首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
3.
4.
5.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

6.
7.
Bacillus cereus ATCC 14579 was cultured in microcolonies on Anopore strips near its minimum growth temperature to directly image and quantify its population heterogeneity at an abusive refrigeration temperature. Eleven percent of the microcolonies failed to grow during low-temperature incubation, and this cold-induced population heterogeneity could be partly attributed to the loss of membrane integrity of individual cells.Bacillus cereus is a food poisoning- and food spoilage-causing organism that can be found in a large variety of foods (4, 23). There are two illnesses associated with B. cereus, namely, emetic and diarrheal intoxication (17, 24). Most of the strains related to cases or outbreaks of B. cereus food-borne poisoning were shown to be unable to grow at 7°C (1, 12). The average temperatures of domestic refrigerators have been investigated in various surveys around the world and often ranged from 5°C to 7°C, but extreme values exceeded 10°C to 12°C (5, 16). Inadequate chilling was indeed reported in various incidents of B. cereus food-borne illness (7, 8, 18, 19), pointing to the importance of appropriate refrigeration of foods contaminated with B. cereus to control its growth and toxin production in foods (9).Several studies have demonstrated that microorganisms can show diversity in their population stress response, even in an apparently homogeneous stress environment (6, 11, 21, 22). However, only very limited data describing the heterogeneity in growth performance of individual cells from food-borne pathogens cultured at low temperatures are available (10). Because inadequate chilling of food is one of the factors that contribute to the number of incidents of B. cereus food-borne illness, there is a need for better understanding of its growth performance at lowered incubation temperatures. In this study, we used the direct-imaging-based Anopore technology (6, 13-15) to quantitatively describe the population heterogeneity of B. cereus ATCC 14579 cells at 12°C. The minimum temperature for the growth of B. cereus ATCC 14579 in brain heart infusion (BHI) broth is 7.5°C (personal communication from F. Carlin), but various food-borne-associated B. cereus isolates were shown to be unable to grow at 10°C (1). Therefore, in this study, a culturing temperature of 12°C was chosen, to mimic temperature abuse of refrigerated foods. In addition, the membrane integrity of individual cells was assessed using both membrane permeant and impermeant nucleic acid dyes in order to get more insight into cellular characteristics that may contribute to heterogeneity in growth response.  相似文献   

8.
Several mycoplasma species feature a membrane protrusion at a cell pole, and unknown mechanisms provide gliding motility in the direction of the pole defined by the protrusion. Mycoplasma gallisepticum, an avian pathogen, is known to form a membrane protrusion composed of bleb and infrableb and to glide. Here, we analyzed the gliding motility of M. gallisepticum cells in detail. They glided in the direction of the bleb at an average speed of 0.4 μm/s and remained attached around the bleb to a glass surface, suggesting that the gliding mechanism is similar to that of a related species, Mycoplasma pneumoniae. Next, to elucidate the cytoskeletal structure of M. gallisepticum, we stripped the envelopes by treatment with Triton X-100 under various conditions and observed the remaining structure by negative-staining transmission electron microscopy. A unique cytoskeletal structure, about 300 nm long and 100 nm wide, was found in the bleb and infrableb. The structure, resembling an asymmetrical dumbbell, is composed of five major parts from the distal end: a cap, a small oval, a rod, a large oval, and a bowl. Sonication likely divided the asymmetrical dumbbell into a core and other structures. The cytoskeletal structures of M. gallisepticum were compared with those of M. pneumoniae in detail, and the possible protein components of these structures were considered.Mycoplasmas are commensal and occasionally pathogenic bacteria that lack a peptidoglycan layer (50). Several species feature a membrane protrusion at a pole; for Mycoplasma mobile, this protrusion is called the head, and for Mycoplasma pneumoniae, it is called the attachment organelle (25, 34-37, 52, 54, 58). These species bind to solid surfaces, such as glass and animal cell surfaces, and exhibit gliding motility in the direction of the protrusion (34-37). This motility is believed to be essential for the mycoplasmas'' pathogenicity (4, 22, 27, 36). Recently, the proteins directly involved in the gliding mechanisms of mycoplasmas were identified and were found to have no similarities to those of known motility systems, including bacterial flagellum, pilus, and slime motility systems (25, 34-37).Mycoplasma gallisepticum is an avian pathogen that causes serious damage to the production of eggs for human consumption (50). The cells are pear-shaped and have a membrane protrusion, consisting of the so-called bleb and infrableb (29), and gliding motility (8, 14, 22). Their putative cytoskeletal structures may maintain this characteristic morphology because M. gallisepticum, like other mycoplasma species, does not have a cell wall (50). In sectioning electron microscopy (EM) studies of M. gallisepticum, an intracellular electron-dense structure in the bleb and infrableb was observed, suggesting the existence of a cytoskeletal structure (7, 24, 29, 37, 58). Recently, the existence of