首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
2.
Responses induced by Cd exposure were assessed in tobacco seedlings (Nicotiana tabacum L.) using macro and molecular indices. The 100 μM of Cd exposure reduced the total dry weight and chlorophyll index of the seedlings as much as the genuine Fe-deficiency. Concentration of Fe in the shoots decreased, whereas that in the roots increased by the Cd exposure, especially in the apoplasmic space. It is probable that Cd interferes mainly with the step of Fe-translocation from the roots to shoots and this sets the upper-part of the plant in a state of Fe-deficiency. The Cd exposure coordinately increased the expressions of the exogenous and the endogenous Fe-deficiency responsive genes, HvIDS2 pro ::GUS, NtFRO1 and NtIRT1 in the roots. This is the first data to demonstrate the responses of Cd-inducible Fe-deficiency at a molecular level.  相似文献   

3.
4.
Transgenic plants of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L) were produced by transforming with the apple class 1 KNOX genes (MdKN1 and MdKN2) or corn KNOX1 gene. Transgenic tobacco plants were regenerated in vitro from transformed leaf discs cultured in a medium lacking cytokinin. Ectopic expression of KNOX genes retarded shoot growth by suppressing elongation of internodes in transgenic tobacco plants. Expression of each of the three KNOX1 genes induced malformation and extensive lobbing in tobacco leaves. In situ regeneration of adventitious shoots was observed from leaves and roots of transgenic tobacco plants expressing each of the three KNOX genes. In vitro culture of leaf explants and internode sections excised from in vitro grown MdKN1 expressing tobacco shoots regenerated adventitious shoots on MS (Murashige and Skoog 1962) basal medium in the absence of exogenous cytokinin. Transgenic plum plants that expressed the MdKN2 or corn KNOX1 gene grew normally but MdKN1 caused a significant reduction in plant height, leaf shape and size and produced malformed curly leaves. A high frequency of adventitious shoot regeneration (96%) was observed in cultures of leaf explants excised from corn KNOX1-expressing transgenic plum shoots. In contrast to KNOX1-expressing tobacco, leaf and internode explants of corn KNOX1-expressing plum required synthetic cytokinin (thidiazuron) in the culture medium to induce adventitious shoot regeneration. The induction of high-frequency regeneration of adventitious shoots in vitro from leaves and stem internodal sections of plum through the ectopic expression of a KNOX1 gene is the first such report for a woody perennial fruit trees.  相似文献   

5.
The expression of four representative iron-deficiency-responsive genes from tobacco ( NtIRT1 and NtYSL1 ) and barley ( HvIDS2 and HvYS1 ) plants were evaluated in each host plant in response to iron deficiency (ΔFe), cadmium exposure (+Cd) or both (ΔFe + Cd). These conditions significantly enhanced NtIRT1 and HvIDS2 expression in roots, whereas NtYSL1 and HvYS1 expression was similar in shoots and roots. NtIRT1 expression under +Cd and ΔFe + Cd was lower than that under ΔFe, whereas the expression of NtYSL1 , HvIDS2 and HvYS1 in roots under +Cd and ΔFe + Cd was similar or higher than that under ΔFe. A time-course experiment showed that NtIRT1 expression under +Cd and ΔFe was regulated similarly throughout the experiment [expressed between 3 and 21 days after treatment (DAT)]. NtYSL1 expression under +Cd and ΔFe began at 1 DAT; expression soon disappeared under ΔFe, whereas it continued to 21 DAT under +Cd. The timing of HvIDS2 and HvYS1 expression under +Cd (between 1 and 5 DAT) was earlier than that under ΔFe (between 5 and 21 DAT). Notably, no Fe deficit occurred in any parts of these plants when grown under +Cd, except for tobacco shoots, even when the genes were highly expressed. Thus, some expression under +Cd differed from that under ΔFe. It is possible that both the genuine Fe-deficiency-responsive mechanism and an unidentified mechanism, which can be directly regulated by Cd, contribute to gene expression to maintain metal homeostasis within the plant.  相似文献   

