首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
以缺刻缘绿藻(Parietochloris incisa)为实验材料, 采用BG-11培养基, 分别在2种氮浓度和3种不同光径(LP)的柱状和平板光生物反应器中进行培养, 并探究其生长、油脂和花生四烯酸(AA)的积累规律。结果显示: 在两种光生物反应器中, 光径越小, 越有利于缺刻缘绿藻的生长。其中, 最大生物量均在17.6 mmol/L氮浓度时获得, 分别为5.09 g/L(2.5 cm-柱状)和2.98 g/L(3.0 cm-平板); 而最高油脂和AA绝对含量则均在1.0 mmol/L氮浓度和最大光径处获得, 分别为39.23%、13.21%(6.0 cm-柱状)和40.74%、11.33%(5.0 cm-平板); 另外, 两种光生物反应器中的最大油脂单位体积产率分别可以达到216.39 mg/(L·d)(17.6 mmol/L; 2.5 cm-柱状)和135.93 mg/(L·d)(1.0 mmol/L; 1.5 cm-平板); 而最高的AA单位体积产率均在1.0 mmol/L低氮条件, 最大光径处达到最大, 分别为21.65 mg/(L·d)(6.0 cm-柱状)和19.42 mg/(L·d)(5.0 cm-平板)。因此, 根据实际生产需要, 在1.0 mmol/L低氮条件下, 选择6.0 cm光径的柱状光生物反应器或5.0 cm光径的平板光生物反应器, 培养缺刻缘绿藻生产AA, 能有效降低生产成本。  相似文献   

2.
异养细胞种子/光自养培养方法是一种可异养培养的能源微藻培养的有效方法,但已有文献尚未从工艺优化角度考察其发展潜力。为了获得较高细胞密度的用于光自养培养的种子和提高光自养培养的细胞密度与油脂产率,对异养细胞种子/光自养培养的培养基和培养条件进行了优化。结果表明,采用优化后的培养基,椭圆小球藻在摇瓶中异养培养的最高藻细胞密度可达11.04 g/L,比在初始培养基条件下提高了28.0%,在5 L发酵罐中异养培养的藻细胞密度达到73.89 g/L;在2 L柱式光生物反应器中光自养培养的藻细胞密度、油脂含量和油脂产率分别达1.62 g/L、36.34%和6.1 mg/(L·h),油脂成分主要为含C16-C18碳链的脂肪酸,是制备生物柴油的理想原料。经过优化,异养细胞种子/光自养培养这一方法能够显著地提高椭圆小球藻产油脂的能力,这进一步表明异养细胞种子/光自养培养方法有望成为可异养的能源微藻的高效培养方式。  相似文献   

3.
在BG-11培养液的基础上,选择不同的乙酸钠和硝酸钠浓度组合培养绿球藻Chlorococcum sp.,分析培养过程中干重、类胡萝卜素、总脂及脂肪酸成分,完成Chlorococcum sp.生长及油脂积累的评价。实验结果表明,外源碳源乙酸钠对Chlorococcum sp.的生长和油脂积累有很好的促进作用。乙酸钠和硝酸钠浓度分别为2g/L和1g/L条件下,Chlorococcum sp.培养16天后生物质产率高达276.19mg/(L·d),同时类胡萝卜素和总脂的产率也分别高达1.347mg/(L·d)和108.59mg/(L·d),高附加值脂肪酸二十碳五烯酸(EPA)与二十二碳六烯酸(DHA)占脂肪酸总量也超过了1.5%。  相似文献   

4.
以分离获得的一株新型自絮凝凯式拟小球藻(Parachlorella kessleri) F01为材料, 自养单步培养法为对照, 设计两步培养法, 研究阶段Ⅰ添加葡萄糖兼养和阶段Ⅱ营养元素限制处理对藻细胞油脂积累及絮凝性能的影响。分别采用血球板计数法、干重法、脂染色法测定藻细胞浓度、生物量和总脂含量, 三维荧光光谱分析藻细胞胞外聚合物(Extracellular polymeric substances, EPS)组分和含量。结果表明: (1)两步培养法阶段Ⅰ兼养培养最适葡萄糖浓度为10 g/L, 10d收获时藻细胞油脂产率204.25 mg/(L·d), 是对照组的16.20倍; 静置12h的藻细胞自絮凝率96.1%, 与对照组差异不显著。(2)在阶段Ⅰ基础上, 阶段Ⅱ进行不同元素限制处理培养1d, 低糖组和低糖低氮协同处理组的藻细胞油脂产率分别为242.64和227.61 mg/(L·d), 分别比阶段Ⅰ增加18.8%和11.4%; 培养4d, 低糖、无糖、低氮和低糖低氮协同4种处理组油脂产量显著高于对照组和阶段Ⅰ, 其中低糖低氮协同处理组最高, 达到3.08 g/L, 是对照组的23.69倍, 比阶段Ⅰ增加了51.0%, 而且阶段Ⅱ中4种处理组藻细胞的自絮凝率基本在85.0%以上, 能满足收获要求。(3) F01藻细胞EPS中蛋白类色氨酸物质含量高低与藻细胞自絮凝率大小密切相关, 不同培养处理通过改变藻细胞EPS中蛋白类色氨酸物质的含量而影响其絮凝性能。自絮凝凯式拟小球藻F01是生物柴油生产的优良潜力藻种, 两步培养法能大幅提升其产油效益。产油微藻的自絮凝优势与两步培养法结合, 有望成为解决微藻生物柴油生产技术瓶颈的关键突破口。  相似文献   

