首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
Crustacean hyperglycemic hormone (CHH) was originally identified in a neuroendocrine system-the X-organ/sinus gland complex. In this study, a cDNA (Prc-CHH) encoding CHH precursor was cloned from the hemocyte of the crayfish Procambarus clarkii. Analysis of tissues by a CHH-specific enzyme-linked immunosorbent assay (ELISA) confirmed the presence of CHH in hemocytes, the levels of which were much lower than those in the sinus gland, but 2 to 10 times higher than those in the thoracic and cerebral ganglia. Total hemocytes were separated by density gradient centrifugation into layers of hyaline cell (HC), semi-granular cell (SGC), and granular cell (GC). Analysis of extracts of each layer using ELISA revealed that CHH is present in GCs (202.8 ± 86.7 fmol/mg protein) and SGCs (497.8 ± 49.4 fmol/mg protein), but not in HCs. Finally, CHH stimulated the membrane-bound guanylyl cyclase (GC) activity of hemocytes in a dose-dependent manner. These data for the first time confirm that a crustacean neuropeptide-encoding gene is expressed in cells essential for immunity and its expression in hemocytes is cell type-specific. Effect of CHH on the membrane-bound GC activity of hemocyte suggests that hemocyte is a target site of CHH. Possible functions of the hemocyte-derived CHH are discussed.  相似文献   

3.
4.
5.
Enzymes belonging to the M1 family play important cellular roles and the key amino acids (aa) in the catalytic domain are conserved. However, C-terminal domain aa are highly variable and demonstrate distinct differences in organization. To address a functional role for the C-terminal domain, progressive deletions were generated in Tricorn interacting factor F2 from Thermoplasma acidophilum (F2) and Peptidase N from Escherichia coli (PepN). Catalytic activity was partially reduced in PepN lacking 4 C-terminal residues (PepNΔC4) whereas it was greatly reduced in F2 lacking 10 C-terminal residues (F2ΔC10) or PepN lacking eleven C-terminal residues (PepNΔC11). Notably, expression of PepNΔC4, but not PepNΔC11, in E. coliΔpepN increased its ability to resist nutritional and high temperature stress, demonstrating physiological significance. Purified C-terminal deleted proteins demonstrated greater sensitivity to trypsin and bound stronger to 8-amino 1-napthalene sulphonic acid (ANS), revealing greater numbers of surface exposed hydrophobic aa. Also, F2 or PepN containing large aa deletions in the C-termini, but not smaller deletions, were present in high amounts in the insoluble fraction of cell extracts probably due to reduced protein solubility. Modeling studies, using the crystal structure of E. coli PepN, demonstrated increase in hydrophobic surface area and change in accessibility of several aa from buried to exposed upon deletion of C-terminal aa. Together, these studies revealed that non-conserved distal C-terminal aa repress the surface exposure of apolar aa, enhance protein solubility, and catalytic activity in two soluble and distinct members of the M1 family.  相似文献   

6.
7.
A novel y-type high-molecular-weight glutenin subunit possessing a slightly faster mobility than that of subunit 1Dy12 in SDS-PAGE, designated 1Dy12.1t in Aegilops tauschi, was identified by one- and two-dimensional gel and capillary electrophoresis. Its coding gene at the Glu-D t 1 locus was amplified with allele-specific-PCR primers, and the amplified products were cloned and sequenced. The complete nucleotide sequence of 2,807 bp containing an open reading frame of 1,950 bp and 857 bp of upstream sequence was obtained. A perfectly conserved enhancer sequence and the –300 element were present at positions of 209–246 bp and 424–447 bp upstream of the ATG start codon, respectively. The deduced mature protein of 1 Dy12.1t subunit comprised 648 amino acid residues and had a Mr of 67,518 Da, which is slightly smaller than the 1Dy12 (68,695 Da) but larger than the 1Dy10 (67,495 Da) subunits of bread wheat, respectively, and corresponds well with their relative mobilities when separated by acid-PAGE. The deduced amino acid sequence indicated that the 1Dy12.1t subunit displayed a greater similarity to the 1Dy10 subunit, with only seven amino acid substitutions, suggesting that this novel gene could have positive effect on bread-making quality. A phenetic tree produced by nucleotide sequences showed that the x- and y-type subunit genes were respectively clustered together and that the Glu-D t 1y12.1 gene of Ae. tauschii is closely related to other y-type subunit genes from the B and D genomes of hexaploid bread wheat.Communicated by H.F. Linskens  相似文献   