such a structure has been confirmed by scanning EM of the structure remaining after Triton X-100 extraction (13), although the details are still unclear.A human pathogen, M. pneumoniae, has a rod-shaped cytoskeletal structure in the attachment organelle (9, 15, 16, 31, 37, 57). M. gallisepticum is related to M. pneumoniae (63, 64), as represented by 90.3% identity between the 16S rRNA sequences, and it has some open reading frames (ORFs) homologous to the component proteins of the cytoskeletal structures of M. pneumoniae (6, 17, 48). Therefore, the cytoskeletal structures of M. gallisepticum are expected to be similar to those of M. pneumoniae, as scanning EM images also suggest (13).The fastest-gliding species, M. mobile, is more distantly related to M. gallisepticum; it has novel cytoskeletal structures that have been analyzed through negative-staining transmission EM after extraction by Triton X-100 with image averaging (45). This method of transmission EM following Triton X-100 extraction clearly showed a cytoskeletal “jellyfish” structure. In this structure, a solid oval “bell,” about 235 nm wide and 155 nm long, is filled with a 12-nm hexagonal lattice. Connected to this bell structure are dozens of flexible “tentacles” that are covered with particles 20 nm in diameter at intervals of about 30 nm. The particles appear to have 180° rotational symmetry and a dimple at the center. The involvement of this cytoskeletal structure in the gliding mechanism was suggested by its cellular localization and by analyses of mutants lacking proteins essential for gliding.In the present study, we applied this method to M. gallisepticum and analyzed its unique cytoskeletal structure, and we then compared it with that of M. pneumoniae.  相似文献   

9.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

10.
Superdormant spores of Bacillus cereus and Bacillus subtilis germinated just as well as dormant spores with pressures of 150 or 500 MPa and with or without heat activation. Superdormant B. subtilis spores also germinated as well as dormant spores with peptidoglycan fragments or bryostatin, a Ser/Thr protein kinase activator.Spores of Bacillus species are formed in sporulation, a process that is generally triggered by starvation for one or more nutrients (13, 19). These spores are metabolically dormant and extremely resistant to a large variety of environmental stresses, including heat, radiation, and toxic chemicals, and as a consequence of these properties, these spores can remain viable in their dormant state for many years (13, 18, 19). However, spores are constantly sensing their environment, and if nutrients return, the spores can rapidly return to growth through the process of spore germination (17). Spore germination is generally triggered by specific nutrients that bind to nutrient germinant receptors, with this binding alone somehow triggering germination. However, spore germination can also be triggered by many non-nutrient agents, including cationic surfactants such as dodecylamine, a 1:1 complex of Ca2+ with pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA], a major spore small molecule), very high pressures, specific peptidoglycan fragments, and bryostatin, an activator of Ser/Thr protein kinases (17, 19, 20). For nutrient germinants in particular, spore germination is also potentiated by a prior sublethal heat treatment termed heat activation (17).While normally the great majority of spores in populations germinate relatively rapidly in response to nutrient germinants, a small percentage of spores germinate extremely slowly. These spores that are refractory to nutrient germination have been termed superdormant spores and are a major concern for the food industry (8). Recently superdormant spores of three Bacillus species have been isolated by repeated germination of spore populations with specific nutrient germinants and isolation of remaining dormant spores (5, 6). These superdormant spores germinate extremely poorly with the nutrient germinants used in superdormant spore isolation, as well as with other nutrient germinants. All of the specific defects leading to spore superdormancy are not known, although an increased level of receptors for specific nutrient germinants decreases levels of superdormant spores obtained with the nutrients that are ligands for these receptors (5). Superdormant spores also have significantly higher temperature optima for heat activation of nutrient germination than the spore population as a whole (7).In contrast to the poor germination of superdormant spores with nutrient germinants, superdormant spores germinate normally with dodecylamine and Ca-DPA (5, 6). This is consistent with possible roles of nutrient germinant receptor levels and/or heat activation temperature optima in affecting spore superdormancy, since neither dodecylamine nor Ca-DPA triggers Bacillus spore germination through nutrient germinant receptors, and germination with these agents is also not stimulated by heat activation (11, 15, 17). However, the effects of high pressures, peptidoglycan fragments, and bryostatin, all of which almost certainly trigger spore germination by mechanisms at least somewhat different than triggering of germination by nutrients, dodecylamine, and Ca-DPA (2, 3, 11, 15, 20, 22, 23), have not been tested for their effects on superdormant spores. Consequently, we have compared the germination of dormant and superdormant spores of two Bacillus species by high-pressures, peptidoglycan fragments, and bryostatin.The spores used in this work were from Bacillus subtilis PS533 (16), a derivative of strain 