首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Small interfering RNAs (siRNAs), the guides that direct RNA interference (RNAi), provide a powerful tool to reduce the expression of a single gene in human cells. Ideally, dominant, gain-of-function human diseases could be treated using siRNAs that specifically silence the mutant disease allele, while leaving expression of the wild-type allele unperturbed. Previous reports suggest that siRNAs can be designed with single nucleotide specificity, but no rational basis for the design of siRNAs with single nucleotide discrimination has been proposed. We systematically identified siRNAs that discriminate between the wild-type and mutant alleles of two disease genes: the human Cu, Zn superoxide dismutase (SOD1) gene, which contributes to the progression of hereditary amyotrophic lateral sclerosis through the gain of a toxic property, and the huntingtin (HTT) gene, which causes Huntington disease when its CAG-repeat region expands beyond approximately 35 repeats. Using cell-free RNAi reactions in Drosophila embryo lysate and reporter assays and microarray analysis of off-target effects in cultured human cells, we identified positions within an siRNA that are most sensitive to mismatches. We also show that purine:purine mismatches imbue an siRNA with greater discriminatory power than other types of base mismatches. siRNAs in which either a G:U wobble or a mismatch is located in the “seed” sequence, the specialized siRNA guide region responsible for target binding, displayed lower levels of selectivity than those in which the mismatch was located 3′ to the seed; this region of an siRNA is critical for target cleavage but not siRNA binding. Our data suggest that siRNAs can be designed to discriminate between the wild-type and mutant alleles of many genes that differ by just a single nucleotide.  相似文献   

2.
Allele-specific gene silencing by RNA interference (RNAi) is therapeutically useful for specifically inhibiting the expression of disease-associated alleles without suppressing the expression of corresponding wild-type alleles. To realize such allele-specific RNAi (ASP-RNAi), the design and assessment of small interfering RNA (siRNA) duplexes conferring ASP-RNAi is vital; however, it is also difficult. In a previous study, we developed an assay system to assess ASP-RNAi with mutant and wild-type reporter alleles encoding the Photinus and Renilla luciferase genes. In line with experiments using the system, we realized that it is necessary and important to enhance allele discrimination between mutant and corresponding wild-type alleles. Here, we describe the improvement of ASP-RNAi against mutant alleles carrying single nucleotide variations by introducing base substitutions into siRNA sequences, where original variations are present in the central position. Artificially mismatched siRNAs or short-hairpin RNAs (shRNAs) against mutant alleles of the human Prion Protein (PRNP) gene, which appear to be associated with susceptibility to prion diseases, were examined using this assessment system. The data indicates that introduction of a one-base mismatch into the siRNAs and shRNAs was able to enhance discrimination between the mutant and wild-type alleles. Interestingly, the introduced mismatches that conferred marked improvement in ASP-RNAi, appeared to be largely present in the guide siRNA elements, corresponding to the 'seed region' of microRNAs. Due to the essential role of the 'seed region' of microRNAs in their association with target RNAs, it is conceivable that disruption of the base-pairing interactions in the corresponding seed region, as well as the central position (involved in cleavage of target RNAs), of guide siRNA elements could influence allele discrimination. In addition, we also suggest that nucleotide mismatches at the 3'-ends of sense-strand siRNA elements, which possibly increase the assembly of antisense-strand (guide) siRNAs into RNA-induced silencing complexes (RISCs), may enhance ASP-RNAi in the case of inert siRNA duplexes. Therefore, the data presented here suggest that structural modification of functional portions of an siRNA duplex by base substitution could greatly influence allele discrimination and gene silencing, thereby contributing to enhancement of ASP-RNAi.  相似文献   

