首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.

Background and Aims

Submergence is a recurring problem in the rice-producing rainfed lowlands of south and south-east Asia. Developing rice cultivars with tolerance of submergence and with agronomic and quality traits acceptable to farmers is a feasible approach to address this problem. The objectives of this study were to (a) develop mega varieties with Sub1 introgression that are submergence tolerant, (b) assess the performance of Sub1 in different genetic backgrounds, (c) determine the roles of the Sub1A and Sub1C genes in conferring tolerance, and (d) assess the level of tolerance in F1 hybrids heterozygous for the Sub1A-1-tolerant allele.

Methods

Tolerant varieties were developed by marker-assisted backcrossing through two or three backcrosses, and their performance was evaluated to determine the effect of Sub1 in different genetic backgrounds. The roles of Sub1A and Sub1C in conferring the tolerant phenotype were further investigated using recombinants identified within the Sub1 gene cluster based on survival and gene expression data.

Key Results

All mega varieties with Sub1 introgression had a significantly higher survival rate than the original parents. An intolerant Sub1C allele combined with the tolerant Sub1A-1 allele did not significantly reduce the level of tolerance, and the Sub1C-1 expression appeared to be independent of the Sub1A allele; however, even when Sub1C-1 expression is completely turned off in the presence of Sub1A-2, plants remained intolerant. Survival rates and Sub1A expression were significantly lower in heterozygotes compared with the homozygous tolerant parent.

Conclusions

Sub1 provided a substantial enhancement in the level of tolerance of all the sensitive mega varieties. Sub1A is confirmed as the primary contributor to tolerance, while Sub1C alleles do not seem important. Lack of dominance of Sub1 suggests that the Sub1A-1 allele should be carried by both parents for developing tolerant rice hybrids.Key words: Oryza sativa, Sub1, marker-assisted backcrossing, mega varieties, submergence tolerance, recombinant, hybrid, abiotic stress  相似文献   

2.
Crop tolerance to flooding is an important agronomic trait. Although rice (Oryza sativa) is considered a flood‐tolerant crop, only limited cultivars display tolerance to prolonged submergence, which is largely attributed to the presence of the SUB1A gene. Wild Oryza species have the potential to unveil adaptive mechanisms and shed light on the basis of submergence tolerance traits. In this study, we screened 109 Oryza genotypes belonging to different rice genome groups for flooding tolerance. Oryza nivara and Oryza rufipogon accessions, belonging to the A‐genome group, together with Oryza sativa, showed a wide range of submergence responses, and the tolerance‐related SUB1A‐1 and the intolerance‐related SUB1A‐2 alleles were found in tolerant and sensitive accessions, respectively. Flooding‐tolerant accessions of Oryza rhizomatis and Oryza eichingeri, belonging to the C‐genome group, were also identified. Interestingly, SUB1A was absent in these species, which possess a SUB1 orthologue with high similarity to O. sativa SUB1C. The expression patterns of submergence‐induced genes in these rice genotypes indicated limited induction of anaerobic genes, with classical anaerobic proteins poorly induced in O. rhizomatis under submergence. The results indicated that SUB1A‐1 is not essential to confer submergence tolerance in the wild rice genotypes belonging to the C‐genome group, which show instead a SUB1A‐independent response to submergence.  相似文献   

3.
The submergence‐tolerance regulator, SUBMERGENCE1A (SUB1A), of rice (Oryza sativa L.) modulates gene regulation, metabolism and elongation growth during submergence. Its benefits continue during desubmergence through protection from reactive oxygen species and dehydration, but there is limited understanding of SUB1A's role in physiological recovery from the stress. Here, we investigated the contribution of SUB1A to desubmergence recovery using the two near‐isogenic lines, submergence‐sensitive M202 and tolerant M202(Sub1). No visible damage was detected in the two genotypes after 3 d of submergence, but the sublethal stress differentially altered photosynthetic parameters and accumulation of energy reserves. Submergence inhibited photosystem II photochemistry and stimulated breakdown of protein and accumulation of several amino acids in both genotypes at similar levels. Upon desubmergence, however, more rapid return to homeostasis of these factors was observed in M202(Sub1). Submergence considerably restrained non‐photochemical quenching (NPQ) in M202, whereas the value was unaltered in M202(Sub1) during the stress. Upon reaeration, submerged plants encounter sudden exposure to higher light. A greater capability for NPQ‐mediated photoprotection can benefit the rapid recovery of photosynthetic performance and energy reserve metabolism in M202(Sub1). Our findings illuminate the significant role of SUB1A in active physiological recovery upon desubmergence, a component of enhanced tolerance to submergence.  相似文献   

