首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellularly applied NADH, but not NAD or NADPH, increases the resting membrane potential from -74.1 to -76.6 mV in freshly isolated muscles in the presence of K+ in the incubation medium and from -64.6 to -72.9 mV in muscles equilibrated for 4-6 h in a K+-free solution. The NADH-induced hyperpolarization is blocked by pretreatment of muscles with ouabain, and the inhibitors of plasma membrane NADH dehydrogenase (adriamycin, azide, PCMB, atebrine, DIDS and bleomycin). The effect of NADH is accompanied by the disappearance of NADH from the incubation medium and by decreased membrane resistance. We conclude that NADH hyperpolarization is due to the enhancement of passive membrane permeability, apparently for K+, which might result from the conformational changes in the plasma membrane during the NADH dehydrogenase reaction. The possibility is discussed that NADH dehydrogenase mediates transport of K+ out from the cell using a pathway connected with the transmembrane Na+/K+ pump.  相似文献   

2.
Tetrodotoxin and acidic pH do not change the resting membrane potential (RMP), whereas Na+ or Cl- free solutions or ouabain and furosemide equally depolarize the membrane of the earthworm somatic muscle cells. The findings of the RMP depending on extracellular K+ concentration corroborate theoretical model by Goldman-Hodgkin-Katz only in Na(+)-free medium or in presence of ouabain. The data suggest that the RMP is the sum of potassium and chlorine diffusion potentials as well as of the potential produced by electrogenic component of Na+ pump and, probably, by furosemide-sensitive Na+,K+Cl- co-transport.  相似文献   

3.
The resting membrane potential (RMP) of most cells is not greatly influenced by the transmembrane calcium gradient because at rest, the membrane has very low permeability to calcium. We have observed, however, that the resting membrane potential of muscle cells in the larval bodywall of Drosophila melanogaster varies widely as the external calcium concentration is modified. The RMP depolarized as much as 21.8 mV/mM calcium at low concentrations, and on average, about 10 mV/mM across a range typical of neurophysiological investigations. The extent to which muscle RMP varies has important implications for the measurement of synaptic potentials as well. Two parameters of excitatory junctional potential (EJP) voltage were compared across a range of RMPs. EJP amplitude (ΔV) and peak voltage (maxima) change as a function of RMP; on average, a 10 mV change in RMP elicits a 4-5 mV change in EJP amplitude and peak voltage. The influence of the calcium gradient on resting and synaptic membrane potentials led us to investigate the endogenous ion concentrations of larval hemolymph. In addition to the major monovalent ions and calcium, we report the first voltammetric analysis of magnesium concentration in larval fruit fly hemolymph.  相似文献   

4.
Many cell types have significant negative resting membrane potentials (RMPs) resulting from the activity of potassium‐selective and chloride‐selective ion channels. In excitable cells, such as neurones, rapid changes in membrane permeability underlie the generation of action potentials. Chondrocytes have less negative RMPs and the role of the RMP is not clear. Here we examine the basis of the chondrocyte RMP and possible physiological benefits. We demonstrate that maintenance of the chondrocyte RMP involves gadolinium‐sensitive cation channels. Pharmacological inhibition of these channels causes the RMP to become more negative (100 µM gadolinium: ΔVm = ?30 ± 4 mV). Analysis of the gadolinium‐sensitive conductance reveals a high permeability to calcium ions (PCa/PNa ≈80) with little selectivity between monovalent ions; similar to that reported elsewhere for TRPV5. Detection of TRPV5 by PCR and immunohistochemistry and the sensitivity of the RMP to the TRPV5 inhibitor econazole (ΔVm = ?18 ± 3 mV) suggests that the RMP may be, in part, controlled by TRPV5. We investigated the physiological advantage of the relatively positive RMP using a mathematical model in which membrane stretch activates potassium channels allowing potassium efflux to oppose osmotic water uptake. At very negative RMP potassium efflux is negligible, but at more positive RMP it is sufficient to limit volume increase. In support of our model, cells clamped at ?80 mV and challenged with a reduced osmotic potential swelled approximately twice as much as cells at +10 mV. The positive RMP may be a protective adaptation that allows chondrocytes to respond to the dramatic osmotic changes, with minimal changes in cell volume. J. Cell. Physiol. 226: 2979–2986, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
The effect of thyroid hormones receptors isolated from normal and cancer cells on bilayer phospholipid membranes (BPhLM) conductivity, has been studied. The receptor isolated from normal cells in complex X with the hormone selectively induces H+-conductivity of BPhLM generating transmembrane potential equal to 42 mV on the membrane at pH gradient equal to 1. In the presence of K+, Na+, Ca+, Mn2+, Sr2+, Mg2+ the changes of BPhLM are not observed. Neither hormones (T3, T4) nor receptor in free position affect the BPhLM conductivity. Thyroid hormone receptor isolated from mamalignantly transformed cells in a complex with T3 or T4 increases the BPhLM permeability for Ca2+. The transmembrane potential measured at 10fold Ca2+ ion concentration is equal to 16 mV. In the presence of H+, K+, Na+, Mn2+, Sr2+, Mg2+, Ba2+, the resistance of BPhLM doesn't change.  相似文献   