5.
丝状微藻黄丝藻Tribonema sp.具有抗浮游动物捕食、易收获、油脂含量高等优点,且其脂肪酸组分中含有丰富的棕榈油酸 (Palmitoleic acid,PA) 和二十碳五烯酸 (Eicosapentaenoic acid,EPA),被认为是生产生物柴油和高附加值产品的重要原料。为了提高黄丝藻脂质生产效率,文中研究了不同浓度的氮 (NaNO3:255–3 060 mg/L)、磷 (K2HPO4:4–240 mg/L)、铁 ((NH4)3FeC12H10O14:0.6–12 mg/L)、镁 (MgSO4:7.5–450 mg/L) 元素对黄丝藻FACHB-1786生长、油脂积累和脂肪酸组分的影响。结果表明,培养基中磷、铁、镁三种元素的浓度对黄丝藻生长具有显著影响,其中增加MgSO4浓度可显著提高黄丝藻的生物量,当MgSO4浓度增加至450 mg/L时,获得最大生物量为8.09 g/L,显著高于目前报道的有关黄丝藻自养条件下获得的生物量;氮元素浓度对黄丝藻的生长没有显著影响 (P>0.05),但高浓度氮元素有利于黄丝藻脂质的积累;黄丝藻FACHB-1786在765 mg/L NaNO3、80 mg/L K2HPO4、6 mg/L (NH4)3FeC12H10O14、75 mg/L MgSO4的营养盐条件下可获得最大总脂单位体积产率、棕榈油酸和EPA产率,分别为319.6 mg/(L·d)、135.7 mg/(L·d)和24.2 mg/(L·d)。研究结果为后期黄丝藻的生产应用提供一定的理论依据和参考。  相似文献   

6.
氧对膜生物反应器短程硝化的影响   总被引:1,自引:0,他引:1  
武小鹰  郑平 《生物工程学报》2014,30(12):1828-1834
为了研究膜生物反应器的短程硝化性能以及氧对短程硝化的影响,通过对比耗氧率和供氧率,提出了膜生物反应器短程硝化的控制优化建议。在膜生物反应器硝化过程中,DO小于1 mg/L开始出现亚硝氮积累;DO降到0.5 mg/L,出水氨氮浓度与亚硝氮浓度之比接近1∶1;DO调控在0.5-1 mg/L范围内,有利于前置硝化反应器与后续厌氧氨氧化反应器衔接。膜生物反应器中污泥浓度可达20 g/L,耗氧能力可达19.86 mg O2/(L·s),但最大供氧能力仅为0.369 mg O2/(L·s),供氧成为反应器运行的制约瓶颈,"低DO高流量"曝气是继续提高短程硝化效能的控制策略。  相似文献   

7.
研究了碳源与氮源对单针藻Monoraphidium sp. FXY-10异养培养的影响。以BG-11为基础培养基,通过添加不同类型、浓度梯度碳源和氮源,比较分析微藻生物量、油脂积累以及脂肪酸组成。结果表明,以葡萄糖作碳源,硝酸钠为氮源,微藻细胞积累的油脂是理想的生物柴油制备原料。硝酸钠浓度分别为1.00、3.00和5.00 g/L时,对油脂产量影响不显著(P>0.05)。葡萄糖浓度为10.00 g/L,硝酸钠为氮源油脂产量达到实验最高值0.84 g/L,其油脂脂肪酸组成主要由C16:0和C18:1等短链饱和脂肪酸和单不饱和脂肪酸组成,不饱和度值(DU)为61.98,相对偏低。  相似文献   