4.
Submergence is a widespread problem of rice production, especially in low-lying areas in South and Southeast Asia. Despite the success of Sub1 mega varieties, repeated instances of prolonged and severe flooding in stress-prone areas suggests that the SUB1 gene is no longer sufficient in those regions and requires improved varieties with increased tolerance. A study was conducted to identify quantitative trait loci (QTLs) associated with submergence tolerance using 115 F7 recombinant inbred lines (RILs) derived from the cross of Ciherang-Sub1, a popular Indonesian cultivar carrying the SUB1 gene that has relatively higher tolerance to submergence compared to the performance of most other Sub1 lines and the submergence and stagnant flooding tolerant IR10F365. As the tolerant allele at SUB1A on chromosome 9 was fixed in this mapping population, additional QTLs responsible for submergence tolerance were expected to be revealed. Genotyping with an Infinium 6K SNP chip resulted in 469 polymorphic markers that were then used for QTL mapping. Phenotyping was performed under complete submergence with two replicates. A major QTL for submergence derived from Ciherang-Sub1, named qSUB8.1, was detected on chromosome 8 with a LOD score of 10.3 and phenotypic variance of 27.5%. Additionally, a smaller QTL, also derived from Ciherang-Sub1, was detected on chromosome 2 with a LOD score of 3.5 and phenotypic variance of 12.7%. There was no digenic interaction detected between these QTLs suggesting their independent action. The QTLs detected in this study can be used in marker-assisted selection to further improve the tolerance of other Sub1 varieties.  相似文献   

5.
Background and AimsSubmergence tolerance in rice is primarily attributed to the action of the SUB1 gene, but other associated traits such as leaf gas film (LGF) thickness, leaf hydrophobicity, porosity and leaf density have been known to aid submergence tolerance in rice. However, association of these traits with SUB1 quantitative trait locus (QTL) has not been demonstrated. In this study, we aim to investigate (1) whether the presence of the SUB1 QTL in the genetic background has any influence on the thickness of the LGF and (ii) whether its removal has any impact on stress perception and submergence tolerance in Sub1 and non-Sub1 rice.MethodsWe examined 12 genotypes (including both Sub1 and non-Sub1 types) for different leaf traits such as initial LGF thickness, leaf hydrophobicity, tissue porosity and leaf density in order to work out the relatioship of these traits to the SUB1 QTL in rice. Furthermore, we investigated the changes in the gene expression profile and different metabolic processes in selected genotypes in the presence and absence of their LGF to study its impact on stress perception and adaptation.Key ResultsThe initial thickness of the LGF and hydrophobicity seemed to have a highly positive correlation with the presence of the SUB1 QTL in the genetic background of rice; however, other leaf traits such as porosity and density seemed to be independent of it. Artificial removal of the LGF resulted in partial loss of tolerance, showing increased ethylene production and early induction of anoxia-related genes (SUB1A-1, ACS5, Ramy3D and ADH1) which manifested symptoms such as increased stem elongation, faster chlorophyll and starch breakdown, and partial loss of quiescence in SUB1-containing rice genotypes. Stripping of the LGF resulted in early and enhanced induction of SUB1A-1, indicating a quicker perception of stress.ConclusionsThe presence of SUB1 in the genetic background positively influences surface hydrophobicity and the concomitant LGF thickness of rice. Furthermore, LGF helps in terms of providing better ethylene dissipation and reduced in planta accumulation, owing to the slowing down of ethylene-induced leaf senescence under submergence stress.  相似文献   

6.
7.
8.
Rice is an important source of calorie for the growing world population. Its productivity, however is affected by climatic adversities, pest attacks, diseases of bacterial, viral and fungal origin and many other threats. Developing cultivars that are high yielding and stress resilient seems a better solution to tackle global food security issues. This study investigates the potential resistance of 24 rice cultivars against Xanthomonas oryzae pv. Oryzae (Xoo) infection that causes bacterial leaf blight disease and submergence stress. Bacterial leaf blight (BLB) resistance genes (Xa4, xa5, xa13, Xa21, Xa38) and submergence tolerance (Sub1) gene specific markers were used to determine the allelic status of genotypes. The results displayed presence of Xa4 resistance allele (78.95%), xa5 (15.79%) but xa13 and Sub1 tolerance allele were not found in any genotype. However, a new allele for Xa21 (84.21%) and Xa38 (10.52%) were identified in several genotypes. Phenotypic screening for both stress conditions was done to record the cultivars response. None of the genotypes showed resistance against Xoo, although varieties viz., Tapaswini and Konark showed moderate susceptibility. Likewise, survival percentage of genotypes under submergence stress varied from 0 to 100%. Tolerant checks FR13A (100%) and Swarna Sub1 (97.78%) exhibited high survival rate, whereas among genotypes, Gayatri (57.78%) recorded high survivability even though it lacked Sub1 tolerant its genetic background. A total of six trait specific STS and two SSR markers generated an average of 2.38 allele per locus. Polymorphism information content (PIC) value ranged from 0.08 to 0.42 with an average of 0.20. Structure analysis categorized 24 genotypes into two sub-populations, which was in correspondence with Nei’s genetic distance-based NJ tree and principal co-ordinate analysis (PCoA). Swarna Sub1 could be differentiated clearly from BLB resistant check, IRBB60 and other 22 genotypes without having Sub1 gene. Analysis of molecular variance (AMOVA) revealed more genetic variation within population than among population. Principal component analysis (PCA) showed that 9 morphological traits collectively explained 76.126% of total variation among all the genotypes studied. The information from this study would be useful in future breeding programs for pyramiding trait specific genes into high yielding cultivars that fall behind with respect to stress resilience. Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00951-1.  相似文献   