3.
4.
Ahmed F  Raghava GP 《PloS one》2011,6(8):e23443
In past, numerous methods have been developed for predicting efficacy of short interfering RNA (siRNA). However these methods have been developed for predicting efficacy of fully complementary siRNA against a gene. Best of author's knowledge no method has been developed for predicting efficacy of mismatch siRNA against a gene. In this study, a systematic attempt has been made to identify highly effective complementary as well as mismatch siRNAs for silencing a gene.Support vector machine (SVM) based models have been developed for predicting efficacy of siRNAs using composition, binary and hybrid pattern siRNAs. We achieved maximum correlation 0.67 between predicted and actual efficacy of siRNAs using hybrid model. All models were trained and tested on a dataset of 2182 siRNAs and performance was evaluated using five-fold cross validation techniques. The performance of our method desiRm is comparable to other well-known methods. In this study, first time attempt has been made to design mutant siRNAs (mismatch siRNAs). In this approach we mutated a given siRNA on all possible sites/positions with all possible nucleotides. Efficacy of each mutated siRNA is predicted using our method desiRm. It is well known from literature that mismatches between siRNA and target affects the silencing efficacy. Thus we have incorporated the rules derived from base mismatches experimental data to find out over all efficacy of mutated or mismatch siRNAs. Finally we developed a webserver, desiRm (http://www.imtech.res.in/raghava/desirm/) for designing highly effective siRNA for silencing a gene. This tool will be helpful to design siRNA to degrade disease isoform of heterozygous single nucleotide polymorphism gene without depleting the wild type protein.  相似文献   

5.
An improved approach for increasing the multiplex level of single nucleotide polymorphism (SNP) typing by adapter ligation-mediated allele-specific amplification (ALM-ASA) has been developed. Based on an adapter ligation, each reaction requires n allele-specific primers plus an adapter-specific primer that is common for all SNPs. Thus, only n+1 primers are used for an n-plex PCR amplification. The specificity of ALM-ASA was increased by a special design of the adapter structure and PCR suppression. Given that the genetic polymorphisms in the liver enzyme cytochrome P450 CYP2D6 (debrisoquine 4-hydroxylase) have profound effects on responses of individuals to a particular drug, we selected 17 SNPs in the CYP2D6 gene as an example for the multiplex SNP typing. Without extensive optimization, we successfully typed 17-plex SNPs in the CYP2D6 gene by ALM-ASA. The results for genotyping 70 different genome samples by the 17-plex ALM-ASA were completely consistent with those obtained by both Sanger's sequencing and PCR restriction fragment length polymorphism (PCR-RFLP) analysis. ALM-ASA is a potential method for SNP typing at an ultra-low cost because of a high multiplex level and a simple optimization step for PCR. High-throughput SNP typing could be readily realized by coupling ALM-ASA with a well-developed automation device for sample processing.  相似文献   

6.
7.
We report an allele-specific sequencing method using allele-specific long-range polymerase chain reaction (PCR) to determine if multiple (specifically, more than three) single nucleotide polymorphisms (SNPs) are located on the same allele. We sequenced the glucocorticoid receptor (GR) gene as a model and detected four nucleotide changes, including two novel variations, in intron 4 and exons 6, 8, and 9 alpha in four of the investigated cell lines. The terminal SNPs (intron 4 and exon 9 alpha) were separated by 19 kb. Following SNP identification, the first round PCR allele-specific primers are designed at the both distal SNP sites (intron 4 and exon 9 alpha), placing the SNP positions at the primer 3'-end. Using these first round PCR products as template, the second round PCR was performed to separately amplify exons 6 and 8. These second round PCR products were subsequently sequenced. The sequencing results showed that the four SNPs were located on the same allele, i.e., forming a haplotype. This allele-specific long-range PCR/sequencing (ALP/S) method is rapid and applicable to the allelic assignment for more than three SNPs.  相似文献   

8.
9.
汪维鹏  周国华 《遗传》2009,31(2):219-224
文章以微流控芯片电泳为检测平台, 建立了一种基于DNA适配器连接介导的多重等位基因特异性扩增同时测定多个单核苷酸多态性(SNP)位点的方法。以白细胞介素1β(IL1B)基因中的7个SNP位点(794C>T、1274C>T、2143T>C、2766T>del、3298G>A、5200G>A和5277C>T)为检测对象, 通过PCR预扩增得一段含该7个待测SNP位点的长片段; 用限制性内切酶MboⅠ将其消化成短片段, 再与DNA适配器(adapter)相连; 以连接产物为模板, 在两管中分别用7条等位基因特异性引物和一条公用引物进行7重等位基因特异性扩增; 最后用微流控芯片电泳法分离等位基因特异性扩增产物, 根据两管扩增产物的芯片电泳图谱中扩增片段的大小判断SNP的类型。采用本法成功测定了48名健康中国人的IL1B基因上的7个SNP位点, 与聚合酶链反应-限制性片段长度多态性法(PCR-RFLP)和测序法测定结果完全一致。本法结果准确, 可用于同时测定多个SNP位点; 以微流控芯片电泳作为检测平台, 分析速度快, 样品需要量少; 借助于自制筛分凝胶和重复使用芯片, 使得SNP分析成本大大降低。  相似文献   