8.
Although the calpain system has been studied extensively in mammalian animals, much less is known about the properties of μ-calpain, m-calpain, and calpastatin in lower vertebrates such as fish. These three proteins were isolated and partly characterized from rainbow trout, Oncorhynchus mykiss, muscle. Trout m-calpain contains an 80-kDa large subunit, but the  26-kDa small subunit from trout m-calpain is smaller than the 28-kDa small subunit from mammalian calpains. Trout μ-calpain and calpastatin were only partly purified; identity of trout μ-calpain was confirmed by labeling with antibodies to bovine skeletal muscle μ-calpain, and identity of trout calpastatin was confirmed by specific inhibition of bovine skeletal muscle μ- and m-calpain. Trout μ-calpain requires 4.4 ± 2.8 μM and trout m-calpain requires 585 ± 51 μM Ca2+ for half-maximal activity, similar to the Ca2+ requirements of μ- and m-calpain from mammalian tissues. Sequencing tryptic peptides indicated that the amino acid sequence of trout calpastatin shares little homology with the amino acid sequences of mammalian calpastatins. Screening a rainbow trout cDNA library identified three cDNAs encoding for the large subunit of a putative m-calpain. The amino acid sequence predicted by trout m-calpain cDNA was 65% identical to the human 80-kDa m-calpain sequence. Gene duplication and polyploidy occur in fish, and the amino acid sequence of the trout m-calpain 80-kDa subunit identified in this study was 83% identical to the sequence of a trout m-calpain 80-kDa subunit described earlier. This is the first report of two isoforms of m-calpain in a single species.  相似文献   

9.
Transforming growth factor β (TGFβ) signaling normally functions to regulate embryonic development and cellular homeostasis. It is increasingly recognized that TGFβ signaling is regulated by cross-talk with other signaling pathways. We previously reported that TGFβ activates protein kinase A (PKA) independent of cAMP through an interaction of an activated Smad3-Smad4 complex and the regulatory subunit of the PKA holoenzyme (PKA-R). Here we define the interaction domains of Smad4 and PKA-R and the functional consequences of this interaction. Using a series of Smad4 and PKA-R truncation mutants, we identified amino acids 290–300 of the Smad4 linker region as critical for the specific interaction of Smad4 and PKA-R. Co-immunoprecipitation assays showed that the B cAMP binding domain of PKA-R was sufficient for interaction with Smad4. Targeting of B domain regions conserved among all PKA-R isoforms and exposed on the molecular surface demonstrated that amino acids 281–285 and 320–329 were required for complex formation with Smad4. Interactions of these specific regions of Smad4 and PKA-R were necessary for TGFβ-mediated increases in PKA activity, CREB (cAMP-response element-binding protein) phosphorylation, induction of p21, and growth inhibition. Moreover, this Smad4-PKA interaction was required for TGFβ-induced epithelial mesenchymal transition, invasion of pancreatic tumor cells, and regulation of tumor growth in vivo.  相似文献   

10.
11.
Proteus mirabilis, an agent of urinary tract infection, expresses at least four fimbrial types. Among these are the MR/P (mannose-resistant/Proteus-like) fimbriae. MrpA, the structural subunit, is optimally expressed at 37 degrees C in Luria broth cultured statically for 48 h by each of seven strains examined. Genes encoding this fimbria were isolated, and the complete nucleotide sequence was determined. The mrp gene cluster encoded by 7,293 bp predicts eight polypeptides: MrpI (22,133 Da), MrpA (17,909 Da), MrpB (19,632 Da), MrpC (96,823 Da), MrpD (27,886 Da), MrpE (19,470 Da), MrpF (17,363 Da), and MrpG (13,169 Da). mrpI is upstream of the gene encoding the major structural subunit gene mrpA and is transcribed in the direction opposite to that of the rest of the operon. All predicted polypeptides share > or = 25% amino acid identity with at least one other enteric fimbrial gene product encoded by the pap, fim, smf, fan, or mrk gene clusters.  相似文献   

