首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 309 毫秒
1.
Glutamine synthetase and glutaminase activities in various hepatoma cells   总被引:4,自引:0,他引:4  
Glutamine synthetase and glutaminase activities in a series of hepatoma cells of human and rat origins were determined for comparison with normal liver tissues. Marked decrease in glutamine synthetase activity was observed in the tumor cells. Phosphate-dependent and phosphate-independent glutaminase activities were increased compared with those from normal liver tissues. Well coupled mitochondria were isolated from HuH 13 line of human hepatoma cells and human liver. Oxypolarographic tests showed that glutamine oxidation was prominent in the tumor mitochondria, while mitochondria from the liver showed a feeble glutamine oxidation. Glutamine oxidation was inhibited by prior incubation of the mitochondria with DON (6-diazo-5-oxo-L-norleucine), which inhibited mitochondrial glutaminase. These results indicate that the product of glutamine hydrolysis, glutamate, is catabolized in the tumor mitochondria to supply ATP.  相似文献   

2.
Well-coupled mitochondria were isolated from a HuH13 line of human hepatoma cells and human liver tissue. The liver mitochondria showed a feeble glutamine oxidation activity in contrast to the hepatoma mitochondria, whereas they utilized glutamate well for the oxidative phosphorylation. In the liver mitochondria, glutamate was oxidized via the routes of transamination and deamination. On the other hand, glutamate oxidation was initiated preferentially via transamination pathway in the tumor mitochondria. In the liver mitochondria, bicarbonate nearly at a physiological concentration inhibited oxygen uptake with glutamate as substrate. The interaction of bicarbonate with the pathway of glutamate oxidation occurred primarily at the level of succinate dehydrogenase, due to competitive inhibition of the enzyme by the compound. In contrast to the liver mitochondria, glutamate oxidation was not affected by bicarbonate in the tumor mitochondria. These results indicate that the aberrations in the glutamate metabolism and its regulation observed in the hepatoma mitochondria may be favorable to the respiration utilizing glutamine and/or glutamate as an energy source.  相似文献   

3.
The mitochondria isolated from transplantable chicken hepatomatous growth induced by MC-29 virus were deficient in glutamate dehydrogenase. Oxypolarographic tests showed that glutamate oxidation in the tumor mitochondria was initiated via transamination, while glutamate was deaminated by glutamate dehydrogenase in liver mitochondria to supply adenosine triphosphate. Prominent glutamate oxidation and transformation-linked low glutamine synthetase activity may be favorable to the bioenergetics of this fast-growing tumor.  相似文献   

4.
Glutamine synthetase (EC 6.3.1.2) was localized within the matrix compartment of avian liver mitochondria. The submitochondrial localization of this enzyme was determined by the digitonin-Lubrol method of Schnaitman and Greenawalt (35). The matrix fraction contained over 74% of the glutamine synthetase activity and the major proportion of the matirx marker enzymes, malate dehydrogenase (71%), NADP-dependent isocitrate dehydrogenase (83%), and glutamate dehydrogenase (57%). The highest specific activities of these enzymes were also found in the matrix compartment. Oxidation of glutamine by avian liver mitochondria was substantially less than that of glutamate. Bromofuroate, an inhibitor of glutamate dehydrogenase, blocked oxidation of glutamate and of glutamine whereas aminoxyacetate, a transaminase inhibitor, had little or no effect with either substrate. These results indicate that glutamine metabolism is probably initiated by the conversion of glutamine to glutamate rather than to an alpha-keto acid. The localization of a glutaminase activity within avian liver mitochondria plus the absence of an active mitochondrial glutamine transaminase is consistent with the differential effects of the transaminase and glutamate dehydrogenase inhibitors. The high glutamine synthetase activity (40:1) suggests that mitochondrial catabolism of glutamine is minimal, freeing most of the glutamine synthesized for purine (uric acid) biosynthesis.  相似文献   