10.
Polymerase chain reaction-amplified product length polymorphism (PCR-APLP) is one of the most convenient and reliable methods for single nucleotide polymorphism (SNP) analysis. This method is based on PCR, but uses allele-specific primers containing SNP sites at the 3′-terminus of each primer. To use this method at least two allele-specific primers and one “counter-primer”, which serves as a common forward or reverse primer of the allele-specific primers, are required. The allele-specific primers have SNP sites at the 3′-terminus, and another primer should have a few non-complementary flaps at the 5′-terminus to detect SNPs by determining the difference of amplicon length by PCR and subsequent electrophoresis. A major disadvantage of the addition of a non-complementary flap is the non-specific annealing of the primer with non-complementary flaps. However, a design principle for avoiding this undesired annealing has not been fully established, therefore, it is often difficult to design effective APLP primers. Here, we report allele-specific primers with an inosine chain at the 5′-terminus for PCR-APLP analysis. This unique design improves the competitiveness of allele-specific primers and the reliability of SNP analysis when using the PCR-APLP method.  相似文献   

11.
Amplification, deletion, and loss of heterozygosity of genomic DNA are hallmarks of cancer. In recent years a variety of studies have emerged measuring total chromosomal copy number at increasingly high resolution. Similarly, loss-of-heterozygosity events have been finely mapped using high-throughput genotyping technologies. We have developed a probe-level allele-specific quantitation procedure that extracts both copy number and allelotype information from single nucleotide polymorphism (SNP) array data to arrive at allele-specific copy number across the genome. Our approach applies an expectation-maximization algorithm to a model derived from a novel classification of SNP array probes. This method is the first to our knowledge that is able to (a) determine the generalized genotype of aberrant samples at each SNP site (e.g., CCCCT at an amplified site), and (b) infer the copy number of each parental chromosome across the genome. With this method, we are able to determine not just where amplifications and deletions occur, but also the haplotype of the region being amplified or deleted. The merit of our model and general approach is demonstrated by very precise genotyping of normal samples, and our allele-specific copy number inferences are validated using PCR experiments. Applying our method to a collection of lung cancer samples, we are able to conclude that amplification is essentially monoallelic, as would be expected under the mechanisms currently believed responsible for gene amplification. This suggests that a specific parental chromosome may be targeted for amplification, whether because of germ line or somatic variation. An R software package containing the methods described in this paper is freely available at http://genome.dfci.harvard.edu/~tlaframb/PLASQ.  相似文献   

12.
The thermodynamic asymmetry of siRNA duplexes determines their silencing activity. Favorable asymmetry can be achieved by incorporation of mismatches into the 3' part of the sense strand, providing fork-siRNAs, which exhibit higher silencing activity and higher sensitivity to nucleases. Recently, we found that selective 2'-O-methyl modifications of the nuclease-sensitive sites of siRNA significantly improve its nuclease resistance without substantial loss of silencing activity. Here, we examined the impact of nucleotide mismatches and the number and location of 2'-O-methyl modifications on the silencing activity and nuclease resistance of anti-MDR1 siRNAs. We found that both nonmodified and selectively modified fork-siRNAs with 4 mismatches at the 3' end of the sense strand suppress the expression of target gene at lower effective concentrations than the parent siRNAs with classical duplex design. The selective modification of nuclease-sensitive sites significantly improved the stability of fork-siRNAs in the presence of serum. The selectively modified fork-siRNA duplexes provided inhibitory effect over a period of 12 days posttransfection, whereas the gene silencing activity of the nonmodified analogs expired within 6 days. Thus, selective chemical modifications and structural alteration of siRNA duplexes improve their silencing properties and significantly prolong the duration of their silencing effect.  相似文献   