168 that also carries plasmid pUB110, providing resistance to kanamycin (10 μg/ml), and Bacillus cereus T (originally obtained from H. O. Halvorson). Spores of these strains were prepared and purified as described previously (6, 10, 12). Superdormant spores of B. subtilis were prepared by germination following heat activation at 75°C for 30 min by two germination treatments at 37°C with 10 mM l-valine for 2 h, followed by isolation of remaining dormant spores, all as described previously (5, 10, 12). These superdormant spores germinated extremely poorly with 10 mM valine at 37°C, giving ≤10% germination in 2 h at 37°C, while the initial spore population exhibited >95% germination under the same conditions (data not shown). Superdormant B. cereus spores were isolated similarly, although heat activation was at 65°C for 30 min and the germinant was 5 mM inosine as described previously (6). These superdormant B. cereus spores exhibited <5% germination with inosine in 2 h at 37°C compared to the >95% germination of the initial dormant spores under the same conditions (data not shown).  相似文献   

11.
12.
An extremely thermophilic bacterium, Thermus thermophilus HB8, is one of the model organisms for systems biology. Its genome consists of a chromosome (1.85 Mb), a megaplasmid (0.26 Mb) designated pTT27, and a plasmid (9.3 kb) designated pTT8, and the complete sequence is available. We show here that T. thermophilus is a polyploid organism, harboring multiple genomic copies in a cell. In the case of the HB8 strain, the copy number of the chromosome was estimated to be four or five, and the copy number of the pTT27 megaplasmid seemed to be equal to that of the chromosome. It has never been discussed whether T. thermophilus is haploid or polyploid. However, the finding that it is polyploid is not surprising, as Deinococcus radiodurans, an extremely radioresistant bacterium closely related to Thermus, is well known to be a polyploid organism. As is the case for D. radiodurans in the radiation environment, the polyploidy of T. thermophilus might allow for genomic DNA protection, maintenance, and repair at elevated growth temperatures. Polyploidy often complicates the recognition of an essential gene in T. thermophilus as a model organism for systems biology.The extreme thermophile Thermus thermophilus is a Gram-negative aerobic bacterium that can grow at temperatures ranging from 50°C to 82°C (33, 34). The genome sequences of two strains, HB27 and HB8, are available (13; see also http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome&cmd=Retrieve&dopt=Overview&list_uids=530). The genome of the HB27 strain consists of a chromosome (1.89 Mb) and a megaplasmid (0.23 Mb), while that of the HB8 strain includes a plasmid (9.3 kb) coupled with a chromosome (1.85 Mb) and a megaplasmid (0.26 Mb) (13; see also the NCBI website [above]). This organism has attracted attention as one of the model organisms for genetic manipulation, structural genomics, and systems biology (9, 44). In the case of the HB8 strain, the Structural and Functional Whole-Cell Project for T. thermophilus HB8, which aims to understand the mechanisms of all the biological phenomena occurring in the HB8 cell by investigating the cellular components at the atomic level on the basis of their three-dimensional (3-D) structures, is in progress (44). In addition to the stability and ease of crystallization of thermophilic proteins, natural competency and an established genetic engineering system add value to T. thermophilus HB8 as a model organism (12, 14, 23, 44). Thermostabilized resistances against antibiotics such as kanamycin (Km), hygromycin (Hm), and bleomycin (Bm), which were developed by directed evolution, have also encouraged the system (5, 6, 16, 29; Y. Koyama, unpublished data).However, we had been puzzled about several gene disruptions in T. thermophilus HB8 that resulted from replacement with the drug resistance gene. Even if drug-resistant transformants were obtained, the target gene of the transformants had not often been deleted. The target gene, probably an essential gene, seemed to coexist with the drug resistance gene. A similar phenomenon has been reported in the deletion of the recJ gene in Deinococcus radiodurans (7). Repeated observation of this phenomenon suggested that T. thermophilus HB8 might possess multiple genomic copies. Many bacteria, including the most-studied bacteria Escherichia coli and Bacillus subtilis, essentially carry a single genomic copy per cell and are genetically haploid organisms (3, 10, 42, 43). On the other hand, several bacteria have been proposed to be polyploid, harboring multiple genomic copies per cell. They include Buchnera species (21, 22), Blattabacterium species (24), Epulopiscium species (1, 4), Borrelia hermsii (20), Azotobacter vinelandii (28, 35), Neisseria gonorrhoeae (41), D. radiodurans (11, 27), a few Lactococcus lactis laboratory strains (26), and many cyanobacteria (2, 25, 37). In particular, D. radiodurans, an extremely radioresistant bacterium, has been suggested to be closely related to the genus Thermus by comparative genomic analysis (13, 32). The radioresistant bacterium carries four genome copies per cell in the stationary phase and up to 10 copies per cell during exponential growth (11, 27). In contrast with this well-known polyploidy of D. radiodurans, no report on the genomic copy number of Thermus has been done, in spite of the attention it has received as a model organism. Therefore, in this paper, the potential polyploidy and the genomic copy number were first studied in T. thermophilus HB8.  相似文献   

13.