5.
1. Pyruvate strongly inhibited aspartate production by mitochondria isolated from Ehrlich ascites-tumour cells, and rat kidney and liver respiring in the presence of glutamine or glutamate; the production of (14)CO(2) from l-[U-(14)C]glutamine was not inhibited though that from l-[U-(14)C]glutamate was inhibited by more than 50%. 2. Inhibition of aspartate production during glutamine oxidation by intact Ehrlich ascites-tumour cells in the presence of glucose was not accompanied by inhibition of CO(2) production. 3. The addition of amino-oxyacetate, which almost completely suppressed aspartate production, did not inhibit the respiration of the mitochondria in the presence of glutamine, though the respiration in the presence of glutamate was inhibited. 4. Glutamate stimulated the respiration of kidney mitochondria in the presence of glutamine, but the production of aspartate was the same as that in the presence of glutamate alone. 5. The results suggest that the oxidation of glutamate produced by the activity of mitochondrial glutaminase can proceed almost completely through the glutamate dehydrogenase pathway if the transamination pathway is inhibited. This indicates that the oxidation of glutamate is not limited by a high [NADPH]/[NADP(+)] ratio. 6. It is suggested that under physiological conditions the transamination pathway is a less favourable route for the oxidation of glutamate (produced by hydrolysis of glutamine) in Ehrlich ascites-tumour cells, and perhaps also kidney, than the glutamate dehydrogenase pathway, as the production of acetyl-CoA strongly inhibits the first mechanism. The predominance of the transamination pathway in the oxidation of glutamate by isolated mitochondria can be explained by a restricted permeability of the inner mitochondrial membrane to glutamate and by a more favourable location of glutamate-oxaloacetate transaminase compared with that of glutamate dehydrogenase.  相似文献   

6.
1. The reoxidation of cytosolic NADH was studied in a line of human hepatoma cells (HuH13) whose mitochondria preferentially utilized glutamine for ATP formation. 2. The tumor cells showed mitochondrial reoxidation of NADH, as evidenced by the accumulation of pyruvate, when incubated aerobically with L-lactate. The involvement of the respiratory chain was demonstrated by the addition of specific inhibitors. 3. Glutamine oxidation proceeded in the tumor mitochondria exclusively via a pathway involving transamination. Malate stimulated aspartate production from glutamine. 4. When the tumor cells were cultured in Eagle's medium with aminooxyacetate or in the absence of glutamine, a marked reduction in the cellular NAD/NADH ratio was observed. 5. These results indicate that the malate-aspartate shuttle was functioning in the tumor cells.  相似文献   

7.
Mitochondria isolated from adrenal cortex of beef do oxidize glutamate if the amino group acceptor-oxaloacetate (or its precursor-malate) is present in the incubation medium. The glutamate (plus oxaloacetate) oxidation was enhanced by ADP or deoxycorticosterone, indicating that this respiration can support both oxidative phosphorylation and 11 beta-hydroxylation of deoxycorticosterone to corticosterone. Avenaciolide (inhibitor of glutamate entry into the mitochondria), aminooxyacetate (inhibitor of aspartate aminotransferase activity) and arsenite (inhibitor of 2-oxoglutarate dehydrogenase) when introduced into the incubation media before respirating substrates, inhibited the ability of ADP or deoxycorticosterone to stimulate the rate of glutamate (plus oxaloacetate) oxidation.  相似文献   

8.
Rat pancreatic islets contain aspartate aminotransferase and malate dehydrogenase, enzymes necessary for the malate aspartate hydrogen shuttle, in both the cytosolic and mitochondrial fractions. When supplied with glutamate and malate, intact mitochondria from islets synthesized aspartate, indicating the mitochondrial segment of the malate aspartate shuttle was reconstituted. Aspartate synthesis was inhibited by aminooxyacetate, an inhibitor of aspartate aminotransferase, and also by butylmalonate, an inhibitor of malate transport across the mitochondrial inner membrane. Each inhibitor decreased insulin release and CO2 production from glucose by pancreatic islets in a concentration-dependent manner. It is concluded that the malate aspartate shuttle may be involved in stimulus secretion coupling for glucose-induced insulin release.  相似文献   

