首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 691 毫秒
1.
D Eby  M E Kirtly 《Biochemistry》1976,15(10):2168-2171
Using NAD analogues as ligands, the structural requirements for negative cooperativity in binding to rabbit muscle glyceraldehyde-3-phosphate dehydrogenase were examined. Although the affinity of nicotinamide hypoxanthine dinucleotide is considerably lower than that of NAD+, it also binds to the enzyme with negative cooperatively. Two pairs of nicotinamide hypoxanthine dinucleotide binding sitess were distinguished, one pair having an affinity for the analogue which is 15 times that of the second pair. Negative cooperativity is also found in the Km values for the analogue. Thus modification of the adenine ring of NAD+ to hypoxanthine does not abolish negative cooperativity in coenzyme binding. Adenosine diphosphoribose binding to the same enzyme shows neither positive nor negative cooperativity, indicating that cooperativity apparently requires an intact nicotinamide ring in the coenzyme structure, under the conditions of these experiments. Occupancy of the nicotinamide subsite of the coenzyme binding site is not necessary for half-of-sites reactivity of alkylating or acylating compounds (Levitzki, A. (1974), J. Mol, Biol. 90, 451-458). However, it can be important in the negative cooperativity in ligand binding, as illustrated by adenosine diphosphoribose which fails to exhibit negative cooperativity. Occupancy of the adenine subsite by adenine is important for stabilization of the enzyme against thermal denaturation. Whether the stabilization is due to an altered conformation of the subunits or stabilization of the preexisting structure of the apoenzyme cannot be determined from these studies. However, nicotinamide hypoxanthine dinucleotide does not contribute to enzyme stability although it serves as a substrate and shows negative cooperativity.  相似文献   

2.
R S Ehrlich  R F Colman 《Biochemistry》1992,31(49):12524-12531
The coenzyme selectivity of pig heart NAD-dependent and NADP-dependent isocitrate dehydrogenase has been investigated by nuclear magnetic resonance through the use of coenzyme analogues. For both isocitrate dehydrogenases, more than 10-fold lower maximal activity is observed with thionicotinamide adenine dinucleotide [sNAD(P)+] than with NAD(P)+ or acetylpyridine adenine dinucleotide [acNAD-(P)+] as coenzyme. Nuclear Overhauser effect measurements failed to reveal any differences in the adenine-ribose conformations among the enzyme-bound analogues. The 2'-phosphate resonance of the enzyme-bound NADP+ analogues showed the same change in chemical shift observed for the natural coenzyme and revealed the same lack of pH dependence in the range from pH 5.4 to 8.2. NADP-dependent isocitrate dehydrogenase exhibits only small differences in Michaelis constants for the coenzymes with various nicotinamide substituents, reflecting a predominant role for the adenosine moiety in binding. The conformation of the bound nicotinamide-ribose of the natural coenzymes was appreciably different from that of the coenzyme, sNAD(P)+, which shows low catalytic activity. For both isocitrate dehydrogenases, sNAD(P)+ bound to the enzymes exhibits a mixture of syn and anti conformations while only the anti conformation can be detected for NAD(P)+. Chemical shifts of NAD(P)+ enriched with 13C in the carboxamide indicate that interaction of this group with the enzymes may play a role in positioning the nicotinamide ring to participate in catalysis. Our results suggest that, although interaction of the nicotinamide moiety with the enzymes contributes relatively little to the energy of interaction in the binary complex, the enzymes must correctly position this group for the catalytic event.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The three-dimensional structure of a ternary complex of horse liver alcohol dehydrogenase with reduced nicotinamide adenine dinucleotide and the inhibitor dimethyl sulfoxide has been determined to 4.5 A resolution independently of the apoenzyme structure. The electron density maps of both structures have been compared. The two coenzyme binding domains which form the center of the dimer molecular have retained their conformation and orientation within the molecule whereas the catalytic domains rotate and narrow the cleft between the domains. The active site becomes shielded from the solution by a combination of this rotation, local movements of a loop from residues 53 to 57 and coenzyme and substrate binding. Both subunits bind coenzyme and inhibitor to the same extent. The nicotinamide ring of the coenzyme is positioned close to the active zinc atom and the inhibitor is bound to this zinc atom. The difference between the two crystallographically independent subunits is small. The proposed mechanisms of action for the enzyme based on the apoenzyme structure are confirmed by the present investigation.  相似文献   