6.
Summary The response of oilseed rape cultivars to infection with Agrobacterium tumefaciens and A. rhizogenes and the possibility of regenerating genetically transformed oilseed rape plants were examined. The frequency at which Agrobacterium induced galls or hairy-roots on in vitro cultured plants ranged from 10% to 70%, depending on the cultivar. From galls induced by the tumorigenic strain T37, known to be strongly shoot inducing on tobacco, roots developed frequently. Occasionally, shoots formed and some of these produced tumour cell specific nopaline. Attempts to grow the transformed shoots into plants have so far been unsuccessful. Whole plants transformed with Ri-T-DNA, however, were regenerated. These had crinkled leaves and abundant, frequently branching roots that showed reduced geotropism, similar to previously isolated Ri T-DNA transformed tobacco and potato plants. The transformed oilseed rape plants flowered, but failed to form seeds.  相似文献   

7.
Sufficient supply of potassium (K) can alleviate the adverse effects of excess sodium (Na) on plant growth. However, it remains unclear if such a beneficial function is related to regulation of root growth and/or expression of K/Na transporters. Herein we report the responses of a rice cultivar, which was pretreated with normal nutrient solution for 1 month, to three levels of Na (0, 25, and 100 mM) without or with supply of K for 9 days. High Na (100 mM) significantly decreased plant growth, root activity, and total K uptake, and increased biomass ratio of roots to shoots. Short-term removal of K supply (9 days) did not affect root morphology and biomass ratio of roots to shoots, but decreased root activity of seedlings grown in high Na solution. K deficiency increased uptake of Na and transport of K from roots to shoots. Moreover, expression of OsHAK1, a putative K transporter gene, was upregulated by low Na (25 mM) and downregulated by high Na (100 mM) in roots. In leaves, its expression was suppressed by the Na treatments when K supply was maintained. Expression of OsHKT2;1, which encodes a protein that acts mainly as a Na transporter, was downregulated by high Na, but was enhanced by K deficiency both in roots and leaves. Expression of five other putative K/Na transporter or Na+/H+ genes, OsHKT1;1, OsHKT1;2, OsHKT2;3, OsNHX1, and OsSOS1, was not affected by the treatments. The results suggest that OsHAK1 and OsHKT2;1 were involved in the interactive effects of K and Na on their uptake and distribution in rice. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The tumour-inducing T-DNA gene 4 (T-cyt gene) of the nopaline Ti plasmid pTiC58 was cloned and introduced into tobacco cells by leaf disc transformation using Agrobacterium plasmid vectors. Tobacco shoots exposed to elevated cytokinin levels were unable to develop roots and lacked apical dominance. Using exogenously applied phytohormone manipulations we were able to regenerate morphologically normal transgenic tobacco plants which differed in endogenous cytokinin levels from normal untransformed plants. Although T-cyt gene mRNA levels, as revealed by dot-blot hybridization data, in these rooting plants were only about half those in primary transformed shoots the total amount of cytokinins was much lower than in crown gall tissue or cytokinin-type transformed shoots as reported by others. Nevertheless the cytokinin content in T-cyt plants was about 3 times greater than in control tobacco plants.Elevated cytokinin levels have been shown to change the expression of several plant genes, including some nuclear genes encoding chloroplast proteins. Our results show that the mRNA levels of chloroplast rbcL gene increase in cytokinin-type transgenic tobacco plants as compared with untransformed plants. Data obtained suggest that T-cyt transgenic plants are a good model for studying plant gene activity in different parts of the plant under endogenous cytokinin stress.  相似文献   

9.
Short-term phosphate uptake by excised leaves of Zostera noltii Hornem. as well as by leaves of sediment-rooted plants were characterized and compared in a kinetic framework. Time courses of phosphate disappearance were measured over a wide range of initial substrate concentrations. Phosphate uptake determined by this perturbation method did not follow Michaelis-Menten kinetics. Both excised leaves and sediment-rooted plants exhibited a biphasic uptake pattern as a function of phosphate concentration. However, rooted plants showed higher uptake rates and accumulated higher amounts of phosphate than excised leaves. The results point out the importance of the structural and functional coupling between shoots and underground parts during the nutrient foliar uptake processes. Our study also indicates that Zostera noltii leaves function as a phosphate sink in the water column.A second objective of this work is to compare the perturbation and the multiple flask methods in determining the uptake kinetic parameters. The obtained results support that both methods provide valuable and complementary information in determining the uptake rates.  相似文献   

