首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Nucleotide sequence of the 3''-terminal region of rat 18S ribosomal DNA   总被引:1,自引:0,他引:1  
Summary The 3-terminal 230 base-pairs (bp) of the gene for 18S rRNA and 40 bp of the adjoining spacer have been sequenced for the Sprague-Dawley rat. This mammalian sequence has been compared with the known sequences of yeast, fruit fly, silkworm, and frog. This study has shown that the nucleotide-sequence differences between rat and frog are the smallest among the five species, probably reflecting their evolutionary closeness and longer maturation time compared to the others. There is little similarity in the nucleotide sequences of the transcribed spacer regions of the five species compared.  相似文献   

2.
The complete nucleotide sequence of the rat 18S ribosomal RNA gene has been determined. A comparison of the rat 18S ribosomal RNA gene sequence with the known sequences of yeast and frog revealed three conserved (stable) regions, two unstable regions, and three large inserts. (A,T) leads to (G,C) changes were more frequent than (G,C) leads to (A,T) changes for three comparisons (yeast leads to frog, frog leads to rat, and yeast leads to rat). GC pairs were inserted preferentially over AT pairs for the same three comparisons. These two factors contribute to the progressively higher GC content of 18S ribosomal RNA of yeast, frog, and rat.  相似文献   

3.
The cloned 18 S ribosomal RNA gene from Saccharomyces cerevisiae have been sequenced, using the Maxam-Gilbert procedure. From this data the complete sequence of 1789 nucleotides of the 18 S RNA was deduced. Extensive homology with many eucaryotic as well as E. coli ribosomal small subunit rRNA (S-rRNA) has been observed in the 3'-end region of the rRNA molecule. Comparison of the yeast 18 S rRNA sequences with partial sequence data, available for rRNAs of the other eucaryotes provides strong evidence that a substantial portion of the 18 S RNA sequence has been conserved in evolution.  相似文献   

4.
The 5' external transcribed spacer (ETS) region of the pre-rRNA in Saccharomyces cerevisiae contains a sequence with 10 bp of perfect complementarity to the U3 snoRNA. Base pairing between these sequences has been shown to be required for 18S rRNA synthesis, although interaction over the full 10 bp of complementarity is not required. We have identified the homologous sequence in the 5' ETS from the evolutionarily distant yeast Hansenula wingei; unexpectedly, this shows two sequence changes in the region predicted to base pair to U3. By PCR amplification and direct RNA sequencing, a single type of U3 snoRNA coding sequence was identified in H. wingei. As in the S. cerevisiae U3 snoRNA genes, it is interrupted by an intron with features characteristic of introns spliced in a spliceosome. Consequently, this unusual property is not restricted to the yeast genus Saccharomyces. The introns of the H. wingei and S. cerevisiae U3 genes show strong differences in length and sequence, but are located at the same position in the U3 sequence, immediately upstream of the phylogenetically conserved Box A region. The 3' domains of the H. wingei and S. cerevisiae U3 snoRNAs diverge strongly in primary sequence, but have very similar predicted secondary structures. The 5' domains, expected to play a direct role in pre-ribosomal RNA maturation, are more conserved. The sequence predicted to base pair to the pre-rRNA contains two nucleotide substitutions in H. wingei that restore 10 bp of perfect complementarity to the 5' ETS. This is a strong phylogenetic evidence for the importance of the U3/pre-rRNA interaction.  相似文献   

5.
6.
Nucleotide sequence of a mosquito 18S ribosomal RNA gene.   总被引:1,自引:0,他引:1  
We have sequenced an 18S ribosomal RNA gene from the mosquito, Aedes albopictus. Computer alignment of the 1950 nucleotide coding region (56% A + T) with 18S rRNA sequences from two insect and three vertebrate species revealed greater sequence divergence among the insects than among the vertebrates. Sequence alignments showed that variable region V4, which has been considered to be the most poorly conserved domain in the 18S rRNA gene, was better conserved among insects and vertebrates than was the V6 domain.  相似文献   

7.
 H oxa1 1基因是控制脊椎动物肢发育的重要基因 .根据人和鼠 H oxa1 1基因外显子 区和 区的保守序列设计了简并引物 ,采用 PCR法从热带爪蟾基因组 DNA中扩增和克隆到了H oxa1 1基因 ,并测定了核苷酸序列 .克隆的热带爪蟾 H oxa1 1基因片段长 1 598bp,由外显子 、内含子和外显子 三部分组成 ,其中外显子 60 4 bp,外显子 49bp.将该片段的核苷酸序列与人、鼠、斑马鱼 H oxa1 1基因的相应区域进行比较 ,发现该基因的内含子长度存在明显差异 .斑马鱼、热带爪蟾、鼠和人的内含子长度分别为 632 bp,945bp,1 42 1 bp和 1 41 2 bp,随动物进化阶梯的提高而变长 .外显子 区则高度保守 ,都是 49bp,外显子 区在长度上呈现约 1 0 %的变异 .将热带爪蟾 H oxa1 1基因编码的氨基酸序列与人、鼠、斑马鱼进行比较 ,它们之间分别有 67.0 %、66.5%和 46.0 %的同源性 .热带爪蟾与哺乳动物的同源性高于鱼类 ,可能反映了脊椎动物从鳍到肢的进化过程中 ,H oxa1 1基因经历了较多的变异 .  相似文献   