4.
D Chen  K T Yue  C Martin  K W Rhee  D Sloan  R Callender 《Biochemistry》1987,26(15):4776-4784
We report the Raman spectra of reduced and oxidized nicotinamide adenine dinucleotide (NADH and NAD+, respectively) and adenosine 5'-diphosphate ribose (ADPR) when bound to the coenzyme site of liver alcohol dehydrogenase (LADH). The bound NADH spectrum is calculated by taking the classical Raman difference spectrum of the binary complex, LADH/NADH, with that of LADH. We have investigated how the bound NADH spectrum is affected when the ternary complexes with inhibitors are formed with dimethyl sulfoxide (Me2SO) or isobutyramide (IBA), i.e., LADH/NADH/Me2SO or LADH/NADH/IBA. Similarly, the difference spectra of LADH/NAD+/pyrazole or LADH/ADPR with LADH are calculated. The magnitude of these difference spectra is on the order of a few percent of the protein Raman spectrum. We report and discuss the experimental configuration and control procedures we use in reliably calculating such small difference signals. These sensitive difference techniques could be applied to a large number of problems where the classical Raman spectrum of a "small" molecule, like adenine, bound to the active site of a protein is of interest. The spectrum of bound ADPR allows an assignment of the bands of the bound NADH and NAD+ spectra to normal coordinates located primarily on either the nicotinamide or the adenine moiety. By comparing the spectra of the bound coenzymes with model compound data and through the use of deuterated compounds, we confirm and characterize how the adenine moiety is involved in coenzyme binding and discuss the validity of the suggestion that the adenine ring is protonated upon binding. The nicotinamide moiety of NADH shows significant molecular changes upon binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Acetone was found to form a dead-end ternary complex with horse liver alcohol dehydrogenase and oxidized nicotinamide adenine dinucleotide (NAD+) when the reactants were incubated for a long time at relatively high concentrations. The complex formation was demonstrated by measuring the increase in absorbance at 320 nm, the quenching of protein fluorescence, and the loss of enzyme activity. Since acetone is a substrate of liver alcohol dehydrogenase, and the presence of acetaldehyde or pyrazole prevents acetone from forming the dead-end complex with liver alcohol dehydrogenase and NAD+, the acetone molecule in the complex may be bound to the substrate binding site of liver alcohol dehydrogenase. The dissociation of the complex was demonstrated by prolonged dialysis or by addition of reduced nicotinamide adenine dinucleotide (NADH) and iso-butyramide. A modified nicotinamide adenine dinucleotide was obtained as a main product from the dead-end complex after dissociation of the complex or denaturation of the apoenzyme. The modified nicotinamide adenine dinucleotide was found to exhibit an absorption spectrum similar to that of NADH; however, it was not oxidizable by liver alcohol dehydrogenase in the presence of acetaldehyde and exhibited no fluorescence.  相似文献   

6.
Coenzyme analogues with the adenosine ribose replaced with n-propyl, n-butyl, and n-pentyl groups; coenzyme analogues with the adenosine replaced with 3-(4-acetylanilino)propyl and 6-(4-acetylanilino)hexyl moieties; and nicotinamide mononucleotide, nicotinamide hypoxanthine dinucleotide, and 3-acetylpyridine adenine dinucleotide were used in steady-state kinetic studies with native and activated, amidinated enzymes. The Michaelis and inhibition constants increased up to 100-fold upon modification of coenzyme or enzyme. Turnover numbers with NAD+ and ethanol increased in some cases up to 10-fold due to increased rates of dissociation of enzyme-reduced coenzyme complexes. Rates of dissociation of oxidized coenzyme appeared to be mostly unaffected, but the values calculated (10-60 s-1) were significantly less than the turnover numbers with acetaldehyde and reduced coenzyme (20-900 s-1, at pH 8, 25 degrees C). Rates of association of coenzyme analogues also decreased up to 100-fold. When Lys-228 in the adenosine binding site was picolinimidylated, turnover numbers increased about 10-fold with NAD(H). Furthermore, the pH dependencies for association and dissociation of NAD+ and turnover number with NAD+ and ethanol showed the fastest rates above a pK value of 8.0. Turnover with NADH and acetaldehyde was fastest below a pK value of 8.1. These results can be explained by a mechanism in which isomerization of the enzyme-NAD+ complex (110 s-1) is partially rate limiting in turnover with NAD+ and ethanol (60 s-1) and is controlled by ionization of the hydrogen-bonded system that includes the water ligated to the catalytic zinc and the imidazole group of His-51.  相似文献   