10.
Mukherjee I  Campbell NH  Ash JS  Connolly EL 《Planta》2006,223(6):1178-1190
The Arabidopsis FRO2 gene encodes the iron deficiency-inducible ferric chelate reductase responsible for reduction of iron at the root surface; subsequent transport of iron across the plasma membrane is carried out by a ferrous iron transporter (IRT1). Genome annotation has identified seven additional FRO family members in the Arabidopsis genome. We used real-time RT-PCR to examine the expression of each FRO gene in different tissues and in response to iron and copper limitation. FRO2 and FRO5 are primarily expressed in roots while FRO8 is primarily expressed in shoots. FRO6 and FRO7 show high expression in all the green parts of the plant. FRO3 is expressed at high levels in roots and shoots, and expression of FRO3 is elevated in roots and shoots of iron-deficient plants. Interestingly, when plants are Cu-limited, the expression of FRO6 in shoot tissues is reduced. Expression of FRO3 is induced in roots and shoots by Cu-limitation. While it is known that FRO2 is expressed at high levels in the outer layers of iron-deficient roots, histochemical staining of FRO3-GUS plants revealed that FRO3 is predominantly expressed in the vascular cylinder of roots. Together our results suggest that FRO family members function in metal ion homeostasis in a variety of locations in the plant.  相似文献   

11.
12.
Roots of Plantago lanceolata L. showed an iron stress-induced increase in the rates of electron transport to the extracytoplasmatic acceptors FeEDTA and ferricyanide. No significant changes in the reduction of hexachloroiridate were observed with respect to the iron-nutritional status of the plants. The reduction activity of iron-deficient roots was inhibited by the translation inhibitor cycloheximide (CHM) and the amino acid analog p-fluorophenylalanine (FPA). In both cases, the reduction of FeEDTA and ferricyanide was affected to a different extent, providing evidence for enzyme heterogeneity. Resupply of FeEDTA to iron-deficient plants resulted in a qualitatively similar pattern of decrease in FeEDTA and ferricyanide reduction rates, although a longer time period was required for the decrease of the redox activity by iron resupply compared to the effect of inhibitors of protein synthesis.Inhibitors of the plasma membrane (PM)-bound H+-ATPase decreased the FeEDTA reduction activity of iron-deficient plants. In contrast, the reduction of ferricyanide and hexachloroiridate was not inhibited. Oxidation of ferrocyanide occurs in both iron-deficient and iron-sufficient plants at comparable rates. The reaction was decreased by the H+-ATPase inhibitor orthovanadate.The results are interpreted in terms of a simultaneous action of distinct redox systems in iron-deficient roots. The role of proton extrusion in the regulation of iron stress-induced electron transport is discussed.  相似文献   

13.
In order to study the expression in plants of therolD promoter ofAgrobacterium rhizogenes, we have constructed chimaeric genes placing the coding region of thegusA (uidA) marker gene under control of tworolD promoter fragments of different length. Similar results were obtained with both genes. Expression studies were carried out in transformed R1 progeny plants. In mature transformed tobacco plants, therolD-gus genes were expressed strongly in roots, and to much lower levels in stems and leaves. This pattern of expression was transmitted to progeny, though the ratio of the level of expression in roots relative to that in leaves was much lower in young seedlings. The degree of root specificity inrolD-gus transformants was less than that of a gene constructed with domain A of the CaMV 35S promoter,domA-gus, but the level of root expression was much higher than with the latter gene. However, the level of expression of therolD-gus genes was less than that of agus gene with a 35S promoter with doubled domain B, 35S2-gus. TherolD-gus genes had a distinctive pattern of expression in roots, compared to that of the two other genes, with the strongest GUS activity observed in the root elongation zone and in vascular tissue, and much less in the root apex.  相似文献   

