing a greater role at the 3.7-kb reporter and dSETDB1 predominately acting at the 1.9 kb reporter. These data support a model whereby HP1 takes part in multiple mechanisms of silencing and spreading.HETEROCHROMATIN protein 1 (HP1) was identified in Drosophila as a nonhistone chromosomal protein enriched in centric heterochromatin (James and Elgin 1986; James et al. 1989). On polytene chromosomes, HP1 localizes near centromeres and telomeres, along the fourth chromosome and at ∼200 sites within the euchromatic arms (James et al. 1989; Fanti et al. 2003). Heterochromatin has the ability to “spread,” or propagate in cis, along the chromosome (Weiler and Wakimoto 1995). Spreading is observed when a chromosomal rearrangement places a euchromatic domain next to a heterochromatic domain. Cytologically, spreading is visualized as densely compact chromatin that emanates from the chromocenter, the structure formed by the fusion of centromeres, and extends into the banded regions of polytene chromosomes (Belyaeva and Zhimulev 1991). Euchromatic genes brought into juxtaposition with heterochromatin by chromosomal rearrangements exhibit gene silencing, termed position effect variegation (PEV) (Weiler and Wakimoto 1995). Mutations in Su(var)2-5, the gene encoding HP1, suppress silencing, suggesting HP1 plays a key role in spreading (Eissenberg et al. 1990). The molecular processes of spreading are not well understood.Repetitive sequences within heterochromatin make it difficult to study spreading at the molecular level. In addition, specific repetitive elements are thought to function as initiation sites for heterochromatin formation (Sun et al. 2004; Haynes et al. 2006), making it challenging to separate initiation from spreading. To overcome these problems, we generated a system that nucleates small domains (<20 kb) of repressive chromatin that share many properties with centric heterochromatin. Here we refer to these as ectopic heterochromatin domains. These domains are generated by expressing a fusion protein, consisting of the DNA binding domain of the Escherichia coli lac repressor (LacI) fused to HP1, in stocks possessing lac operator (lacO) repeats upstream of a reporter gene cassette (Danzer and Wallrath 2004). LacI-HP1 associates with the lacO repeats and causes silencing of the adjacent reporter genes. Silencing correlates with alterations in chromatin structure that include the generation of regular nucleosome arrays similar to those observed in centric heterochromatin (Sun et al. 2001; Danzer and Wallrath 2004). Chromatin immunoprecipitation (ChIP) experiments demonstrated that HP1 spreads bidirectionally, 5–10 kb from the lacO repeats, encompassing the reporter genes (Danzer and Wallrath 2004). Thus, HP1 is sufficient to nucleate small heterochromatin-like domains at genomic locations devoid of repetitious sequences, allowing for molecular studies of spreading.HP1 contains an amino terminal chromo domain (CD) and a carboxy chromo shadow domain (CSD), separated by a flexible hinge (Li et al. 2002). The CD forms a hydrophobic pocket implicated in chromosomal association through binding to di- and trimethylated lysine 9 of histone H3 (H3K9me2 and me3, respectively), an epigenetic mark generated by the histone methyltransferases (HMT) SU(VAR)3-9 and dSETDB1 (also known as Egg) (Jacobs et al. 2001; Schotta et al. 2002; Schultz et al. 2002; Ebert et al. 2004; Clough et al. 2007; Seum et al. 2007; Tzeng et al. 2007). Association with methylated H3 is one mechanism of HP1 chromosome association; however, other mechanisms involving interactions with DNA and/or partner proteins likely exist (Fanti et al. 1998; Li et al. 2002; Cryderman et al. 2005). In Drosophila HP1, a single amino acid substitution within the CD (V26M) is present in the Su(var)2-502 allele; flies heterozygous for this allele show suppression of gene silencing by heterochromatin (Eissenberg et al. 1990). Furthermore, flies trans-heterozygous for Su(var)2-502 and a null allele of Su(var)2-5 show dramatic reduction of HP1 near centromeres and do not survive past the third larval stage (Fanti et al. 1998). Consistent with these observations, structural studies show that V26 plays a critical role in forming the hydrophobic pocket of the CD that binds to H3K9me (Jacobs et al. 2001).The HP1 CSD dimerizes and mediates interactions with a variety of nuclear proteins (Cowieson et al. 2000; Yamamoto and Sonoda 2003; Thiru et al. 2004). CSD dimerization sets up an interaction platform for the binding of proteins possessing a penta-peptide motif, PxVxL (where x represents any amino acid) (Thiru et al. 2004; Lechner et al. 2005). Amino acid substitutions within HP1 have been identified that disrupt dimerization, and interaction with PxVxL proteins (Lechner et al. 2000; Thiru et al. 2004). For example, a single amino acid substitution within the CSD (I161E) disrupts dimerization of mouse HP1beta (Brasher et al. 2000). The lack of dimerization also caused the loss of interactions with nuclear factors containing PxVxL motifs and non-PxVxL partners (Yamamoto and Sonoda 2003; Lechner et al. 2005). In contrast, a single amino acid substitution elsewhere in the CSD (W170A) of mouse HP1beta does not prevent dimerization, but disrupts the interaction with PxVxL partner proteins (Brasher et al. 2000). Therefore, the requirement for HP1 dimerization and binding to the PxVxL proteins can be functionally separated. Here, we investigate effects of HP1 domain deletions and amino acid substitutions on HP1 localization, partner protein interactions, and heterochromatin spreading.  相似文献   