9.
1. Ethanol metabolism in slices or homogenates of transplantable hepatocellular carcinoma HC-252 (HC-252) was 50 to 60% of the rate found in host liver slices or homogenates when they were expressed per gram of tissue wet weight and 70 to 80% of the liver when the rates were expressed per milligram of tissue protein. At 10 mM ethanol, the activities of alcohol dehydrogenase in tumor and liver supernatants were comparable. 2. Tumor microsomes did not oxidize ethanol in the presence of a NADPH-generating system, indicating the absence of the microsomal ethanol-oxidizing system and catalase-mediated peroxidation of ethanol. The HC-252 microsomes were contaminated with catalase, and acetaldehyde production occurred in the presence of a H2O2-generating system (xanthine oxidase). The virtual absence of ethanol oxidation and drug metabolism (aminopyrine demethylase and aniline hydroxylase) in HC-252 microsomes may be due to the low activities of NADPH-cytochrome c reductase, NADPH oxidase, and NADPH-dependent oxygen uptake. 3. Microsomal oxidation of ethanol was present in Morris hepatoma 5123C, a well-differentiated tumor of intermediate growth rate, while activity was negligible in microsomes from Morris hepatoma 7288CTC, a less differentiated tumor. Microsomal NADPH oxidase was present in the well differentiated tumor 5123C but was lacking in the less differentiated tumor 7288CTC. Several microsomal, mitochondrial, and cytosolic properties of HC-252 are similar to those of Morris hepatoma 7288CTC but differ from those of the more differentiated 5123C tumor and normal liver. 4. The content of mitochondrial protein in HC-252 was only 25% that of liver, and oxygen consumption per gram of tumor was only 28% that of the liver. When corrected for the mitochondrial protein content, oxygen uptake in tumor HC-252 and liver homogenates was comparable. Isolated tumor and liver mitochondria displayed comparable State 4 and 3 rates of oxygen consumption with succinate and glutamate as substrates. The activities of the reconstituted malate-aspartate and alpha-glycerophosphate shuttles were only slightly lower in isolated HC-252 mitochondria compared to liver mitochondria, when shuttles were reconstituted with purified enzymes. 5. Antimycin inhibited alcohol metabolism,and pyruvate stimulated alcohol metabolism, much less in tumor slices than in liver slices, suggesting the presence of an augmented mitochondria-independent, cytosolic mechanism for oxidizing reducing equivalents in the tumor. These factors suggest that oxidation of NADH is the limiting factor in ethanol metabolism. Whereas, in the liver mitochondrial reoxidation is predominant, in HC-252, cytosolic reoxidation of NADH also plays a major role.  相似文献   

10.
FATE OF l-GLUTAMATE IN THE BRAIN   总被引:14,自引:13,他引:1  
Abstract— It is shown, using aminooxyacetate as metabolic inhibitor, that the process of oxidation of endogenous glutamate in incubated rat brain cortex slices follows a different course from that of exogenous l -glutamate. Whereas endogenous glutamate is largely oxidized by an initial reaction with glutamate dehydrogenase with release of ammonia, exogenous l -glutamate undergoes initial transamination to aspartate and α-oxoglutarate before oxidation occurs. In the presence of 2·5 m m l -glutamate, it is found that, of the total exogenous glutamate utilized, 49 per cent is converted to aspartate, 37 per cent is converted to glutamine and the rest is f uily oxidized through glutamate dehydrogenase. It is suggested that endogenous glutamate is normally oxidized in the neurons, and that glutamate released from neurons during excitation, and acting therefore as exogenous glutamate, is taken up by the glia where, besides conversion to glutamine, it largely undergoes initial transamination before oxidation takes place.  相似文献   