12.
We recently observed two 2,4-dinitrophenylhydrazine (DNPH)-reactive proteins of 40 and 120 kDa in the bronchoalveolar lavage fluids of rats exposed to >95% O2 for 48 h. The N-terminal sequences of these proteins were both identical over 16 amino acids with rat β-casein, which, in addition to its more common association with milk, is produced by cytotoxic T-lymphocytes, and has been found to have proinflammatory properties. Because of the inflammatory response that accompanies hyperoxic lung injury, we investigated the oxidation of bovine β-casein by HOCl. Following exposure to HOCl at 4°C for 15 min, derivatization with DNPH, washing, and digestion with trypsin, the resultant peptides were separated by reverse-phase HPLC. One peptide isolated from a peak absorbing at 365 nm was identified as AVP(Y*)PQR, corresponding to amino acids 177–183 of bovine β-casein. Analysis of the peptide by both electrospray and matrix assisted laser desorption ionization (MALDI) mass spectrometry identified a molecular ion MH+ of 1008.5 Da, which represents an increase of 178 Da from the calculated monoisotopic MH+ of the unmodified peptide of 830.45 Da. Daughter ion spectra of the doubly charged parent ion of the peptide further support the oxidation of the tyrosine to the quinone methide, with subsequent conversion to the corresponding hydrazone with DNPH. A second pair of products were identified as arising from oxidation of Y193 within the tryptic peptide constituted by amino acids 184–202, and the corresponding chymotryptic cleavage side product, 191–202. Exposure of β-casein to increasing amounts of HOCl revealed that M and Y residues were the most susceptible, although bovine β-casein contains no C, and a single W, which would not be detected by our methods. The approach described in the present report can be used to evaluate the contributions of distinct mechanisms of oxidation in other experimental or pathological models. © 1997 Elsevier Science Inc.  相似文献   

13.
Ribosome formation in Saccharomyces cerevisiae requires a large number of transiently associated assembly factors that coordinate processing and folding of pre-rRNA and binding of ribosomal proteins. Krr1 and Faf1 are two interacting proteins present in early 90 S precursor particles of the small ribosomal subunit. Here, we determined a co-crystal structure of the core domain of Krr1 bound to a 19-residue fragment of Faf1 at 2.8 Å resolution. The structure reveals that Krr1 consists of two packed K homology (KH) domains, KH1 and KH2, and resembles archaeal Dim2-like proteins. We show that KH1 is a divergent KH domain that lacks the RNA-binding GXXG motif and is involved in binding another assembly factor, Kri1. KH2 contains a canonical RNA-binding surface and additionally associates with an α-helix of Faf1. Specific disruption of the Krr1-Faf1 interaction impaired early 18 S rRNA processing at sites A0, A1, and A2 and caused cell lethality, but it did not prevent incorporation of the two proteins into pre-ribosomes. The Krr1-Faf1 interaction likely maintains a critical conformation of 90 S pre-ribosomes required for pre-rRNA processing. Our results illustrate the versatility of KH domains in protein interaction and provide insight into the role of Krr1-Faf1 interaction in ribosome biogenesis.  相似文献   

14.
15.
16.
17.
The coniferyl aldehyde dehydrogenase (CALDH) of Pseudomonas sp. strain HR199 (DSM7063), which catalyzes the NAD+-dependent oxidation of coniferyl aldehyde to ferulic acid and which is induced during growth with eugenol as the carbon source, was purified and characterized. The native protein exhibited an apparent molecular mass of 86,000 ± 5,000 Da, and the subunit mass was 49.5 ± 2.5 kDa, indicating an α2 structure of the native enzyme. The optimal oxidation of coniferyl aldehyde to ferulic acid was obtained at a pH of 8.8 and a temperature of 26°C. The Km values for coniferyl aldehyde and NAD+ were about 7 to 12 μM and 334 μM, respectively. The enzyme also accepted other aromatic aldehydes as substrates, whereas aliphatic aldehydes were not accepted. The NH2-terminal amino acid sequence of CALDH was determined in order to clone the encoding gene (calB). The corresponding nucleotide sequence was localized on a 9.4-kbp EcoRI fragment (E94), which was subcloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The partial sequencing of this fragment revealed an open reading frame of 1,446 bp encoding a protein with a relative molecular weight of 51,822. The deduced amino acid sequence, which is reported for the first time for a structural gene of a CALDH, exhibited up to 38.5% amino acid identity (60% similarity) to NAD+-dependent aldehyde dehydrogenases from different sources.  相似文献   