The present work calculated the rate of inactivation of Cryptosporidium parvum oocysts attributable to daily oscillations of low ambient temperatures. The relationship between air temperature and the internal temperature of bovine feces on commercial operations was measured, and three representative 24-h thermal regimens in the ∼15°C, ∼25°C, and ∼35°C ranges were chosen and emulated using a thermocycler. C. parvum oocysts suspended in deionized water were exposed to the temperature cycles, and their infectivity in mice was tested. Oral inoculation of 103 treated oocysts per neonatal BALB/c mouse (∼14 times the 50% infective dose) resulted in time- and temperature-dependent reductions in the proportion of infected mice. Oocysts were completely noninfectious after 14 24-h cycles with the 30°C regimen and after 70 24-h cycles with the 20°C regimen. In contrast, oocysts remained infectious after 90 24-h cycles with the 10°C regimens. The estimated numbers of days needed for a 1-log10 reduction in C. parvum oocyst infectivity were 4.9, 28.7, and 71.5 days for the 30, 20, and 10°C thermal regimens, respectively. The loss of infectivity of oocysts induced by these thermal regimens was due in part to partial or complete in vitro excystation.It is well recognized that the protozoan parasite Cryptosporidium parvum causes waterborne enteric disease and poses a significant threat to public health. Fecal contamination from infected hosts, such as humans and some species of livestock and wildlife (17), can lead to elevated concentrations of C. parvum oocysts in drinking, recreational, and irrigation water supplies (6, 8). Once excreted, C. parvum oocysts can be eluted from fresh fecal matrices during precipitation events that generate surface flow or runoff conditions (4, 5, 12, 21, 32). During cool moist conditions oocysts can persist for months in the environment (10, 11, 25, 30), but factors such as extremes of temperature, exposure to UV radiation, and desiccation can substantially reduce the number of infective oocysts prior to waterborne transport (2, 7, 9, 11, 19, 24, 25, 29, 30).To examine thermal stress, most studies have used constant thermal regimens to investigate the effect of temperature on the viability or infectivity of Cryptosporidium oocysts (11, 14, 20, 28, 30). To complement this work, we previously investigated the impact of large daily changes in the ambient temperature on C. parvum oocyst infectivity, using spring through autumn thermal regimens and temperatures measured inside bovine fecal pats that were exposed to solar radiation at cow-calf and dairy production facilities (23). Under California''s summer climatic conditions, internal fecal pat temperatures range from 45°C to 75°C during the day and decrease 10 to 60°C during the night. Exposing oocysts to these large thermal fluctuations results in >3.3-log10 reductions in oocyst infectivity in each 24-h cycle (23). The present study was conducted in order to measure the effect of exposure to oocysts to cool-season daily temperatures (with peaks at temperatures greater than 10°C, 20°C, and 30°C) on the rate of inactivation of C. parvum oocysts. Determining the temperature-dependent rate of C. parvum oocyst inactivation for these lower temperatures would allow grazing management and source water assessment plans to more properly predict the amount of time needed for exclusion of cattle prior to the onset of winter precipitation in order to inactivate sufficient numbers of oocysts in critical watersheds.  相似文献   

14.