11.
Crotonaldehyde was oxidized by disrupted rat liver mitochondrial fractions or by intact mitochondria at rates that were only 10 to 15% that of acetaldehyde. Although a poor substrate for oxidation, crotonaldehyde is an effective inhibitor of the oxidation of acetaldehyde by mitochondrial aldehyde dehydrogenase, by intact mitochondria, and by isolated hepatocytes. Inhibition by crotonaldehyde was competitive with respect to acetaldehyde, and the Ki for crotonaldehyde was about 5 to 20 microM. Crotonaldehyde had no effect on the oxidation of glutamate or succinate. Very low levels of acetaldehyde were detected during the metabolism of ethanol. Crotonaldehyde increased the accumulation of acetaldehyde more than 10-fold, indicating that crotonaldehyde, besides inhibiting the oxidation of added acetaldehyde, also inhibited the oxidation of acetaldehyde generated by the metabolism of ethanol. Formaldehyde was a substrate for the low-Km mitochondrial aldehyde dehydrogenase, as well as for a cytosolic, glutathione-dependent formaldehyde dehydrogenase. Crotonaldehyde was a potent inhibitor of mitochondrial oxidation of formaldehyde, but had no effect on the activity of formaldehyde dehydrogenase. In hepatocytes, crotonaldehyde produced about 30 to 40% inhibition of formaldehyde oxidation, which was similar to the inhibition produced by cyanamide. This suggested that part of the formaldehyde oxidation occurred via the mitochondrial aldehyde dehydrogenase, and part via formaldehyde dehydrogenase. The fact that inhibition by crotonaldehyde is competitive may be of value since other commonly used inhibitors of aldehyde dehydrogenase are irreversible inhibitors of the enzyme.  相似文献   

12.
1. The oxidation of glutamine by kidney-cortex mitochondria from normal and acidotic rats was not inhibited by avenaciolide, which did inhibit glutamate uptake and oxidation. The oxidation of glutamine by these mitochondria was always greater than that of glutamate. Direct measurements of the metabolism of [1-14C]glutamine in the presence of glutamate, and of [1-14C]glutamate in the presence of glutamine, demonstrated that the uptake and metabolism of external glutamate is insufficient to account for the observed rate of glutamine uptake and metabolism. Thus the postulated glutamine/glutamate antiport does not play a quantitatively important role in the metabolism of glutamine by renal mitochondria. 2. Rapid swelling of these mitochondria was observed in iso-osmotic solutions of L-glutamine and L-glutamyl-gamma-monohydroxamate but not in D-glutamine or L-isoglutamine (1-amido-2-aminoglutaric acid). Thus a relatively specific glutamine uniport exists in these mitochondria. 3. The utilization of glutamine was increased about 3-fold in mitochondria from chronically acidotic rats. Thus mitochondrial adaptations play an important part in the renal response to metabolic acidosis.  相似文献   

13.
Glutamate metabolism and transport in rat brain mitochondria.   总被引:13,自引:5,他引:8       下载免费PDF全文
1. The metabolism and transport of glutamate and glutamine in rat brain mitochondria of non-synaptic origin has been studied in various states. 2. These mitochondria exhibited glutamate uptake and swelling in iso-osmotic ammonium glutamate, both of which were inhibited by N-ethylmaleimide. 3. The oxidation of glutamate was inhibited by 20% by avenaciolide, but glutamine oxidation was not affected. 4. These mitochondria, when metabolizing glutamine, allowed glutamate, but very little aspartate, to efflux at considerable rates. 5. These results suggests that brain mitochondria of non-synaptic origin possess in addition to a relatively rapid glutamate-aspartate translocase, a relatively slow aspartate-independent glutamate-OH-translocase (cf. liver mitochondria).  相似文献   