9.
Short-term submergence is a recurring problem in many rice production areas. The SUB1 gene, derived from the tolerant variety FR13A, has been transferred to a number of widely grown varieties, allowing them to withstand complete submergence for up to 2 weeks. However, in areas where longer-term submergence occurs, improved varieties having higher tolerance levels are needed. To search for novel quantitative trait loci (QTLs) from other donors, an F2:3 population between IR72 and Madabaru, both moderately tolerant varieties, was investigated. After a repeated phenotyping of 466 families under submergence stress, a subset of 80 families selected from the two extreme phenotypic tails was used for the QTL analysis. Phenotypic data showed transgressive segregation, with several families having an even higher survival rate than the FR13A-derived tolerant check (IR40931). Four QTLs were identified on chromosomes 1, 2, 9, and 12; the largest QTL on chromosome 1 had a LOD score of 11.2 and R 2 of 52.3%. A QTL mapping to the SUB1 region on chromosome 9, with a LOD score of 3.6 and R 2 of 18.6%, had the tolerant allele from Madabaru, while the other three QTLs had tolerant alleles from IR72. The identification of three non-SUB1 QTLs from IR72 suggests that an alternative pathway may be present in this variety that is independent of the ethylene-dependent pathway mediated by the SUB1A gene. These novel QTLs can be combined with SUB1 using marker assisted backcrossing in an effort to enhance the level of submergence tolerance for flood-prone areas.  相似文献   

10.
11.
The study aims at identifying some submergence-tolerant rice genotypes through morphological and molecular characterization and their genetic variability analysis. Ten rice genotypes including two submergence-tolerant checks, two susceptible varieties and six advanced lines were evaluated for submergence tolerance in the laboratory and in the field during January–December 2015. The experiment was conducted in the field following randomized complete block design in a two-factor arrangement using five replications. Ten characters, viz. days to flowering, plant height, tiller number plant?1, effective tiller plant?1, and yield plant?1 etc. were studied for four treatments. A significant genotype × environment interaction was observed for all traits studied in this experiment. The yield was reduced for all genotypes at a different level of submergence stress compared to control. Binadhan-11, Binadhan-12, RC 249 and RC 251 showed tolerance, whereas RC 192, RC 193 and RC 225 showed moderate tolerance in submerged condition. The phenotypic coefficient of variance (PCV) was higher than the genotypic coefficient of variance (GCV) in all the studies traits. High heritability (75–97%) was found for all traits. High heritability along with high genetic advance was found for days to flowering (45.55) and plant height (40.05). Molecular characterization of the used genotypes was done with three SSR markers viz. RM 24, and submergence specific SC3 and SUB1. SC3 was found reliable for detection of submergence tolerant genotypes due to the highest gene diversity (0.840) compared to others. The banding pattern of the submergence specific markers SC3 and SUB1 identified in Binadhan-11, Binadhan-12, RC 192, RC 193, RC 225, RC 227, RC 249, and RC 251, which possess the SUB1 gene. Finally, clustering also separates the tolerant genotypes from the susceptible by dividing them into different clusters. The identified genotypes might be useful for the breeding programme for the development of submergence tolerant as well as resistant rice variety in Bangladesh.  相似文献   

12.
13.
Salinity and submergence are two very prominent abiotic stress conditions affecting rice yield adversely in the coastal agro ecosystem. Marker Assisted Backcross Breeding (MABB) is an efficient and fast track molecular tool to incorporate a desired stress tolerant QTL/gene into an improved cultivar. The present study was carried out for the introgression of Saltol QTL responsible for salinity tolerance and Sub1 gene responsible for submergence tolerance into the high yielding rice variety Aiswarya independently through MABB. Final objective of the study is to develop dual stress tolerant (tolerance to salinity and submergence) Aiswarya rice variety by pyramiding the both target QTLs introgressed BC2F2 progenies having maximum background homozygosity. The donors of Saltol QTL and Sub1 gene used in the present study were FL478 and Swarna Sub1, respectively. Based on the background genome analysis of the introgressed plants, the plants with > 85–90% background similarity were selected for pyramiding of Saltol QTL and Sub1 gene into the elite background of rice variety Aiswarya. Those selected introgressed lines with Saltol QTL and Sub1 gene will be again crossed to pyramid both Saltol QTL and Sub1 gene into the rice variety Aiswarya. Such a mega rice variety pyramided with dual stress tolerant QTLs is the expected outcome of this study and can be recommended for cultivation in the flood prone saline coastal agroecosystem.  相似文献   