18.
Glucocorticoids (GCs) are widely prescribed for their anti-inflammatory and immunosuppressive properties as a treatment for a variety of diseases. The use of GCs is associated with important side effects, including diabetogenic effects. However, the underlying mechanisms of GC-mediated diabetogenic effects in β-cells are not well understood. In this study we investigated the role of glycogen synthase kinase 3 (GSK3) in the mediation of β-cell death and dysfunction induced by GCs. Using genetic and pharmacological approaches we showed that GSK3 is involved in GC-induced β-cell death and impaired insulin secretion. Further, we unraveled the underlying mechanisms of GC-GSK3 crosstalk. We showed that GSK3 is marginally implicated in the nuclear localization of GC receptor (GR) upon ligand binding. Furthermore, we showed that GSK3 regulates the expression of GR at mRNA and protein levels. Finally, we dissected the proper contribution of each GSK3 isoform and showed that GSK3β isoform is sufficient to mediate the pro-apoptotic effects of GCs in β-cells. Collectively, in this work we identified GSK3 as a viable target to mitigate GC deleterious effects in pancreatic β-cells.Subject terms: Cell biology, Cell death  相似文献   

19.
The interrenal gland (adrenocortical homolog) of elasmobranchs produces a unique steroid, 1α-hydroxycorticosterone (1α-B). The synthesis of this and most other steroids requires both cholesterol side chain cleavage (CYP11A) and 3β-hydroxysteroid dehydrogenase (HSD3). To facilitate the study of elasmobranch steroidogenesis, we isolated complementary DNAs encoding CYP11A and HSD3 from the freshwater stingray Potamotrygon motoro. The P. motoro CYP11A (2182 bp total length) and HSD3 (2248 bp total length) cDNAs harbor open reading frames that encode proteins of 542 and 376 amino acids (respectively) that are similar (CYP11A: 39–61% identical; HSD3: 36–53% identical) to their homologs from other vertebrates. In molecular phylogenetic analysis, P. motoro CYP11A segregates with CYP11A proteins (and not with related CYP11B proteins) and P. motoro HSD3 segregates with steroidogenic HSD3 proteins from other fishes. CYP11A and HSD3 mRNA is found only in interrenal and gonadal tissues, indicating de novo steroidogenesis is restricted to these tissues. Because 1α-B is thought to act in the elasmobranch response to hydromineral disturbances, we examined the effect of adapting P. motoro to 10 ppt seawater on mRNAs encoding steroidogenic genes. The P. motoro response to this salinity challenge does not include interrenal hypertrophy or an increase in the levels of interrenal CYP11A, HSD3 or steroidogenic acute regulatory protein (StAR) mRNA. This study is the first to isolate full length cDNAs encoding elasmobranch CYP11A and HSD3 and the first to examine the regulation of steroidogenic genes in elasmobranch interrenal cells.  相似文献   

20.
β-Turmerin from turmeric (Curcuma longa) waste grits obtained after extraction of curcumin was purified by successive gel permeation chromatography. Homogeneity of β-turmerin was confirmed by its movement as single band both in SDS-PAGE and as well as in native (basic) PAGE. The apparent molecular mass is 34 kDa by SDS-PAGE. It is more hydrophobic protein and showed sharp single peak in RP-HPLC with retention time of 62.17 min. It is a glycoprotein as it shows the presence of amino sugars up to 0.021 gm%. In three different model systems i.e., linolenic acid micelles, erythrocyte membrane systems and liposomes, β-turmerin at 0.125 μM offered 70%, 64%, and 60% inhibition of lipid peroxidation, which is 3200 times more efficient than the standard antioxidants BHA (400 μM) and α-tocopherol (400 μM). β-turmerin inhibited diene–triene and tetraene conjugation up to 54%, 72% and 47%, respectively. β-turmerin also effectively scavenges hydroxyl radicals when compared to BHA and α-tocopherol. β-turmerin (2.5 μM) further inhibited the activation of PMNL mediated by fMLP up to the extent of 75%, where as standards BHA (400 μM) and mannitol (10 μM) inhibited the same to 65% and 55%, respectively. At 0.125 μM dose β-turmerin prevented t-BOOH induced cell death at all time intervals. In addition to the above properties, it is non-toxic to lymphocytes as it did not affect the viability of cells. The mechanism of antioxidant action of β-turmerin could probably be by counteracting/quenching of reactive oxygen species (ROS). We report the purification and characterization of β-turmerin (34 kDa), a potent antioxidant protein from turmeric waste grits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号