6.
When guinea-pig papillary muscles were depolarized to ca. -30 mV by superfusion with K+-free Tyrode's solution supplemented with Ba2+, Ni2+, and D600, addition of Cs+ transiently hyperpolarized the membrane in a reproducible manner. The size of the hyperpolarization (pump potential) depended on the duration of the preceding K+-free exposure; peak amplitudes (Epmax) elicited by 10 mM Cs+ after 5-, 10-, and 15-min K+-free exposures were 12.9, 17.7, and 23.2 mV, respectively. Pump potentials were unaffected by external Cl- but suppressed by cardiac glycosides, hyperosmotic conditions, and low-Na+ solution. Using Epmax as an indicator of Na+ pump activation, the half-maximal concentration for activation by Cs+ was 12-16.3 mM. At 6 mM, Cs+ was three times less potent than Rb+ or K+ and five times more potent than Li+. From these findings, and correlative voltage-clamp data from myocytes, we calculate that (i) a pump current of 7.8 nA/cm2 generates an Epmax of 1 mV and (ii) resting pump current in normally polarized muscle (approximately 0.16 microA/cm2) is five times smaller than previously estimated.  相似文献   

7.
The action of thyrotropin on the rat thyroid follicular cell has been investigated using continuous transmembrane potential and input resistance recording from individual cells in in vitro preparations. The membrane potential in this study was -68.0 mV +/- 0.6 (mean+/-S.E.). Over a wide range of concentrations (1.5-50 mU/ml), thyrotropin failed to affect membrane potential or input resistance while 20 mU/ml thyrotropin was shown to elicit complex time-dependent changes in tissue levels of both cyclic AMP and cyclic GMP. The present results reveal that thyrotropin-receptor interaction does not affect plasma membrane permeability, but is characterized by complex changes in endogenous cyclic nucleotide metabolism.  相似文献   

8.
Quantitative analysis of the experimental data presented in the previous paper has shown that the electrogenic pump component of the membrane potential of muscle fibres on the third day after denervation is in the average 8.7 mV, and the diffusion component--12.9 mV lower than that in the normal fibres. It is due to a decrease of the stechiometric coefficient of Na+,K+-pump at denervation from 2.15 to 1.3 and to a change of the passive ionic permeability: at denervation permeability for Na+ increases from 0.52.10(-7) to 0.67.10(-7) cm.sec-1, and for K+ decreases from 0.75.10(-5) to 0.53.10(-5) cm.sec-1.  相似文献   

9.
The charging of the plasma membrane is a necessary condition for the generation of an electric-field-induced permeability increase of the plasmalemma, which is usually explained by the creation and the growth of aqueous pores. For cells suspended in physiological buffers, the time domain of membrane charging is in the submicrosecond range. Systematic measurements using Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) protoplasts stained with the fast voltage-sensitive fluorescence dye ANNINE-6 have been performed using a pulsed laser fluorescence microscopy setup with a time resolution of 5 ns. A clear saturation of the membrane voltage could be measured, caused by a strong membrane permeability increase, commonly explained by enhanced pore formation, which prevents further membrane charging by external electric field exposure. The field strength dependence of the protoplast’s transmembrane potential V M shows strong asymmetric saturation characteristics due to the high resting potential of the plants plasmalemma. At the pole of the hyperpolarized hemisphere of the cell, saturation starts at an external field strength of 0.3 kV/cm, resulting in a measured transmembrane voltage shift of ?V M?=??150 mV, while on the cathodic (depolarized) cell pole, the threshold for enhanced pore formation is reached at a field strength of approximately 1.0 kV/cm and ?V M?=?450 mV, respectively. From this asymmetry of the measured maximum membrane voltage shifts, the resting potential of BY-2 protoplasts at the given experimental conditions can be determined to V R?=??150 mV. Consequently, a strong membrane permeability increase occurs when the membrane voltage diverges |V M|?=?300 mV from the resting potential of the protoplast. The largest membrane voltage change at a given external electric field occurs at the cell poles. The azimuthal dependence of the transmembrane potential, measured in angular intervals of 10° along the circumference of the cell, shows a flattening and a slight decrease at higher fields at the pole region due to enhanced pore formation. Additionally, at the hyperpolarized cell pole, a polarization reversal could be observed at an external field range around 1.0 kV/cm. This behavior might be attributed to a fast charge transfer through the membrane at the hyperpolarized pole, e.g., by voltage-gated channels.  相似文献   