7.
自然界中依赖烟酰胺类辅酶(NAD+或NADP+)的脱氢酶是氧化还原酶中最重要的一类,基于此类酶的生物传感器应用前景广阔,近年来发展迅速。构建这类传感器需要两项关键技术,即氧化型辅酶在电极表面的再生和辅酶固定化。本文介绍了辅酶电化学再生的主要方法、辅酶固定化的常见手段,以及相关的研究进展。  相似文献   

8.
Streptococcus faecalis grown with glucose as the primary energy source contains a single, nicotinamide adenine dinucleotide phosphate (NADP)-specific 6-phosphogluconate dehydrogenase. Extracts of gluconate-adapted cells, however, exhibited 6-phosphogluconate dehydrogenase activity with either NADP or nicotinamide adenine dinucleotide (NAD). This was shown to be due to the presence of separate enzymes in gluconate-adapted cells. Although both enzymes catalyzed the oxidative decarboxylation of 6-phosphogluconate, they differed from one another with respect to their coenzyme specificity, molecular weight, pH optimum, K(m) values for substrate and coenzyme, and electrophoretic mobility in starch gels. The two enzymes also differed in their response to certain effector ligands. The NADP-linked enzyme was specifically inhibited by fructose-1,6-diphosphate, but was insensitive to adenosine triphosphate (ATP) and certain other nucleotides. The NAD-specific enzyme, in contrast, was insensitive to fructose-1,6-diphosphate, but was inhibited by ATP. The available data suggest that the NAD enzyme is involved primarily in the catabolism of gluconate, whereas the NADP enzyme appears to function in the production of reducing equivalents (NADPH) for use in various reductive biosynthetic reactions.  相似文献   

9.
Initial velocity, product inhibition, and substrate inhibition studies suggest that the endogenous lactate dehydrogenase activity of duck epsilon-crystallin follows an order Bi-Bi sequential mechanism. In the forward reaction (pyruvate reduction), substrate inhibition by pyruvate was uncompetitive with inhibition constant of 6.7 +/- 1.7 mM. In the reverse reaction (lactate oxidation), substrate inhibition by L-lactate was uncompetitive with inhibition constant of 158 +/- 25 mM. The cause of these inhibitions may be due to epsilon-crystallin-NAD(+)-pyruvate and epsilon-crystallin-NADH-L-lactate abortive ternary complex formation as suggested by the multiple inhibition studies. Pyruvate binds to free enzyme very poorly, with a very large dissociation constant. Bromopyruvate, fluoropyruvate, pyruvate methyl ester, and pyruvate ethyl ester are alternative substrates for pyruvate. 3-Acetylpyridine adenine dinucleotide, nicotinamide 1,N6-ethenoadenine dinucleotide, and nicotinamide hypoxanthine dinucleotide serve as alternative coenzymes for epsilon-crystallin. All the above alternative substrates or coenzymes showed an intersecting initial-velocity pattern conforming to the order Bi--Bi kinetic mechanism. Nicotinic acid adenine dinucleotide, thionicotinamide adenine dinucleotide, and 3-aminopyridine adenine dinucleotide acted as inhibitors for this enzymatic crystallin. The inhibitors were competitive versus NAD+ and noncompetitive versus L-lactate. alpha-NAD+ was a noncompetitive inhibitor with respect to the usual beta-NAD+. D-Lactate, tartronate, and oxamate were strong dead-end inhibitors for the lactate dehydrogenase activity of epsilon-crystallin. Both D-lactate and tartronate were competitive inhibitors versus L-lactate while oxamate was a competitive inhibitor versus pyruvate. We conclude that the structural requirements for the substrate and coenzyme of epsilon-crystallin are similar to those of other dehydrogenases and that the carboxamide carbonyl group of the nicotinamide moiety is important for the coenzyme activity.  相似文献   