8.
作为新兴生物燃料的生物柴油近年来发展迅速,以微藻为代表的第二代生物能源是解决能源危机的长远之计,但如何提高其产量仍是研究的热点问题。以提高产油自养微藻生物量和油脂含量为目的,在气升式光反应器中运用均匀设计实验方法进行了条件优化试验。分别得出了氮原子浓度、通气速率、二氧化碳体积浓度和光照强度4个因素对小球藻C2生物量积累和油脂含量影响的显著回归方程和反应器优化培养条件。以生物量为指标的优化培养条件是:氮原子浓度0.178 g/L,通气速率5 L/min,二氧化碳体积浓度3%(V/V),光照强度6000 lx。该优化条件下,生物量为2.11 g/L,即生产速率为0.352 g/(L.d),比测试实验中检测到的最高生物量[1.88 g/L,即生产速率为0.313 g/(L.d)]提高了12.2%;以油脂含量为指标的优化培养条件是:进气速率0.400 L/min,二氧化碳体积浓度1.94%(V/V),得到油脂含量为22.4%,比测试实验中检测到的最高油脂量(20.7%)提高7.7%。  相似文献   

9.
微藻油脂不仅可以作为功能油脂,同时也是生产生物柴油的重要原料之一。为解决微藻生长与油脂积累之间的矛盾,利用藻菌共培养技术在缺氮条件下将无菌小球藻与细菌以不同初始比例进行共培养,通过测定藻细胞生物量、油脂含量和脂肪酸比例等来研究藻菌共培养对小球藻生长和油脂积累的影响。结果表明,在小球藻与固氮菌B2. 3 70∶1(V/V)共培养体系中,小球藻的生物量和油脂含量较同样条件下单独培养小球藻有了显著提高。其生物量最高可达1. 68g/L、总脂含量为45. 2%、总脂产率为75. 94 mg/(L·d)、中性脂含量为23. 0%及中性脂产率为38. 65mg/(L·d),其生物量和油脂含量分别较单独小球藻培养时提高了66. 3%和47. 7%。同时细菌的加入显著提高了藻细胞内C18∶1脂肪酸的比例。结论表明,通过藻菌共培养技术能够有效提高微藻生物油脂的质量和产量,具有较好的实际利用价值。  相似文献   

10.
研究了三种碳源Na2CO3、NaHCO3、葡萄糖对眼点拟微绿球藻生长密度和油旨含量的影响,实验结果表明相对于葡萄糖,无机碳源NaHCO3更利于眼点拟微绿球藻的生长.以NaHCO3为碳源,研究了在不同的接种密度、NaNO3浓度下,C/N对眼点拟微绿球藻生长密度和油脂含量的影响.实验结果表明,C/N对眼点拟微绿球藻生长密度的影响与接种密度和NaNO3浓度有关,在高的NaNO3浓度时,C/N对眼点拟微绿球藻生长密度的影响很小;在低的NaNO3浓度时,随着C/N比的增加,微绿球藻的生长密度先增加后下降,存在最佳的C/N比.最佳的C/N比随接种密度而变化,在接种密度为OD440=0.10时,最佳C/N比为3,当接种密度提高到OD440=0.70时,最佳C/N比增加到5.NaNO3浓度和C/N对微藻油脂含量均有较大影响,在不同的接种密度和NaNO3浓度下都表现为C/N=1时最利于微藻油脂的积累,这与卡尔文循环过程中核酮糖-1,5-二磷酸羧化酶/加氧酶的活性有关.本实验的最佳产油培养条件为以NaHCO3为碳源,初始接种密度为OD440=0.70,C/N=1∶1,CNaNO3=0.225g/L,此时油脂产率为56.7 mg/(L·d),EPA产率为6.5 mg/(L·d).  相似文献   

11.
Microalgae are recognized for serving as a sustainable source for biodiesel production. This study investigated the effect of nitrogen starvation strategies and photobioreactor design on the performance of lipid production and of CO(2) fixation of an indigenous microalga Chlorella vulgaris ESP-31. Comparison of single-stage and two-stage nitrogen starvation strategies shows that single-stage cultivation on basal medium with low initial nitrogen source concentration (i.e., 0.313 g/L KNO(3)) was the most effective approach to enhance microalgal lipid production, attaining a lipid productivity of 78 mg/L/d and a lipid content of 55.9%. The lipid productivity of C. vulgaris ESP-31 was further upgraded to 132.4 mg/L/d when it was grown in a vertical tubular photobioreactor with a high surface to volume ratio of 109.3 m(2)/m(3) . The high lipid productivity was also accompanied by fixation of 6.36 g CO(2) during the 10-day photoautotrophic growth with a CO(2) fixation rate of 430 mg/L/d. Analysis of fatty acid composition of the microalgal lipid indicates that over 65% of fatty acids in the microalgal lipid are saturated [i.e., palmitic acid (C16:0) and stearic acid (C18:0)] and monounsaturated [i.e., oleic acid (C18:1)]. This lipid quality is suitable for biodiesel production.  相似文献   