10.
Type II cells were isolated from rat lungs by elastase digestion and purified by centrifugal elutriation. The fluorescent dye, Di-S-C3(5), was used as a probe to monitor transmembrane potential (Em) of cells suspended in N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)-buffered medium. With this technique, the Em of type II cells was estimated to be -27 +/- 2 mV. This resting Em is very close to the equilibrium potential for chloride (-21 mV), which suggests that chloride is passively distributed in type II cells. The resting Em of type II cells is more dependent on the extracellular concentration of potassium (K+) than on external sodium (Na+); i.e., the membrane depolarizes as external sodium is replaced by potassium, suggesting that in unstimulated type II cells the membrane is more permeable to potassium than to sodium. In addition, the resting potential appears to be due, in part, to the activity of a ouabain-sensitive, Na-K pump, which acts to hyperpolarize type II cells. Addition of a membrane perturbant, phorbol myristate acetate (PMA, 10 micrograms/ml), to a type II cell suspension results in an increase in oxygen consumption and membrane depolarization. Both of these responses are sodium dependent and thus appear to be linked to a PMA-induced increase in sodium permeability.  相似文献   

11.
Undifferentiated rat pheochromocytoma PC12 cells were current clamped using the whole cell technique. Measurements of cell membrane resting potentials (RMP) gave values in the -30 and -50 mV range. Cell input resistance was between 200 and 400 Mohm. After blockade of K+ currents with intracellular Cs+, cell membrane depolarization showed that PC12 cells are able to generate active responses (i.e., calcium action potentials followed by after-hyperpolarizations partially blocked by tetraethylammonium). Taken together, our results indicate that PC12 cells do not require exposure to nerve growth factor to become electrically excitable.  相似文献   

12.
The influence of oxytocin on the intracellular Na+ and K+ concentrations, the level of transmembrane potential differences, and on the relative ionic permeability (PNa/PK) of the apical zones of the superficial epithelium membrane was studied in experiments on the isolated frog gallbladder (GB). Oxytocine introduced into the outer incubation solution in a dose of 20 mulliunits/ml caused a reduction of transmembrane potential difference, and an increase of PNa/pk coefficient and an insignificant shift of the Na+ and K+ concentrations in the intracellular medium. Thirty minutes after the oxytocine action of the organ the membrane potential (MP) of the cells decreased from 52.7 mV to 38.7 mV (the cell is negatively charged inside), and PNa/PK increased from 0,083 (control) to 0,175 (test) with a simultaneous increase in the intracellular Na+ concentration by 18.3 milliequiv./kg of (H2O)i. Such a shift in the intracellular Na+ and K+ concentrations may cause a decrease of the MP by only--0.7 mV, but actually the membrane potential decreased by--14.0 mV. Thus, the reduction of the transmembrane potential difference results from increase of PNa/PK under the influence of oxytocine. No electrogenic ionic transport through the apical membrane of frog gallbladder epithelial cells was revealed.  相似文献   

13.
Occasional spontaneous "action potentials" are found in mature hyphae of the fungus Neurospora crassa. They can arise either from low-level sinusoidal oscillations of the membrane potential or from a linear slow depolarization which accelerates into a rapid upstroke at a voltage 5-20 mV depolarized from the normal resting potential (near-180 mV). The "action potentials" are long-lasting, 1-2 min and at the peak reach a membrane potential near-40 mV. A 2-to 8-fold increase of membrane conductance accompanies the main depolarization, but a slight decrease of membrane conductance occurs during the slow depolarization. Two plausible mechanisms for the phenomenon are (a) periodic increases of membrane permeability to inorganic ions, particularly H+ or Cl- and (b) periodic decreases in activity of the major electrogenic pump (H+) or the Neurospora membrane, coupled with a nonlinear (inverse signoid) current-boltage relationship. Identification of action potential-like disturbances in fungi means that such behavior has now been found in all major biologic taxa which have been probed with suitable electrodes. As yet there is no obvious function for the events in fungi.  相似文献   