14.
In Asian cultivated rice (Oryza sativa), distinct mechanisms to survive flooding are activated in two groups of varieties. Submergence-tolerant rice varieties possessing the SUBMERGENCE1A (SUB1A) gene display reduced growth during flash floods at the seedling stage and resume growth after the flood recedes, whereas deepwater rice varieties possessing the SNORKEL1 (SK1) and SNORKEL2 (SK2) genes display enhanced growth based on internodal elongation during prolonged submergence at the mature stage. In this study, we investigated the occurrence of these growth responses to submergence in the wild rice species Oryza grandiglumis, which is native to the Amazon floodplains. When subjected to gradual submergence, adult plants of O. grandiglumis accessions showed enhanced internodal elongation with rising water level and their growth response closely resembled that of deepwater varieties of O. sativa with high floating capacity. On the other hand, when subjected to complete submergence, seedlings of O. grandiglumis accessions displayed reduced shoot growth and resumed normal growth after desubmergence, similar to the response of submergence-tolerant varieties of O. sativa. Neither SUB1A nor the SK genes were detected in the O. grandiglumis accessions. These results indicate that the O. grandiglumis accessions are capable of adapting successfully to flooding by activating two contrasting mechanisms as the situation demands and that each mechanism of adaptation to flooding is not mediated by SUB1A or the SK genes.  相似文献   

15.
16.
Responses of wheat (Triticum aestivum) to complete submergence are not well understood as research has focused on waterlogging (soil flooding). The aim of this study was to characterize the responses of 2 wheat cultivars differing vastly in submergence tolerance to test if submergence tolerance was linked to shoot carbohydrate consumption as seen in rice. Eighteen‐day‐old wheat cultivars Frument (intolerant) and Jackson (tolerant) grown in soil were completely submerged for up to 19 days while assessing responses in physiology, gene expression, and shoot metabolome. Results revealed 50% mortality after 9.3 and 15.9 days of submergence in intolerant Frument and tolerant Jackson, respectively, and significantly higher growth in Jackson during recovery. Frument displayed faster leaf degradation as evident from leaf tissue porosity, chlorophylla, and metabolomic fingerprinting. Surprisingly, shoot soluble carbohydrates, starch, and individual sugars declined to similarly low levels in both cultivars by day 5, showing that cultivar Jackson tolerated longer periods of low shoot carbohydrate levels than Frument. Moreover, intolerant Frument showed higher levels of phytol and the lipid peroxidation marker malondialdehyde relative to tolerant Jackson. Consequently, we propose to further investigate the role of ethylene sensitivity and deprivation of reactive O2 species in submerged wheat.  相似文献   

17.
18.
19.
20.
Although the genetic mechanism of submergence survival for rice varieties containing the SUB1A gene has been elucidated, the downstream metabolic effects have not yet been evaluated. In this study, the metabolomes of Oryza sativa ssp. japonica cv. M202 and cv. M202(Sub1) were profiled using (1)H NMR spectroscopy to compare the metabolic effect of submergence stress and recovery on rice in the presence or absence of SUB1A. Significant changes were observed in the NMR resonances of compounds in pathways important for carbohydrate metabolism. The presence of SUB1A in M202(Sub1) was correlated with suppression of carbohydrate metabolism in shoot tissue, consistent with the role of SUB1A in limiting starch catabolism to fuel elongation growth. The absence of SUB1A in M202 was correlated with greater consumption of sucrose stores and accumulation of amino acids that are synthesized from glycolysis intermediates and pyruvate. Under submergence conditions, alanine, a product of pyruvate metabolism, showed the largest difference between the two varieties, but elevated levels of glutamine, glutamate, leucine, isoleucine, threonine, and valine were also higher in M202 compared with the M202(Sub1) variety. The identification and characterization of alanylglycine (AlaGly) in rice is also reported. After 3 days of submergence stress, AlaGly levels decreased significantly in both genotypes but did not recover within 1 day of desubmergence with the other metabolites evaluated. The influence of SUB1A on dynamic changes in the metabolome during complete submergence provides new insights into the functional roles of a single gene in invoking a quiescence strategy that helps stabilize crop production in submergence-prone fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号