12.
【背景】藻类是生产生物柴油的主要原料,而一些真菌和细菌能够与藻类共生并提高生物柴油产量,因此藻-菌共生培养技术成为国内外研究的热点。【目的】研究共生真菌Simplicilliumlanosoniveum对衣藻Chlamydomonas reinhardtii细胞生长和脂类合成的影响。【方法】将分离的蓝藻共生真菌和衣藻混合(共生)培养。【结果】与衣藻单独培养相比,混合培养衣藻的比生长速率(0.20 d-1)、细胞产率[0.17 g/(L·d)]和生物量(2.85 g/L)分别提高了10.3%、51.3%和55.7%;脂类比合成速率[0.68 mg/(g·d)]、合成速率[1.95 mg/(L·d)]和含量(220.4 mg/g)分别提高了33.3%、107.5%和32.0%,并且脂类中的饱和脂肪酸以及单不饱和脂肪酸C18-1和C18-2的比例上升,有利于生物柴油的加工。【结论】真菌Simplicilliumlanosoniveum能够促进衣藻的生长和脂类合成,因此藻-菌混合培养可用于生物柴油原料的生产。  相似文献   

13.
无机碳源对小球藻自养产油脂的影响   总被引:4,自引:1,他引:3  
旨在研究小球藻利用无机碳自养产油脂,考察了3种无机碳源 (Na2CO3、NaHCO3和CO2) 及其初始浓度对小球藻产油特性的影响。结果表明,小球藻能利用Na2CO3、NaHCO3和CO2产油;经Na2CO3、NaHCO3和CO2培养10 d后,随着每种无机碳源浓度的增加,小球藻产量均先增加后减少。小球藻经3种无机碳源培养后,其培养液pH值上升。最适宜的Na2CO3和NaHCO3添加量均为40 mmol/L,其生物量分别达到0.52 g/L和0.67 g/L,产油量分别达到0.19 g/L和0.22 g/L。在3种无机碳源中,CO2是最佳无机碳源,当CO2浓度为6%时,小球藻生长最快,生物量达2.42 g/L,产油量最高达0.72 g/L;当CO2浓度过低时,无机碳供应不足,油脂产量低;当CO2浓度过高时,培养液pH偏低,小球藻油脂积累受到抑制。Na2CO3和NaHCO3较CO2更有利于小球藻积累不饱和脂肪酸。  相似文献   

14.
碳源和氮源对5-酮基-葡萄糖酸生成的影响   总被引:1,自引:0,他引:1  
氧化葡萄糖杆菌Gluconobacter oxydans可以将葡萄糖氧化成葡萄糖酸,并进一步氧化成2-酮基-葡萄糖酸(2KGA)和5-酮基-葡萄糖酸(5KGA),其中5KGA在催化剂的作用下能够转化为L(+)-酒石酸。为了提高5-酮基-葡萄糖酸产量,以仅生成5KGA的氧化葡萄糖杆菌Gluconobacter oxydans HGI-1为出发菌株,研究不同碳源(蔗糖、乳糖、麦芽糖、淀粉、葡萄糖)和有机氮源(酵母浸粉、鱼粉、玉米浆、黄豆饼粉、棉籽饼粉)对5KGA产量的影响。500 mL摇瓶试验结果表明,当葡萄糖浓度为100 g/L时,5KGA产量最高为98.20 g/L;当有机氮源为酵母浸粉、鱼粉和玉米浆,其添加量的蛋白含量为1.60%时,5KGA产量分别为100.20 g/L、109.10 g/L和99.83 g/L,其中,使用鱼粉的5KGA产量最高,使用玉米浆的5KGA产量比酵母浸粉略低。出于经济考虑,文中选择玉米浆作有机氮源,并在5 L发酵罐中进行分批发酵放大试验,5KGA的产量为93.80 g/L,最大生成速率为3.48 g/(L·h),平均生成速率为1.56 g/(L·h)。结果表明,葡萄糖和玉米浆分别为Gluconobacter oxydans HGI-1规模化生产5KGA的最适碳源和氮源,可利用葡萄糖几乎全部(85.93%)转化为5KGA。  相似文献   