The main transmission pathway of Helicobacter pylori has not been determined, but several reports have described detection of H. pylori DNA in drinking and environmental water, suggesting that H. pylori may be waterborne. To address this possibility, we developed, tested, and optimized two complementary H. pylori-specific real-time PCR assays for quantification of H. pylori DNA in water. The minimum detection level of the assays including collection procedures and DNA extraction was shown to be approximately 250 H. pylori genomes per water sample. Using our assays, we then analyzed samples of drinking and environmental water (n = 75) and natural water biofilms (n = 21) from a high-endemicity area in Bangladesh. We could not identify H. pylori DNA in any of the samples, even though other pathogenic bacteria have been found previously in the same water samples by using the same methodology. A series of control experiments were performed to ensure that the negative results were not falsely caused by PCR inhibition, nonspecific assays, degradation of template DNA, or low detection sensitivity. Our results suggest that it is unlikely that the predominant transmission route of H. pylori in this area is waterborne.Helicobacter pylori is the most common human bacterial pathogen in the world (15), and it has been estimated that 50% of the world''s population is infected. The prevalence of H. pylori infection varies greatly worldwide, with infection rates of more than 80% in some developing countries and below 20% in some developed countries (29). H. pylori causes peptic ulcers in 10 to 15% and stomach cancer in another 1 to 2% of those infected (29).H. pylori naturally resides in the human stomach, and except for some primate species, no other host has been identified. Outside its host, H. pylori is fastidious and can grow only under microaerophilic conditions at 34 to 40°C in nutrient-rich media (29). Under suboptimal conditions, H. pylori transforms into nonculturable spherical or coccoid forms. To date, it is not clear if this process is reversible or if the coccoid form is infectious or even viable, but it has been reported to retain some metabolic activity, its genome, and an intact membrane (1, 6, 12, 28, 38, 47).Transmission of H. pylori has been proposed to occur via gastric-oral, oral-oral, or fecal-oral routes, with studies suggesting transmission through saliva and dental plaque (14, 23), normal and diarrheal stools (18, 23, 41, 43), and vomitus (30, 41). Infected mothers or older siblings, low standards of living, and crowded households have been shown to be major risk factors for contracting H. pylori (25, 35, 50). Other studies have shown a relation between infection, water sanitation, and drinking water sources (24, 26, 39), further supported by reports of H. pylori DNA in drinking, river, lake, or seawater (3, 7, 16, 19-22, 25, 33, 34, 37, 40, 43, 49).Since none of the latter group of studies have shown a causative relation between traces of H. pylori in water and new infections, our original aim was to perform a 2-year prospective study tracing H. pylori in water in a high-endemicity area and relate the findings with new infections in children. For this purpose, we developed highly sensitive and specific quantitative real-time PCR assays for detecting H. pylori DNA in water or human samples while allowing analysis of clonal relatedness between samples of different origins by sequencing of recovered DNA. Using these assays, we conducted a study in a slum area in Dhaka, Bangladesh, where we have recently shown a very high rate of H. pylori infections, i.e., that 60% of the children were infected by the age of 2 years (4). Drinking, waste, and environmental water samples and natural drinking water biofilm samples were collected and analyzed, with rigorous controls for falsely positive or negative results.  相似文献   

15.