10.
Glutamate dehydrogenase from Mycoplasma laidlawii   总被引:2,自引:2,他引:0       下载免费PDF全文
Mycoplasma laidlawii possesses a single glutamate dehydrogenase (GDH) with dual coenzyme specificity [specificity for nicotinamide adenine dinucleotide (H) and nicotinamide adenine dinucleotide phosphate (H)]. A purification procedure is reported which results in an enzyme preparation with a specific activity of 79.5 units/mg and which displays only one significant protein band after gel electrophoresis. This one band was determined, by activity staining, to have all of the GDH nucleotide specificities. The molecular weight of the enzyme is 250,000 +/- 10%, and it has a subunit size of about 48,000. The enzyme exhibits measurable activity with aspartate and pyruvate but is inactive with eight other possible substrates. Purine nucleotides do not affect the activity. The K(m) for reduced nicotinamide adenine dinucleotide was 1.8 x 10(-4)m. The optimal substrate concentrations and pH optimum for each of the respective GDH activities are also reported.  相似文献   

11.
The fate of nicotinamide adenine dinucleotide (NAD), AMP, and ADP-ribose supplied to intact human skin fibroblasts was monitored, and the concentrations of intra- and extracellular pyridine and purine compounds were determined by HPLC analysis. Two enzymatic activities affecting extracellular NAD were detected on the plasma membrane, one hydrolyzing the pyrophosphoric bond and yielding nicotinamide mononucleotide (nucleotide pyrophosphatase) and the other cleaving the glycoside link and releasing nicotinamide (NAD-glycohydrolase). No AMP or ADP-ribose was found in the extracellular medium of cells incubated with NAD, the former being completely catabolized to hypoxanthine and the latter degraded to adenine and hypoxanthine. © 1996 Wiley-Liss, Inc.  相似文献   

12.
The binding of the coenzyme to octopine dehydrogenase was investigated by kinetic and spectroscopic studies using different analogues of NAD+. The analogues employed were fragments of the coenzyme molecule and dinucleotides modified on the purine or the pyridine ring. The binding of ADPribose is sufficient to induce local conformational changes necessary for the good positioning of substrates. AMP, ADP, NMN+ and NMNH do not show this effect. Analogues modified on the purine ring such as nicotinamide deaminoadenine dinucleotide, nicotinamide--8-bromoadenine dinucleotide, nicotinamide--8-thioadenine dinucleotide and nicotinamide 1: N6-ethenoadenine dinucleotide bind to the enzyme and give catalytically active ternary complexes. Modifications of the pyridine ring show an important effect on the binding of the coenzyme as well as on the formation of ternary complexes. Thus, the carboxamide group can well be replaced by an acetyl group and also, though less efficiently, by a formyl or cyano group. However more bulky substituents such as thio, chloroacetyl or propionyl groups prevent the binding. The analogues bearing a methyl group in the 4 or 5 position, which are competitive inhibitors, are able to give binary by not ternary complexes. The case of 1,4,5,6-tetrahydronicotinamide--adenine dinucleotide which does not give ternary complexes like NADH is discussed. The above findings show that the pyridine and adenine parts are both involved in the binding of the coenzyme and of the substrate to octopine dehydrogenase. The nicotinamide binding site of this enzyme seems to be the most specific and restricted one among the dehydrogenases so far described. The protective effects of coenzyme analogues towards essential -SH group were also studied.  相似文献   

13.
Sir2 (silent information regulator 2) enzymes catalyze a unique protein deacetylation reaction that requires the coenzyme NAD(+) and produces nicotinamide and a newly discovered metabolite, O-acetyl-ADP-ribose (OAADPr). Conserved from bacteria to humans, these proteins are implicated in the control of gene silencing, metabolism, apoptosis, and aging. Here we examine the role of NAD(+) metabolites/derivatives and salvage pathway intermediates as activators, inhibitors, or coenzyme substrates of Sir2 enzymes in vitro. Also, we probe the coenzyme binding site using inhibitor binding studies and alternative coenzyme derivatives as substrates. Sir2 enzymes showed an exquisite selectivity for the nicotinamide base coenzyme, with the most dramatic losses in binding affinity/reactivity resulting from relatively minor changes in the nicotinamide ring, either by reduction, as in NADH, or by converting the amide to its acid analogue. Both ends of the dinucleotide NAD(+) are shown to be critical for high selectivity and high affinity. Among the NAD(+) metabolites tested none were able to allosterically activate, although all led to various extents of inhibition, consistent with competition at the coenzyme binding site. Nicotinamide was the most potent inhibitor examined, suggesting that cellular nicotinamide levels would provide an effective small molecule regulator of protein deacetylation and generation of OAADPr. The presented findings also suggest that changes in the physiological NAD(+):NADH ratio, without a change in NAD(+), would yield little alteration in Sir2 activity. That is, NADH is an extremely ineffective inhibitor of Sir2 enzymes (average IC(50) of 17 mm). We propose that changes in both free nicotinamide and free NAD(+) afford the greatest contribution to cellular activity of Sir2 enzymes but with nicotinamide having a more dramatic effect during smaller fluctuations in concentration.  相似文献   