15.
Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein.  相似文献   

16.
17.
Flies achieve supreme flight maneuverability through a small set of miniscule steering muscles attached to the wing base. The fast flight maneuvers arise from precisely timed activation of the steering muscles and the resulting subtle modulation of the wing stroke. In addition, slower modulation of wing kinematics arises from changes in the activity of indirect flight muscles in the thorax. We investigated if these modulations can be described as a superposition of a limited number of elementary deformations of the wing stroke that are under independent physiological control. Using a high-speed computer vision system, we recorded the wing motion of tethered flying fruit flies for up to 12 000 consecutive wing strokes at a sampling rate of 6250 Hz. We then decomposed the joint motion pattern of both wings into components that had the minimal mutual information (a measure of statistical dependence). In 100 flight segments measured from 10 individual flies, we identified 7 distinct types of frequently occurring least-dependent components, each defining a kinematic pattern (a specific deformation of the wing stroke and the sequence of its activation from cycle to cycle). Two of these stroke deformations can be associated with the control of yaw torque and total flight force, respectively. A third deformation involves a change in the downstroke-to-upstroke duration ratio, which is expected to alter the pitch torque. A fourth kinematic pattern consists in the alteration of stroke amplitude with a period of 2 wingbeat cycles, extending for dozens of cycles. Our analysis indicates that these four elementary kinematic patterns can be activated mutually independently, and occur both in isolation and in linear superposition. The results strengthen the available evidence for independent control of yaw torque, pitch torque, and total flight force. Our computational method facilitates systematic identification of novel patterns in large kinematic datasets.  相似文献   

18.
The vestigial (vg) mutant of Drosophila melanogaster shows reduced wing size and lacks margin structures from the wing blade. The expressivity is temperature-sensitive, more structures being formed at 29°C than at 25°C. There is cell death in the third instar wing disc which to some extent parallels the fate map locations of the structures absent in the adult.
Vestigial wing discs are unable to regenerate margin structures even when given extra time for growth by culturing them in an adult abdomen before metamorphosis. If the region of cell death is excised from the disc before culture, there is still no regeneration of margin structures, indicating that the dead cells do not physically prevent regulation. Furthermore, by metamorphosing young vg wing discs, it was discovered that cells never acquire competence to make margin during wing disc development. Experiments mixing fragments of vg wing disc with non- vg wing disc fragments of ebony multiple wing hairs (e mwh) genotype showed that the vg cells interacted with the e mwh cells and wing blade was intercalated of both genotypes. However, structures such as wing margin, and alar lobe, usually affected in vg wings, were always made from e mwh cells and not from vg cells. Analysis of mutants which are unable to differentiate particular cell types may help us to understand the mechanism of pattern establishment in developing imaginal discs.  相似文献   

19.
Haem has been previously implicated in the function of the circadian clock, but whether iron homeostasis is integrated with circadian rhythms is unknown. Here we describe an RNA interference (RNAi) screen using clock neurons of Drosophila melanogaster. RNAi is targeted to iron metabolism genes, including those involved in haem biosynthesis and degradation. The results indicate that Ferritin 2 Light Chain Homologue (Fer2LCH) is required for the circadian activity of flies kept in constant darkness. Oscillations of the core components in the molecular clock, PER and TIM, were also disrupted following Fer2LCH silencing. Other genes with a putative function in circadian biology include Transferrin-3, CG1358 (which has homology to the FLVCR haem export protein) and five genes implicated in iron-sulfur cluster biosynthesis: the Drosophila homologues of IscS (CG12264), IscU (CG9836), IscA1 (CG8198), Iba57 (CG8043) and Nubp2 (CG4858). Therefore, Drosophila genes involved in iron metabolism are required for a functional biological clock.  相似文献   

20.
We have begun a genetic analysis to dissect the process of myogenesis by surveying the X chromosome of Drosophila melanogaster for mutations that affect embryonic muscle development. Using polarised light microscopy and antibody staining techniques we analysed embryos hemizygous for a series of 67 deletion mutations that together cover an estimated 85% of the X chromosome, or 16.5% of the genome. Whereas the mature wild type embryo has a regular array of contractile muscles that insert into the epidermis, 31 of the deletion mutants have defects in muscle pattern, contractility or both, that cannot be attributed simply to epidermal defects and identify functions required for wild type muscle development. We have defined mutant pattern phenotypes that can be described in terms of muscle absences, incomplete myoblast fusion, failure of attachment of the muscle to the epidermis or mispositioning of attachment sites. Thus muscle development can be mutationally disrupted in characteristic and interpretable ways. The areas of overlap of the 31 deletions define 19 regions of the X chromosome that include genes whose products are essential for various aspects of myogenesis. We conclude that our screen can usefully identify loci coding for gene products essential in muscle development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号