The ability to undergo dramatic morphological changes in response to extrinsic cues is conserved in fungi. We have used the model yeast Schizosaccharomyces pombe to determine which intracellular signal regulates the dimorphic switch from the single-cell yeast form to the filamentous invasive growth form. The S. pombe Asp1 protein, a member of the conserved Vip1 1/3 inositol polyphosphate kinase family, is a key regulator of the morphological switch via the cAMP protein kinase A (PKA) pathway. Lack of a functional Asp1 kinase domain abolishes invasive growth which is monopolar, while an increase in Asp1-generated inositol pyrophosphates (PP) increases the cellular response. Remarkably, the Asp1 kinase activity encoded by the N-terminal part of the protein is regulated negatively by the C-terminal domain of Asp1, which has homology to acid histidine phosphatases. Thus, the fine tuning of the cellular response to environmental cues is modulated by the same protein. As the Saccharomyces cerevisiae Asp1 ortholog is also required for the dimorphic switch in this yeast, we propose that Vip1 family members have a general role in regulating fungal dimorphism.Eucaryotic cells are able to define and maintain a particular cellular organization and thus cellular morphology by executing programs modulated by internal and external signals. For example, signals generated within a cell are required for the selection of the growth zone after cytokinesis in the fission yeast Schizosaccharomyces pombe or the emergence of the bud in Saccharomyces cerevisiae (37, 44, 81). Cellular morphogenesis is also subject to regulation by a wide variety of external signals, such as growth factors, temperature, hormones, nutrient limitation, and cell-cell or cell-substrate contact (13, 34, 66, 75, 81). Both types of signals will lead to the selection of growth zones accompanied by the reorganization of the cytoskeleton.The ability to alter the growth form in response to environmental conditions is an important virulence-associated trait of pathogenic fungi which helps the pathogen to spread in and survive the host''s defense system (7, 32). Alteration of the growth form in response to extrinsic signals is not limited to pathogenic fungi but is also found in the model yeasts S. cerevisiae and S. pombe, in which it appears to represent a foraging response (1, 24).The regulation of polarized growth and the definition of growth zones have been studied extensively with the fission yeast S. pombe. In this cylindrically shaped organism, cell wall biosynthesis is restricted to one or both cell ends in a cell cycle-regulated manner and to the septum during cytokinesis (38). This mode of growth requires the actin cytoskeleton to direct growth and the microtubule cytoskeleton to define the growth sites (60). In interphase cells, microtubules are organized in antiparallel bundles that are aligned along the long axis of the cell and grow from their plus ends toward the cell tips. Upon contact with the cell end, microtubule growth will first pause and then undergo a catastrophic event and microtubule shrinkage (21). This dynamic behavior of the microtubule plus end is regulated by a disparate, conserved, microtubule plus end group of proteins, called the +TIPs. The +TIP complex containing the EB1 family member Mal3 is required for the delivery of the Tea1-Tea4 complex to the cell tip (6, 11, 27, 45, 77). The latter complex docks at the cell end and recruits proteins required for actin nucleation (46, 76). Thus, the intricate cross talk between the actin and the microtubule cytoskeleton at specific intracellular locations is necessary for cell cycle-dependent polarized growth of the fission yeast cell.The intense analysis of polarized growth control in single-celled S. pombe makes this yeast an attractive organism for the identification of key regulatory components of the dimorphic switch. S. pombe multicellular invasive growth has been observed for specific strains under specific conditions, such as nitrogen and ammonium limitation and the presence of excess iron (1, 19, 50, 61).Here, we have identified an evolutionarily conserved key regulator of the S. pombe dimorphic switch, the Asp1 protein. Asp1 belongs to the highly conserved family of Vip1 1/3 inositol polyphosphate kinases, which is one of two families that can generate inositol pyrophosphates (PP) (17, 23, 42, 54). The inositol polyphosphate kinase IP6K family, of which the S. cerevisiae Kcs1 protein is a member, is the “classical” family that can phosphorylate inositol hexakisphosphate (IP6) (70, 71). These enzymes generate a specific PP-IP5 (IP7), which has the pyrophosphate at position 5 of the inositol ring (20, 54). The Vip1 family kinase activity was unmasked in an S. cerevisiae strain with KCS1 and DDP1 deleted (54, 83). The latter gene encodes a nudix hydrolase (14, 68). The mammalian and S. cerevisiae Vip1 proteins phosphorylate the 1/3 position of the inositol ring, generating 1/3 diphosphoinositol pentakisphosphate (42). Both enzyme families collaborate to generate IP8 (17, 23, 42, 54, 57).Two modes of action have been described for the high-energy moiety containing inositol pyrophosphates. First, these molecules can phosphorylate proteins by a nonenzymatic transfer of a phosphate group to specific prephosphorylated serine residues (2, 8, 69). Second, inositol pyrophosphates can regulate protein function by reversible binding to the S. cerevisiae Pho80-Pho85-Pho81 complex (39, 40). This cyclin-cyclin-dependent kinase complex is inactivated by inositol pyrophosphates generated by Vip1 when cells are starved of inorganic phosphate (39, 41, 42).Regulation of phosphate metabolism in S. cerevisiae is one of the few roles specifically attributed to a Vip1 kinase. Further information about the cellular function of this family came from the identification of the S. pombe Vip1 family member Asp1 as a regulator of the actin nucleator Arp2/3 complex (22). The 106-kDa Asp1 cytoplasmic protein, which probably exists as a dimer in vivo, acts as a multicopy suppressor of arp3-c1 mutants (22). Loss of Asp1 results in abnormal cell morphology, defects in polarized growth, and aberrant cortical actin cytoskeleton organization (22).The Vip1 family proteins have a dual domain structure which consists of an N-terminal “rimK”/ATP-grasp superfamily domain found in certain inositol signaling kinases and a C-terminal part with homology to histidine acid phosphatases present in phytase enzymes (28, 53, 54). The N-terminal domain is required and sufficient for Vip1 family kinase activity, and an Asp1 variant with a mutation in a catalytic residue of the kinase domain is unable to suppress mutants of the Arp2/3 complex (17, 23, 54). To date, no function has been described for the C-terminal phosphatase domain, and this domain appears to be catalytically inactive (17, 23, 54).Here we describe a new and conserved role for Vip1 kinases in regulating the dimorphic switch in yeasts. Asp1 kinase activity is essential for cell-cell and cell-substrate adhesion and the ability of S. pombe cells to grow invasively. Interestingly, Asp1 kinase activity is counteracted by the putative phosphatase domain of this protein, a finding that allows us to describe for the first time a function for the C-terminal part of Vip1 proteins.  相似文献   

16.