14.
Kinetic and biochemical parameters of nitrogen-13 flux from L-[13N]glutamate in myocardium were examined. Tissue radioactivity kinetics and chemical analyses were determined after bolus injection of L-[13N]glutamate into isolated arterially perfused interventricular septa under various metabolic states, which included addition of lactate, pyruvate, aminooxyacetate (a transaminase inhibitor), or a combination of aminooxyacetate and pyruvate to the standard perfusate containing insulin and glucose. Chemical analysis of tissue and effluent at 6 min allowed determination of the composition of the slow third kinetic component of the time-activity curves. 13N-labeled aspartate, alanine and glutamate accounted for more than 80% of the tissue nitrogen-13 under the experimental conditions used. Specific activities for these amino acids were constant, but not identical to each other, from 6 through 15 min after administration of L-[13N]glutamate. Little labeled ammonia (1.9%) and glutamine (4.7%) were produced, indicating limited accessibility of exogenous glutamate to catabolic mitochondrial glutamate dehydrogenase and glutamine synthetase, under control conditions. Lactate and pyruvate additions did not affect tissue amino acid specific activities. Aminooxyacetate suppressed formation of 13N-labeled alanine and aspartate and increased production of L-[13N]glutamine and [13N]ammonia. Formation of [13N]ammonia was, however, substantially decreased when aminooxyacetate was used in the presence of exogenous pyruvate. The data support a model for glutamate compartmentation in myocardium not affected by increasing the velocity of enzymatic reactions through increased substrate (i.e., lactate or pyruvate) concentrations but which can be altered by competitive inhibition of transaminases (via aminooxyacetate) making exogenous glutamate more available to other compartments.  相似文献   

15.
NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase in extracts of mitochondria from the highly malignant AS-30D rat hepatoma cell line demonstrate Ca2+ sensitivities and affinities for substrates similar to those of normal liver mitochondria. However, the maximal activities of NAD+- and NADP+-dependent isocitrate dehydrogenase were found to be 8 and 3.5 fold higher in hepatoma mitochondrial extracts than those of liver mitochondria, whereas maximal activities of succinate and 2-oxoglutarate dehydrogenases were similar in the two tissues. At pyridine nucleotide concentrations giving the lowest physiological NADH/NAD+ ratio, NAD+-isocitrate dehydrogenase activity in hepatoma mitochondrial extracts was completely inhibited at subsaturating concentrations of Ca2+, substrate, and NAD+, in contrast to rat liver mitochondrial extracts which retained significant activity.  相似文献   

16.
The effects of phthalate esters on the oxidation of succinate, glutamate, beta-hydroxybutyrate and NADH by rat liver mitochondria were examined and it was found that di-n-butyl phthalate (DBP) strongly inhibited the succinate oxidation by intact and sonicated rat mitochondria, but did not inhibit the State 4 respiration with NAD-linked substrates such as glutamate and beta-hydroxybutyrate. However, oxygen uptake accelerated by the presence of ADP and substrate (State 3) was inhibited and the rate of oxygen uptake decreased to that without ADP (State 4). It was concluded that phthalate esters were electron and energy transport inhibitors but not uncouplers. Phthalate esters also inhibited NADH oxidation by sonicated mitochondria. The degree of inhibition depended on the carbon number of alkyl groups of phthalate esters, and DBP was the most potent inhibitor of respiration. The activity of purified beef liver glutamate dehydrogenase [EC 1.4.1.3] was slightly inhibited by phthalate esters.  相似文献   

17.
A comparative study of glutamate dehydrogenase (GLDH 1.4.1.2) and glutamine synthetase (GS 6.3.1.2.) activity in liver, kidney and spleen homogenates from cattle, sheep, pigs and chickens showed that chicken liver contained on an average 3.5%, pig liver 8.3% and bovine liver 45.6% of the glutamate dehydrogenase activity present in sheep liver. Relatively low trace activity was found in the spleen and kidneys, except for the renal cortex of cattle (32% of activity in the liver). GS activity was the highest in chicken liver; in pigs it amounted to 33.40%, in cattle to 24.2% and in sheep to 19.7% of this activity. No marked interspecies differences were found in the values in the kidneys and spleen. It can be concluded from the results that the relatively high GLDH activity in the liver of ruminants compared with pigs and chicken is associated with the greater ability of ruminants to utilize ammonia. The higher GS activity and lower GLDH activity in chicken liver can be attributed to higher uric acid synthesis from ammonia via glutamine and purine bases and the lower ability of birds to utilize ammonia for protein synthesis. The presence of alanine dehydrogenase was not demonstrated in chicken liver, where the maximum oxidation of NADH after the addition to pyruvate and ammonia substrate was found.  相似文献   