14.
Lymphocyte membrane potential assessed with fluorescent probes   总被引:33,自引:0,他引:33  
The membrane potential of mouse spleen lymphocytes has been assessed with two fluorescent probes. 3,3'-Dipropylthiadicarbocyanine (diS-C3-(5)) was used for most of the experiments. Solutions with high K+ concentrations depolarised the cells. Valinomycin, an inophore which adds a highly K+-selective permeability membranes, slightly hyperpolarised cells in standard (6 mM K+) solution, and in 145 mM K+ solution produced a slight additional depolarisation. These findings indicate a membrane whose permeability is relatively selective for K+. Very small changes in potential were seen when choline replaced Na+, or gluconate replaced Cl-, supporting the idea of K+ selectivity. The resting potential could be estimated from the K+ concentration gradient at which valinomycin did not change the potential-the "valinomycin null point" - and under the conditions used the resting potential was approx.-60 mV. B cell-enriched suspensions were prepared either from the spleens of nu/nu mice or by selective destruction of T cells in mixed cell populations. The membrane potential of these cells was similar to that estimated for the mixed cells. In solution with no added K+, diS-C3-(5) itself appeared to depolarise the lymphocytes, in a concentration dependent manner. With the 100 nM dye normally used, the membrane potential in K+-free solution was around -45 mV, and 500 nM dye almost completely depolarised the cells. In standard solution quinine depolarised the cells. Valinomycin could still depolarise these cells indicating that depolarisation had not been due to dissipation of the K+ gradient. Since in K+-free solution diS-C3-(5) blocks the Ca2+-activated K+ channels in human red blood cell ghosts and quinine also blocks this K+ channel it is suggested that the resting lymphocyte membrane may have a similar Ca2+-activated K+ permeability channel. Because of the above mentioned effect of diS-C3-(5) and other biological side effects, such as inhibition of B cell capping, a chemically distinct fluorescent probe of membrane potential, bis(1,3-diethylthiobarbiturate)-trimethineoxonol was used to support the diS-C3-(5) data. This new probe proved satisfactory except that it formed complexes with valinomycin, ruling out the use of this ionophore. Results with the oxonol on both mixed lymphocytes and B cell-enriched suspensions gave confirmation of the conclusions from diS-C3-(5) experiments and indicated that despite its biological side effects, diS-C3-(5) could still give valid assessment of membrane potential.  相似文献   

15.
Glia in the central nervous system (CNS) express diverse inward rectifying potassium channels (Kir). The major function of Kir is in establishing the high potassium (K+) selectivity of the glial cell membrane and strongly negative resting membrane potential (RMP), which are characteristic physiological properties of glia. The classical property of Kir is that K+ flows inwards when the RMP is negative to the equilibrium potential for K+ (E(K)), but at more positive potentials outward currents are inhibited. This provides the driving force for glial uptake of K+ released during neuronal activity, by the processes of "K+ spatial buffering" and "K+ siphoning", considered a key function of astrocytes, the main glial cell type in the CNS. Glia express multiple Kir channel subtypes, which are likely to have distinct functional roles related to their differences in conductance, and sensitivity to intracellular and extracellular factors, including pH, ATP, G-proteins, neurotransmitters and hormones. A feature of CNS glia is their specific expression of the Kir4.1 subtype, which is a major K+ conductance in glial cell membranes and has a key role in setting the glial RMP. It is proposed that Kir4.1 have a primary function in K+ regulation, both as homomeric channels and as heteromeric channels by co-assembly with Kir5.1 and probably Kir2.0 subtypes. Significantly, Kir4.1 are also expressed by oligodendrocytes, the myelin-forming cells of the CNS, and the genetic ablation of Kir4.1 results in severe hypomyelination. Hence, Kir, and in particular Kir4.1, are key regulators of glial functions, which in turn determine neuronal excitability and axonal conduction.  相似文献   

16.
Calcium-depleted human neutrophils are depolarised when suspended in calcium-free media containing sodium ions, and are repolarised by extracellular replenishment of Ca2+. The depolarisation is due to a high inward sodium current, which is blocked by calcium and by several other divalent cations, but not by barium. Addition of calcium results in a rise in the cytosolic concentration from approx. 20 nM to the resting level of approx. 130 nM. Calcium influx is strongly accelerated by a voltage-gated calcium channel. This channel might be responsible for the depolarising Na+ current in the absence of divalent cations. In the polarised state the neutrophil membrane has a high intrinsic permeability to K+, which may be low or absent in the depolarised state. Generation of membrane potential from the depolarised state is mainly due to the electrogenic sodium/potassium pump. However, the resting potential of about -75 mV is maintained primarily by the K+ conductance, and only to a small extent by the sodium/potassium pump.  相似文献   