17.
A family 5 glycoside hydrolase from Clostridium phytofermentans was cloned and engineered through a cellulase cell surface display system in Escherichia coli. The presence of cell surface anchoring, a cellulose binding module, or a His tag greatly influenced the activities of wild-type and mutant enzymes on soluble and solid cellulosic substrates, suggesting the high complexity of cellulase engineering. The best mutant had 92%, 36%, and 46% longer half-lives at 60°C on carboxymethyl cellulose, regenerated amorphous cellulose, and Avicel, respectively.The production of biofuels from nonfood cellulosic biomass would benefit the economy, the environment, and national energy security (17, 32). The largest technological and economical obstacle is the release of soluble fermentable sugars at prices competitive with those from sugarcane or corn kernels (17, 31). One of the approaches is discovering new cellulases from cellulolytic microorganisms, followed by cellulase engineering for enhanced performance on pretreated solid substrates. However, cellulase engineering remains challenging because enzymatic cellulose hydrolysis is complicated, involving heterogeneous substrates (33, 37), different action mode cellulase components (18), synergy and/or competition among cellulase components (36, 37), and declining substrate reactivity over the course of conversion (11, 26). Directed enzyme evolution, independent of knowledge of the protein structure and the enzyme-substrate interactions (6, 34), has been conducted to generate endoglucanase mutants, such as enhanced activities on soluble substrates (14, 16, 22), prolonged thermostability (20), changed optimum pH (24, 28), or improved expression levels (21). Here, we cloned and characterized a family 5 glycoside hydrolase (Cel5A) from a cellulolytic bacterium, Clostridium phytofermentans ISDg (ATCC 700394) (29, 30), and engineered it for enhanced thermostability.  相似文献   

18.
19.
20.
《Journal of bacteriology》2009,191(6):1951-1960
We have identified a clonal complex of Mycobacterium bovis present at high frequency in cattle in population samples from several sub-Saharan west-central African countries. This closely related group of bacteria is defined by a specific chromosomal deletion (RDAf1) and can be identified by the absence of spacer 30 in the standard spoligotype typing scheme. We have named this group of strains the African 1 (Af1) clonal complex and have defined the spoligotype signature of this clonal complex as being the same as the M. bovis BCG vaccine strain but with the deletion of spacer 30. Strains of the Af1 clonal complex were found at high frequency in population samples of M. bovis from cattle in Mali, Cameroon, Nigeria, and Chad, and using a combination of variable-number tandem repeat typing and spoligotyping, we show that the population of M. bovis in each of these countries is distinct, suggesting that the recent mixing of strains between countries is not common in this area of Africa. Strains with the Af1-specific deletion (RDAf1) were not identified in M. bovis isolates from Algeria, Burundi, Ethiopia, Madagascar, Mozambique, South Africa, Tanzania, and Uganda. Furthermore, the spoligotype signature of the Af1 clonal complex has not been identified in population samples of bovine tuberculosis from Europe, Iran, and South America. These observations suggest that the Af1 clonal complex is geographically localized, albeit to several African countries, and we suggest that the dominance of the clonal complex in this region is the result of an original introduction into cows naïve to bovine tuberculosis.Mycobacterium bovis causes bovine tuberculosis (TB), an important disease of domesticated cattle that has a major economic and health impact throughout the world (61, 64, 65). The pathogen is a member of the Mycobacterium tuberculosis complex, which includes many species and subspecies that cause similar pathologies in a variety of mammalian hosts. The most notable member of the complex is M. tuberculosis, the most important bacterial pathogen of humans. In contrast to M. tuberculosis, which is largely host restricted to humans, M. bovis is primarily maintained in bovids, in particular, domesticated cattle, although the pathogen can frequently be recovered from other mammals, including humans (61). Bovine TB is found in cattle throughout the world and has been reported on every continent where cattle are farmed (3).Bovine TB has been reduced or eliminated from domestic cattle in many developed countries by the application of a test-and-cull policy that