15.
以经过二次过滤的富营养化鱼塘养殖污水为培养液,添加外源的碳、氮、磷元索,研究了污水中不同的外源无机碳、总氮和总磷浓度对布朗葡萄藻(Botryococcus braunii)生物量、总脂和总烃含量的影响.结果表明:(1)以NaHCO3作为碳源,布朗葡萄藻的生物量和总脂含量在外源无机碳浓度为5~10 mg/L时最高,总烃含量在外源无机碳浓度为15mg/L时最高.(2)以KNO3作为氮源,布朗葡萄藻的生物量在总氮浓度为15mg/L时最高,总脂含量在总氮浓度为2mg/L时最高,总烃含量在总氮浓度为20mg/L时最高.(3)以KH2 PO4作为磷源,布朗葡萄藻生物量在总磷浓度为2mg/L时最高,总脂含量和总烃含量在总磷浓度为1.5 mng/L时最高.  相似文献   

16.
比较分析投加不同微生态制剂的海水养殖系统硝化功能建立的过程,为实际应用提供依据。利用海水素构建4个海水养殖系统,通过投加硝化细菌、光合细菌、枯草芽胞杆菌3种微生态制剂以及纤维毛球作为生物膜载体,比较分析不同养殖系统硝化功能的建立过程及硝化强度差异。投加硝化细菌+光合细菌和硝化细菌+枯草芽胞杆菌系统硝化功能建立时间分别为108 h和96 h,氨氮初始质量浓度为6 mg/L时,氨氧化强度分别为1.69 mg/(L·d)和1.36 mg/(L·d);添加纤维毛球的生物膜系统与生物絮团系统硝化功能建立时间分别为96 h和120 h,氨氮初始质量浓度为6 mg/L时,氨氧化强度分别为1.36 mg/(L·d)和0.98 mg/(L·d);投加碳源系统和对照系统硝化功能建立时间分别为84 h和96 h,氨氮初始质量浓度为6 mg/L时,氨氧化强度分别为1.18 mg/(L·d)和1.36 mg/(L·d)。硝化细菌+枯草芽胞杆菌系统硝化功能建立时间更短,但系统硝化强度低于硝化细菌+光合细菌系统;生物膜系统硝化强度高于生物絮团系统且硝化功能建立更快;添加碳源能够加快系统硝化功能建立过程,但降低了硝化细菌+枯草芽胞杆菌系统的硝化强度。  相似文献   

17.
Li Z  Yuan H  Yang J  Li B 《Bioresource technology》2011,102(19):9128-9134
High production cost is a major obstacle to the extensive use of microalgae biodiesel. To cut the cost and achieve higher biomass productivity, Chlorella minutissima UTEX2341 was cultured under photoheterotrophic conditions. With the carbon, nitrogen and phosphorus concentration of 26.37, 2.61 and 0.03 g L?1 d?1 respectively, a maximum biomass productivity of 1.78 g L?1 d?1 was obtained, which was 59 times more than that cultured under autotrophic condition. The lipid productivity reached 0.29 g L?1 d?1, which was 11.9 times higher than the highest value reported by Oh et al. (2010). The conversion rate of microalgae lipids to FAME was found to be elevated from 45.65% to 62.97% and the FAME productivity increased from 1.16 to 180.68 mg L?1 d?1 after the optimization. 94% of the fatty acid of C. minutissima UTEX2341 was found to be composed of palmitic, oleic, linoleic and γ linoleic and the unsaturated fatty acids were the main parts (79.42%).  相似文献   

18.
Feng P  Deng Z  Hu Z  Fan L 《Bioresource technology》2011,102(22):10577-10584
Culturing microalgae using natural sunlight is an effective way to reduce the cost of microalgae-based biodiesel production. In order to evaluate the feasibility of culturing Chlorella zofingiensis outdoors for biodiesel production, effects of nitrogen limitation and initial cell concentration on growth and lipid accumulation of this alga were investigated in 60 L flat plate photobioreactors outdoors. The highest μmax and biomass productivity obtained was 0.994 day(-1) and 58.4 mg L(-1)day(-1), respectively. The lipid content was much higher (54.5% of dry weight) under nitrogen limiting condition than under nitrogen sufficient condition (27.3%). With the increasing initial cell concentrations, the lipid contents declined, while lipid concentrations and productivities increased. The highest lipid content, lipid concentration, and lipid productivity obtained was 54.5%, 536 mg L(-1) and 22.3 mg L(-1)day(-1), respectively. This study demonstrated that it was possible to culture C. zofingiensis under outdoor conditions for producing biodiesel feedstock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号