14.
When shoots of young plants of hemp (Cannabis sativa L.) and spinach (Spinacea oleracea L.) were cultured as cuttings and allowed to regenerate advenitious roots, ca. 80–85% became female (formed pistillate flowers) regardless of whether the leaves were left on the plants or were cut off (except for the 2–3 uppermost ones) after the beginning of adventitious-root formation. But when the leaves were cut off and the cuttings treated with gibberellic acid (GA3, 25 mg/l) ca. 77–80% of the plants became male (formed staminate flowers). The result was quite similar when roots and leaves of young hemp plants were removed at the same time and the cuttings treated with GA3. It is suggested that the leaves play an essential role in sex expression in hemp and spinach and that this role is related to gibberellin synthesis in the leaves.  相似文献   

15.
Watanabe  Toshihiro  Osaki  Mitsuru  Tadano  Toshiaki 《Plant and Soil》2001,231(2):283-291
The mechanism of Al uptake in melastoma (Melastoma malabathricum L.), which accumulates Al in excess of 10 000 mg kg–1 in its leaves and roots, was investigated. Al uptake kinetics in excised melastoma roots showed a biphasic pattern, with an initial rapid phase followed by a slow phase. It was indicated that Al uptake in the excised roots occurs mostly through passive accumulation in the apoplast. On the other hand, Al uptake rate in roots of whole melastoma plant was almost double that in excised roots. The difference of Al uptake rate between excised roots and whole plant seems to be due to transpiration-depended Al uptake. Results from a long-term experiment showed that different characteristics of Al accumulation between melastoma and barley was caused by the difference in capacity to retain Al in root symplast, rather than by the difference in uptake rate into symplast. Concentrations of oxalate in root symplastic and apoplastic fractions, and total oxalate in shoots and roots, did not change greatly with time of Al exposure compared to Al concentration, although oxalate is considered as a main Al ligand in tissue of melastoma. On the other hand, oxalate exudation to root apoplast was induced within 24 h of Al exposure; the role of such exudation was discussed.  相似文献   

16.
Glutamine synthetase (GS; EC 6.3.1.2) is present in different subcellular compartments in plants. It is located in the cytoplasm in root and root nodules while generally present in the chloroplasts in leaves. The expression of GS gene(s) is enhanced in root nodules and in soybean roots treated with ammonia. We have isolated four genes encoding subunits of cytosolic GS from soybean (Glycine max L. cv. Prize). Promoter analysis of one of these genes (GS15) showed that it is expressed in a root-specific manner in transgenic tobacco and Lotus corniculatus, but is induced by ammonia only in the legume background. Making the GS15 gene expression constitutive by fusion with the CaMV-35S promoter led to the expression of GS in the leaves of transgenic tobacco plants. The soybean GS was functional and was located in the cytoplasm in tobacco leaves where this enzyme is not normally present. Forcing this change in the location of GS caused concomitant induction of the mRNA for a native cytosolic GS in the leaves of transgenic tobacco. Shifting the subcellular location of GS in transgenic plants apparently altered the nitrogen metabolism and forced the induction in leaves of a native GS gene encoding a cytosolic enzyme. The latter is normally expressed only in the root tissue of tobacco. This phenomenon may suggest a hitherto uncharacterized metabolic control on the expression of certain genes in plants.  相似文献   

17.
Variability of expression of introduced marker genes was analysed in a large number of tobacco regenerants from anAgrobacterium-mediated transformation. In spite of standardization of sampling, considerable variation of GUS and NPTII expression was observed between individual transformants at different times of analysis and in different parts of the same plant. Organ-specificity of root versus leaf expression conferred by the par promoter from the haemoglobin gene ofParasponia andersonii in front of thegus gene showed a continuous spectrum. GUS expression in roots was found in 128 out of 140 plants; expression in leaves was found in 46 plants, and was always lower than in the corresponding roots. NPTII expression regulated by the nos promoter also showed a continuous spectrum. Expression levels were generally higher in roots than in leaves. Plants with high GUS expression in leaves showed high NPTII activity as well. A positive correlation between the level of NPTII expression and the numbers of integrated gene copies was noted. Chromosomal position effects and physiological determination are suggested as triggers for the variations. The transformed regenerated tobacco plants were largely comparable to clonal variants.  相似文献   