8.
We have completely sequenced a defective interfering viral double-stranded RNA (dsRNA) from the Saccharomyces cerevisiae virus. This RNA (S14) is a simple internal deletion of its parental dsRNA, M1, of 1.9 kilobases. The 5' 964 bases of the M1 plus strand encode the type 1 killer toxin of the yeast. S14 is 793 base pairs (bp) long, with 253 bp from the 5' region of its parental plus strand and 540 bp from the 3' region. All three defective interfering RNAs derived from M1 that have been characterized so far preserve a large 3' region, which includes five repeats of a rotationally symmetrical 11-bp consensus sequence. This 11-bp sequence is not present in the 5' 1 kilobase of the parental RNA or in any of the sequenced regions of unrelated yeast viral dsRNAs, but it is present in the 3' region of the plus strand of another yeast viral dsRNA, M2, that encodes the type 2 killer toxin. The 3' region of 550 bases of the M1 plus strand, previously only partially sequenced, reveals no large open reading frames. Hence only about half of M1 appears to have a coding function.  相似文献   

9.
10.
Structure of the rat L-type pyruvate kinase gene   总被引:10,自引:0,他引:10  
  相似文献   

11.
12.
13.
14.
The 27,100 base-pair circular mitochondrial DNA from the yeast Kloeckera africana has been found to contain an inverted duplication spanning 8600 base-pairs. Sequences hybridizing to transfer RNAs and the large ribosomal RNA are present in the duplication; however, one end of this segment terminates in the large mitochondrial ribosomal RNA sequence so that at least 1000 base-pairs of the gene are not repeated. The large and small mitochondrial ribosomal RNAs have been shown to have lengths of 2700 and 1450 bases, respectively, and genes for these sequences are separated by a minimum of 1300 base-pairs and a maximum of 1750 base-pairs. Consequences of the large inverted duplication to mechanisms of the petite mutation are discussed in terms of previous hypotheses centred on intramolecular recombination in yeast mitochondrial DNA at sequences of homology or partial homology. Despite the long inverted duplication in K. africana mitochondrial DNA, this yeast has one of the lowest frequencies of spontaneous petite mutants amongst petite positive yeasts. One implication of these findings is that in this yeast intra-molecular mitochondrial DNA sequence homology may not be an important factor in the excision process leading to petite formation.  相似文献   

15.
The function of centromeric DNA in the yeast Saccharomyces cerevisiae has been studied in detail. Twelve of the sixteen S. cerevisiae centromeres have been sequenced to date, and a consensus sequence has been identified. This sequence consists of a central region 78 to 86bp in length which is greater than 90% A + T, usually in runs of As and runs of Ts. The central region is flanked on one side by a highly conserved 8bp sequence and on the other side by a highly conserved 25bp sequence which contains partial dyad symmetry around a central C/G base pair. Mutational analyses have been used to determine the importance of each subset of the consensus sequence to centromere function. A protein which binds to the 8bp sequence and at least one that binds to the 25bp sequence have been identified. The roles of these proteins in centromere function in mitosis and meiosis are currently under investigation.  相似文献   

16.
A 5 kb region of the 95 kb mitochondrial genome of Podospora anserina race s has been mapped and sequenced (1 kb = 10(3) base-pairs). This DNA region is continuous with the sequence for the ND4L and ND5 gene complex in the accompanying paper. We show that this sequence contains the gene for cytochrome oxidase subunit II (COII). This gene is 4 kb in length and is interrupted by a subgroup IB intron (1267 base-pairs (bp) in length) and a subgroup IA intron (1992 bp in length). This group IA intron has a long open reading frame (ORF; 472 amino acid residues) discontinuous with the upstream exon sequence. A putative alternative splice site is present, which brings the ORF into phase with the 5' exon sequence. The 5'- and 3'-flanking regions of the COII gene contain G + C-rich palindromic sequences that resemble similar sequences flanking many Neurospora crassa mitochondrial genes.  相似文献   

17.
18.
19.
A regulatory sequence near the 3'' end of sea urchin histone genes.   总被引:27,自引:11,他引:16       下载免费PDF全文
The 3' flanking sequences of all five histone genes have been sequenced in the histone DNA clone h19 of the sea urchin Psammechinus miliaris. A large (23 bp) and a small (10 bp) conserved sequence was found by sequence comparison, some 29-40 bp downstream from the termination codon. 12 bases of the larger homology block show a dyad symmetry. The available sequences of clone h22 of the same species and those of the histone clones pSp2 and pSp17 of Strongylocentrotus purpuratus, another sea urchin species, fit well into this comparison. Two types of sequences are involved in the dyad symmetry; one is H1, H3 and H4 specific, the other is H2A and H2B specific. If these conserved sequences are transcribed, a hairpin loop could form in the RNA molecules. This secondary structure might serve as a recognition signal for a regulatory protein.  相似文献   

20.
The terminal 220 base pairs (bp) of the gene for 18S rRNA and 18 bp of the adjoining spacer rDNA of the silkworm Bombyx mori have been sequenced. Comparison with the sequence of the 16S rRNA gene of Escherichia coli has shown that a region including 45 bp of the B. mori sequence at the 3' end is remarkably homologous with the 3' terminal E. coli sequence. Other homologies occur in the terminal regions of the 18S and 16S rRNAs, including a perfectly conserved stretch of 13 bp within a longer homology located 150--200 bp from the 3' termini. These homologies are the most extensive so far reported between prokaryotic and eukaryotic genomic DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号