14.
We purified branched-chain keto acid dehydrogenase to a specific activity of 10 mumol/min per mg of protein from Pseudomonas putida grown on valine. The purified enzyme was active with 2-ketoisovalerate, 2-ketoisocaproate, and 2-keto-3-methylvalerate in a ratio of 1.0:0.8:0.7 but showed no activity with either pyruvate or 2-ketoglutarate. There were four polypeptides in the purified enzyme (molecular weights, 49,000, 46,000, 39,000, and 37,000). The purified enzyme was deficient in the specific lipoamide dehydrogenase produced during growth on valine (molecular weight, 49,000). Branched-chain keto acid dehydrogenase required L-valine, oxidized nicotinamide adenine dinucleotide, coenzyme A, thiamine pyrophosphate, and magnesium chloride. A partially purified preparation catalyzed the oxidation of 2-keto-[1-14C]isovalerate to [14C]carbon dioxide, isobutyryl-coenzyme A, and reduced nicotinamide adenine dinucleotide in equimolar amounts. Both the Km and the Vmax for 2-ketoisovalerate were affected by the addition of L-valine to the assay mixture. However, only the Vmax values for oxidized nicotinamide adenine dinucleotide and coenzyme A were affected when L-valine was present. This suggested that valine acted by affecting the binding of branched-chain keto acids to subunit E1 of the complex.  相似文献   

15.
Glyceraldehyde 3-phosphate dehydrogenase is a tetramer of four chemically identical subunits which requires the cofactor nicotinamide adenine dinucleotide (NAD) for activity. The structure of the holo-enzyme from Bacillus stearothermophilus has recently been refined using X-ray data to 2.4 A resolution. This has facilitated the structure determination of both the apo-enzyme and the enzyme with one molecule of NAD bound to the tetramer. These structures have been refined at 4 A resolution using the constrained-restrained parameter structure factor least-squares refinement program CORELS. When combined with individual atomic temperature factors from the holo-enzyme, these refined models give crystallographic R factors of 30.2% and 30.4%, respectively, for data to 3 A resolution. The apo-enzyme has 222 molecular symmetry, and the subunit structure is related to that of the holo-enzyme by an approximate rigid-body rotation of the coenzyme binding domain by 4.3 degrees with respect to the catalytic domains, which form the core of the tetramer. The effect of this rotation is to shield the coenzyme and active site from solvent in the holo-enzyme. In addition to the rigid-body rotation, there is a rearrangement of several residues involved in NAD binding. The structure of the 1 NAD enzyme is asymmetric. The subunit which contains the bound NAD adopts a conformation very similar to that of a holo-enzyme subunit, while the other three unliganded subunits are very similar to the apo-enzyme conformation. This result provides unambiguous evidence for ligand-induced sequential conformational changes in B. stearothermophilus glyceraldehyde 3-phosphate dehydrogenase.  相似文献   

16.
Bacterial malonyl-CoA:acyl carrier protein transacylase catalyzes the transfer of a malonyl moiety from malonyl-CoA to the free thiol group of the phosphopantetheine arm of acyl carrier protein. Malonyl-ACP, the product of this enzymatic reaction, is the key building block for de novo fatty acid biosynthesis. Here, we describe a continuous enzyme assay based on the coupling of the malonyl-CoA:acyl carrier protein transacylase reaction to alpha-ketoglutarate dehydrogenase (KDH). KDH-dependent consumption of the coenzyme A generated by malonyl-CoA:acyl carrier protein transacylase is accompanied by a reduction of nicotinamide adenine dinucleotide, oxidized (NAD(+)) to nicotinamide adenine dinucleotide, reduced. The rate of NAD(+) reduction is continuously monitored as a change in fluorescence using a microtiter plate reader. We show that this coupled enzyme assay is amenable to routine chemical compound screening.  相似文献   