18.
The relative contribution of glutamate dehydrogenase (GDH) and the aminotransferase activity to mitochondrial glutamate metabolism was investigated in dilute suspensions of purified mitochondria from potato (Solanum tuberosum) tubers. Measurements of glutamate-dependent oxygen consumption by mitochondria in different metabolic states were complemented by novel in situ NMR assays of specific enzymes that metabolize glutamate. First, a new assay for aminotransferase activity, based on the exchange of deuterium between deuterated water and glutamate, provided a method for establishing the effectiveness of the aminotransferase inhibitor amino-oxyacetate in situ, and thus allowed the contribution of the aminotransferase activity to glutamate oxidation to be assessed unambiguously. Secondly, the activity of GDH in the mitochondria was monitored in a coupled assay in which glutamine synthetase was used to trap the ammonium released by the oxidative deamination of glutamate. Thirdly, the reversibility of the GDH reaction was investigated by monitoring the isotopic exchange between glutamate and [(15)N]ammonium. These novel approaches show that the oxidative deamination of glutamate can make a significant contribution to mitochondrial glutamate metabolism and that GDH can support the aminotransferases in funneling carbon from glutamate into the TCA cycle.  相似文献   

19.
The activity of mitochondrial 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) in rat and chicken liver was found to be comparable with the activity of electron transport chain of rat liver mitochondria. This activity is absent in chicken liver mitochondria, which are devoid of the 3-hydroxybutyrate oxidase activity. Both types of mitochondria have nearly identical respiration parameters but respond differently to Mg2+. It was assumed that chicken liver mitochondria are characterized by a low rate of fatty acids oxidation due to the absence of 3-hydroxybutyrate dehydrogenase in these organelles.  相似文献   

20.
The rates of [U-14C]glutamine oxidation to 14CO2 were determined under a variety of experimental conditions using whole homogenates and dissociated cells from rat brain. The pattern of glutamine oxidation by homogenates differed from that by dissociated brain cells in several respects. The rates of glutamine oxidation by dissociated brain cells showed saturation kinetics with an apparent Km of 0.30 mM. Lineweaver-Burk plots of glutamine oxidation by homogenates revealed two linear segments with two apparent Km values (0.58 mM and 3.0 mM). In the presence of aminooxyacetate, however, the Lineweaver-Burk plots for homogenates were linear with a single Km of 0.47 mM. The oxidation of glutamine by homogenates was inhibited by both rotenone and antimycin A (80-85%), as were glutamate and glucose oxidation, suggesting that a significant amount of glutamine is oxidized via the tricarboxylic acid cycle. In the presence of aminooxyacetate, glutamine oxidation was inhibited less than 40%, whereas the oxidation of glutamate was inhibited 75%; in contrast, glucose oxidation was enhanced 50%. The rates of glutamine oxidation by homogenates were highest in the presence of high levels of potassium (50 mM) and low levels of sodium (2.5 mM). Varying ionic composition, however, had little or no effect on the rates of glutamine oxidation by dissociated brain cells. Measurements of glutamine oxidation by homogenates prepared from 2-, 10-, 15-, 25-, and 90-day-old rats revealed little or no age-dependent difference. In contrast, the oxidation by dissociated brain cells from 2-day-old animals was significantly less than that obtained for animals 10 days or older (7.76 vs. 15.6 nmol/h/mg).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号