17.
The effect of Ca2+ on the electric potential and permeability of human erythrocyte membranes for K+ was investigated. An increase of K+ concentration in a medium containing a Ca-ionophore A 23187 causes hyperpolarization of the erythrocyte membrane (by 50-60 mV) due to a 70-fold increase of its permeability for K+ (K0.5 for Ca2+ in both cases is equal to 2-3 microM). Using calmodulin-deficient inside-out erythrocyte membrane vesicles, it was demonstrated that regulation of the transmembrane potentials by Ca2+ is mediated by its interaction with calmodulin (K0.5 for Ca2+ and calmodulin is equal to 2-3 microM and 100-150 nM, respectively). It was assumed that the Ca2+-calmodulin complex is involved in the functioning of the plasma membrane K+-channel.  相似文献   

18.
Jurkat lymphoblasts were stimulated by a monoclonal antibody against the CD3 membrane antigen and the evoked calcium signal was followed by the intracellular fluorescent calcium indicator indo-1. The technique applied allowed us to separately investigate the stimulus-induced intracellular calcium release and the calcium-influx pathways, respectively. In the same cells membrane potential was estimated by the fluorescent dye diS-C3-(5). The resting membrane potential of Jurkat lymphoblasts under normal conditions was between -55 and -60 mV. Membrane depolarization, obtained by increasing external K+ concentration, removing external Cl-, or by increasing the Na+/K+ leak permeability with gramicidin or PCMBS, did not induce calcium influx in the resting cells and did not influence the CD3 receptor-mediated internal calcium release, while strongly inhibited the receptor-mediated calcium influx pathway. Half-maximum inhibition of this calcium influx was observed at membrane potential values of about -35 to -40 mV and this inhibition did not depend on the external calcium concentration varied between 5 and 2500 microM. Membrane hyperpolarization by valinomycin did not affect either component of the calcium signal. The observed selective inhibition of the receptor-operated calcium influx pathway by membrane depolarization is probably an important modulator of calcium-dependent cell stimulation.  相似文献   

19.
Na(+) reduction induces contraction of opossum lower esophageal sphincter (LES) circular smooth muscle strips in vitro; however, the mechanism(s) by which this occurs is unknown. The purpose of the present study was to investigate the electrophysiological effects of low Na(+) on opossum LES circular smooth muscle. In the presence of atropine, quanethidine, nifedipine, and substance P, conventional intracellular electrodes recorded a resting membrane potential (RMP) of -37.5 +/- 0.9 mV (n = 4). Decreasing [Na(+)] from 144.1 to 26.1 mM by substitution of equimolar NaCl with choline Cl depolarized the RMP by 7.1 +/- 1.1 mV. Whole cell patch-clamp recordings revealed outward K(+) currents that began to activate at -60 mV using 400-ms stepped test pulses (-120 to +100 mV) with increments of 20 mV from holding potential of -80 mV. Reduction of [Na(+)] in the bath solution inhibited K(+) currents in a concentration-dependent manner. Single channels with conductance of 49-60 pS were recorded using cell-attached patch-clamp configurations. The channel open probability was significantly decreased by substitution of bath Na(+) with equimolar choline. A 10-fold increase of [K(+)] in the pipette shifted the reversal potential of the single channels to the positive by -50 mV. These data suggest that Na(+)-activated K(+) channels exist in the circular smooth muscle of the opossum LES.  相似文献   

20.
The resting membrane potential (RMP) of mouse diaphragm muscle was measured in solutions containing several concentrations of K+ (0.4 to 5 mmol/l) or one of the following cations: Tl+ (0.4, 1 or 2 mmol/l), Rb+ (1, 2 or 5 mmol/l), or NH+4 (4, 8 or 16 mmol/l). In terms of controlling the RMP, the ratios of the efficacies were Tl+:K+:Rb+:NH+4 = 2.5:1.0:1.0:0.12. These ratios are similar to those of the selectivities of the voltage dependent K+ channel (delayed rectifier) in frog nerve and muscle, and this similarity suggests that the resting membrane potential may be controlled by this channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号