17.
Lipid transfer proteins (LTPs) are a protein family found in plants with a variety of functions. In addition to lipid binding, LTPs also bind to calmodulin and Ca2+-dependent protein kinase (CDPK), which are calcium signal transducers. For the first time, we identified glyceraldehyde-3- phosphate dehydrogenase (GAPDH) as a novel binding protein of LTP-CaMBP10 in Chinese cabbage. This binding was confirmed using multiple biochemical approaches. The effects of this interaction on GAPDH activity were assessed for both recombinant and endogenous GAPDH proteins. LTP-CaMBP10 does not appear to affect nicotinamide adenine dinucleotide (NAD)-dependent GAPDH activity. In contrast, it significantly suppresses nicotinamide adenine dinucleotide phosphate (NADPH) consumption by GAPDH in a dosage-dependent manner. This result indicated a specific role of GAPDH in regulating LTP functions and implicating crosstalk between LTP-dependent and GAPDH-dependent biological events.  相似文献   

18.
Pyridine Nucleotide Transhydrogenase from Azotobacter vinelandii   总被引:5,自引:0,他引:5       下载免费PDF全文
A method is described for the partial purification of pyridine nucleotide transhydrogenase from Azotobacter vinelandii (ATCC 9104) cells. The most highly purified preparation catalyzes the reduction of 300 mumoles of nicotinamide adenine dinucleotide (NAD(+)) per min per mg of protein under the assay conditions employed. The enzyme catalyzes the reduction of NAD(+), deamino-NAD(+), and thio-NAD(+) with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as hydrogen donor, and the reduction of nicotinamide adenine dinucleotide phosphate (NADP(+)) and thio-NAD(+) with reduced NAD (NADH) as hydrogen donor. The reduction of acetylpyridine AD(+), pyridinealdehyde AD(+), acetylpyridine deamino AD(+), and pyridinealdehydedeamino AD(+) with NADPH as hydrogen donor was not catalyzed. The enzyme catalyzes the transfer of hydrogen more readily from NADPH than from NADH with different hydrogen acceptors. The transfer of hydrogen from NADH to NADP(+) and thio-NAD(+) was markedly stimulated by 2'-adenosine monophosphate (2'-AMP) and inhibited by adenosine diphosphate (ADP), adenosine triphosphate (ATP), and phosphate ions. The transfer of hydrogen from NADPH to NAD(+) was only slightly affected by phosphate ions and 2'-AMP, except at very high concentrations of the latter reagent. In addition, the transfer of hydrogen from NADPH to thio-NAD(+) was only slightly influenced by 2'-AMP, ADP, ATP, and other nucleotides. The kinetics of the transhydrogenase reactions which utilized thio-NAD(+) as hydrogen acceptor and NADH or NADPH as hydrogen donor were studied in some detail. The results suggest that there are distinct binding sites for NADH and NAD(+) and perhaps a third regulator site for NADP(+) or 2'-AMP. The heats of activation for the transhydrogenase reactions were determined. The properties of this enzyme are compared with those of other partially purified transhydrogenases with respect to the regulatory functions of 2'-AMP and other nucleotides on the direction of flow of hydrogen between NAD(+) and NADP(+).  相似文献   

19.
Cell extracts from fermentatively grown Rhodospirillum rubrum reduced about 80 nmol of nicotinamide adenine dinucleotide (NAD) per mg of protein per min under anaerobic conditions with sodium pyruvate. The reaction was specific for pyruvate and NAD; NAD phosphate was not reduced. Results indicated that pyruvate-linked NAD reduction occurred via pyruvate:lipoate oxidoreductase. The reaction required catalytic amounts of both coenzyme A and thiamine pyrophosphate. Addition of sodium arsenite inhibited enzyme activity by 90%. Pyruvate:lipoate oxidoreductase was the only system detected in anaerobic, dark-grown R. rubrum cell extracts which operated to produce reduced NAD. The low activity of the enzyme system suggested that it was not quantitatively important in ATP formation.  相似文献   

20.
Rape alcohol dehydrogenase is competitively inhibited with respect to NAD by nicotinamide, as well as by compounds containing adenine (adenine, adenosine, AMP, ADP, ATP). Adenine and adenosine are bound more firmly to the enzyme than nicotinamide. The two types of compound, as component parts of the NAD coenzyme, are bound to different sites on the enzyme. Adenine and adenosine compete for the adenine nucleotide bonding site, but they do not compete for the o-phenanthroline bonding site. Nicotinamide competes with o-phenanthroline for the binding site at which the metal is apparently present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号