18.
The effects of aqueous methanol solutions applied as a foliar spray or via irrigation were investigated in Arabidopsis, tobacco, and tomato plants. Methanol applied to roots leads to phytotoxic damage in all three species tested. Foliar application causes an increase of fresh and dry weight in Arabidopsis and tobacco plants, but not in tomato plants. The increase in fresh and dry weight of Arabidopsis plants does not correlate with increased levels of soluble sugars, suggesting that increased accumulation of other products is responsible for the differences in the methanol-treated leaves. Foliar application of methanol can induce pectin methylesterase (PME) gene expression in Arabidopsis and tomato plants, activating specific PME genes.  相似文献   

19.
为了揭示铁皮石斛(Dendrobium officinale)甾醇C-24甲基转移酶2基因(DoSMT2)在甾醇代谢过程的功能,该研究通过根癌农杆菌介导法将来源于铁皮石斛的DoSMT2基因转化烟草(Nicotiana tabacum),并采用qRT-PCR技术检测DoSMT2基因在转基因烟草叶片中的表达,采用气相色谱质谱法分析菜油甾醇和谷甾醇的含量。结果显示:(1)成功获得DoSMT2基因的开放阅读框(1 119 bp),并成功构建正义植物表达载体质粒pCXSN-DoSMT2,经农杆菌介导的烟草叶盘转化法转化烟草并鉴定,获得4株阳性转基因烟草植株。(2)Southern blot结果表明,4株转基因烟草植株都有1条杂交信号带,而非转基因烟草植株没有,说明外源DoSMT2基因都以单拷贝整合到4株转基因烟草基因组中。(3)qRT-PCR检测显示,非转基因烟草未检测到外源DoSMT2基因的表达,4株转基因烟草都能检测到DoSMT2基因的表达,且表达水平差异极显著,各株系表达量高低依次为P3P1P2(P4)。(4)气相色谱质谱分析显示,转DoSMT2基因烟草叶片的菜油甾醇含量均极显著低于非转基因烟草叶片,而谷甾醇含量均极显著高于非转基因烟草叶片。研究表明,DoSMT2具有催化24-亚甲基胆甾烯醇转化形成24-亚乙基胆甾烯醇活性。  相似文献   

20.
The organogenetic competence of roots and Agrobacterium rhizogenes-induced hairy roots of twelve Lycopersicon genotypes was investigated. Both roots and hairy roots of L. peruvianum, L. chilense, L. hirsutum and two L. peruvianum-derived genotypes regenerated shoots after 2–4 weeks of incubation on zeatin-contained medium. Anatomical analysis showed that shoot regeneration in roots could be direct or indirect, depending on the genotype considered. Hairy roots showed considerable differences in their morphogenetic responses, when compared to the corresponding non-transgenic roots. The differences observed may reflect the influence of the introduced rol genes on hormonal metabolism/sensitivity. Hairy root-derived T0 plants had shortened internodes, wrinkled leaves and abundant root initiation, and most produced flowers and fruits with viable seeds. The hairy root syndrome was detected early in germinating T1 seedlings as a strong reduction in the hypocotyl length. Our data point to the possibility of the use of A. rhizogenes, combined with regenerating Lycopersicon genotypes, in a very simple protocol, based on genetic capacity instead of special procedures for regeneration, to produce transgenic tomato plants expressing rol genes, as well as, genes present in binary vectors. Furthermore, the regeneration differences observed in each Lycopersicon genotype and in transgenic materials expressing rol genes open the possibility for their use in the analysis of both the biochemical and the genetic background of organogenetic competence. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号