removes infected cattle (3, 8, 16, 17, 61, 64, 65). However, in Africa, although bovine TB is known to be common in both cattle and wildlife, control policies have not been enforced in many countries due to cost implications, lack of capacity, and infrastructure limitations (8, 16, 17, 57). In 1998, Cosivi et al. reported of bovine TB, “Of all nations in Africa, only seven apply disease control measures as part of a test-and-slaughter policy and consider bovine TB a notifiable disease; the remaining 48 control the disease inadequately or not at all” (16). In the intervening years, the situation is not thought to have improved (8); however, preliminary surveys of bovine TB have been carried out in some African countries (4, 7, 12, 37, 44, 49, 53, 54, 56).The most common epidemiological molecular-typing method applied to strains of M. bovis is spoligotyping. This method identifies polymorphism in the presence of spacer units in the direct-repeat (DR) region in strains of the M. tuberculosis complex (36, 67). The DR is composed of multiple, virtually identical 36-bp regions interspersed with unique DNA spacer sequences of similar size (direct variant repeat [DVR] units). Spacer sequences are unique to the DR region, and copies are not located elsewhere in the chromosome (68). The DR region may contain over 60 DVR units; however, 43 of the spacer units were selected from the spacer sequences of the M. tuberculosis reference strain H37Rv and M. bovis BCG strain P3 and are used in the standard application of spoligotyping to strains of the M. tuberculosis complex (29, 36). The DR region is polymorphic because of the loss (deletion) of single or multiple spacers, and each spoligotype pattern from strains of M. bovis is given an identifier (http://www.Mbovis.org).Several studies of the DR regions in closely related strains of M. tuberculosis have concluded that the evolutionary trend for this region is primarily loss of single DVRs or multiple contiguous DVRs (22, 29, 68); duplication of DVR units or point mutations in spacer sequences were found to be rare. The loss of discrete units observed by Groenen et al. (29) led them to suggest that the mechanism for spacer loss was homologous recombination between repeat units. However, a study by Warren et al. (69) suggested that for strains of M. tuberculosis, insertion of IS6110 sequences into the DR region and recombination between adjacent IS6110 elements were more important mechanisms for the loss of spacer units.The population structure of the M. tuberculosis group of organisms is apparently highly clonal, without any transfer and recombination of chromosomal sequences between strains (15, 30, 60, 61). In a strictly clonal population, the loss by deletion of unique chromosomal DNA cannot be replaced by recombination from another strain, and the deleted region will act as a molecular marker for the strain and all its descendants. Deletions of specific chromosomal regions (regions of difference [RDs] or large sequence polymorphisms) have been very successful at identifying phylogenetic relationships in the M. tuberculosis complex (11, 25, 26, 35, 48, 50, 61, 62, 66). However, because the loss of spoligotype spacer sequences is so frequent, identical spoligotype patterns can occur independently in unrelated lineages (homoplasy), and therefore, the deletion of spoligotype spacers may be an unreliable indicator of phylogenetic relationship (61, 69).In samples of M. bovis strains from Cameroon, Nigeria, Chad, and Mali, spoligotyping was used to show that many of the strains had similar spoligotype patterns that lacked spacer 30, and it has been suggested that strains from these four countries are phylogenetically related (12, 18, 49, 53). We have extended the previous observations of spoligotype similarities between strains from these countries and confirmed the existence of a unique clonal complex of M. bovis, all descended from a single strain in which a specific deletion of chromosomal DNA occurred. We have named this clonal complex of M. bovis strains African 1 (Af1), and we show that this clonal complex is dominant in these four west-central African countries but rare in eastern and southern Africa. Extended genotyping, using variable-number tandem repeats (VNTR), of strains with the most common spoligotype patterns suggests that each of these four west-central African countries has a unique population structure. Evolutionary scenarios that may have led to the present day distribution of the Af1 clonal complex are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号