13.
High-throughput SNP detection using nano-scale engineered biomagnetite   总被引:2,自引:0,他引:2  
A semi-automated system for the large-scale detection of single nucleotide polymorphisms (SNPs) has been developed based on allele-specific oligonucleotide hybridization and thermal dissociation curve analysis using nano-scale engineered biomagnetite (bacterial magnetic particles; BacMPs). For reliable detection in large numbers of samples, several conditions for the capture of target DNA on nano-sized BacMPs and the denaturation of double-stranded DNA were optimized. The most efficient target DNA capture was observed using short PCR amplicons (69 bp). Captured DNAs were denatured using 50 mM NaOH. With these optimizations, large-scale SNP detection was performed on 822 samples of the transforming growth factor (TGF)-beta1 gene, which is rich in both GC content and repetitive sequences. High reliability for the semi-automated BacMP-based SNP detection system was confirmed following comparison to traditional sequencing-based methods.  相似文献   

14.
A new approach to SNP genotyping with fluorescently labeled mononucleotides   总被引:4,自引:1,他引:3  
Fluorescence resonance energy transfer (FRET) is one of the most powerful and promising tools for single nucleotide polymorphism (SNP) genotyping. However, the present methods using FRET require expensive reagents such as fluorescently labeled oligonucleotides. Here, we describe a novel and cost-effective method for SNP genotyping using FRET. The technique is based on allele-specific primer extension using mononucleotides labeled with a green dye and a red dye. When the target DNA contains the sequence complementary to the primer, extension of the primer incorporates the green and red dye-labeled nucleotides into the strand, and red fluorescence is emitted by FRET. In contrast, when the 3′ end nucleotide of the primer is not complementary to the target DNA, there is no extension of the primer, or FRET signal. Therefore, discrimination among genotypes is achieved by measuring the intensity of red fluorescence after the extension reaction. We have validated this method with 11 SNPs, which were successfully determined by end-point measurements of fluorescence intensity. The new strategy is simple and cost-effective, because all steps of the preparation consist of simple additions of solutions and incubation, and the dye-labeled mononucleotides are applicable to all SNP analyses. This method will be suitable for large-scale genotyping.  相似文献   

15.
Li B  Kadura I  Fu DJ  Watson DE 《Genomics》2004,83(2):311-320
TaqMAMA combines the quantitative strengths of TaqMan with the allele-specific PCR of MAMA. In this article we develop TaqMAMA as a technique for screening human DNA samples for known genetic polymorphisms. In the first set of experiments, plasmids that model all types of genetic polymorphisms were used to understand the relationship between TaqMAMA primer/template mismatches and their strength of allelic discrimination. These data can be used to improve allelic discrimination of other primer extension genotyping methodologies through directed use of nucleotide mismatches. We used the data to derive a guide for TaqMAMA primer design and DNA strand selection for TaqMAMA genotyping assays. The guide was then used to develop assays for 11 known and novel human genetic polymorphisms. Genotypes were assigned quickly and accurately in all cases. TaqMAMA genotyping assays require minimal development time, have a high probability of success, produce reliable data that are straightforward to analyze, and are very cost-competitive.  相似文献   

16.
DNA diagnostics at the point-of-care requires biosensors that rely on highly sensitive transducers and are producible at low cost. A promising candidate technology is based on direct electrical detection of autometallographically enhanced Au labeled analytes. We present a substantial improvement to the previously used method by introducing online DC resistance monitoring during the autometallographic enhancement process. Since multi-step enhancement, washing, drying, and measurement cycles are eliminated, our method takes the direct electrical detection method a step further to applicability in a point-of-care environment. The feasibility of the novel method is demonstrated by its application in a simple DNA hybridization assay and the analysis of a single nucleotide polymorphism (SNP) using allele-specific hybridization. Unequivocal discrimination of all possible base pairing combinations in the SNP assay has been achieved. The SNP assay in particular indicates the potential of the method for analyte quantification.  相似文献   

17.
We have developed a genetic field effect transistor (FET) for single nucleotide polymorphism (SNP) genotyping, which is based on potentiometric detection of molecular recognition on the gate insulator. Here, we report direct transduction of allele-specific primer extension on the gate surface into electrical signal using the genetic FETs. This method is based on detection of intrinsic negative charges of polynucleotide synthesized by DNA polymerase. The charge density change at the gate surface could be monitored during primer extension reaction. Moreover, three different genotypes could be successfully distinguished without any labeling for target DNA by the use of the genetic FET in combination with allele-specific primer extension. The platform based on the genetic FETs is suitable for a simple, accurate and inexpensive system for SNP genotyping in clinical diagnostics.  相似文献   

18.
Silencing hepatitis B virus (HBV) gene expression with exogenous activators of the RNA interference (RNAi) pathway has shown promise as a new mode of treating infection with the virus. However, optimizing efficacy, specificity, pharmacokinetics and stability of RNAi activators remains a priority before clinical application of this promising therapeutic approach is realised. Chemical modification of synthetic short interfering RNAs (siRNAs) provides the means to address these goals. This study aimed to assess the benefits of incorporating nucleotides with 2′-O-guanidinopropyl (GP) modifications into siRNAs that target HBV. Single GP residues were incorporated at nucleotide positions from 2 to 21 of the antisense strand of a previously characterised effective antiHBV siRNA. When tested in cultured cells, siRNAs with GP moieties at selected positions improved silencing efficacy. Stability of chemically modified siRNAs in 80% serum was moderately improved and better silencing effects were observed without evidence for toxicity or induction of an interferon response. Moreover, partially complementary target sequences were less susceptible to silencing by siRNAs with GP residues located in the seed region. Hydrodynamic co-injection of siRNAs with a replication-competent HBV plasmid resulted in highly effective knock down of markers of viral replication in mice. Evidence for improved efficacy, reduced off target effects and good silencing in vivo indicate that GP-modifications of siRNAs may be used to enhance their therapeutic utility.  相似文献   

19.
RNA interference (RNAi) can achieve sequence-selective inactivation of gene expression in a wide variety of eukaryotes by introducing double-stranded RNA corresponding to the target gene. Here we explore the potential of RNAi as a therapy for amyotrophic lateral sclerosis (ALS) caused by mutations in the Cu, Zn superoxide dismutase (SOD1) gene. Although the mutant SOD1 is toxic, the wild-type SOD1 performs important functions. Therefore, the ideal therapeutic strategy should be to selectively inhibit the mutant, but not the wild-type SOD1 expression. Because most SOD1 mutations are single nucleotide changes, to selectively silence the mutant requires single-nucleotide specificity. By coupling rational design of small interfering RNAs (siRNAs) with their validation in RNAi reactions in vitro and in vivo, we have identified siRNA sequences with this specificity. A similarly designed sequence, when expressed as small hairpin RNA (shRNA) under the control of an RNA polymerase III (pol III) promoter, retains the single-nucleotide specificity. Thus, RNAi is a promising therapy for ALS and other disorders caused by dominant, gain-of-function gene mutations.  相似文献   

20.
Although oligonucleotide probes complementary to single nucleotide substitutions are commonly used in microarray-based screens for genetic variation, little is known about the hybridization properties of probes complementary to small insertions and deletions. It is necessary to define the hybridization properties of these latter probes in order to improve the specificity and sensitivity of oligonucleotide microarray-based mutational analysis of disease-related genes. Here, we compare and contrast the hybridization properties of oligonucleotide microarrays consisting of 25mer probes complementary to all possible single nucleotide substitutions and insertions, and one and two base deletions in the 9168 bp coding region of the ATM (ataxia telangiectasia mutated) gene. Over 68 different dye-labeled single-stranded nucleic acid targets representing all ATM coding exons were applied to these microarrays. We assess hybridization specificity by comparing the relative hybridization signals from probes perfectly matched to ATM sequences to those containing mismatches. Probes complementary to two base substitutions displayed the highest average specificity followed by those complementary to single base substitutions, single base deletions and single base insertions. In all the cases, hybridization specificity was strongly influenced by sequence context and possible intra- and intermolecular probe and/or target structure. Furthermore, single nucleotide substitution probes displayed the most consistent hybridization specificity data followed by single base deletions, two base deletions and single nucleotide insertions. Overall, these studies provide valuable empirical data that can be used to more accurately model the hybridization properties of insertion and deletion probes and improve the design and interpretation of oligonucleotide microarray-based resequencing and mutational analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号