首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An acyl coenzyme A hydrolase (thioesterase II) has been purified to near homogeneity from lactating rat mammary gland. The enzyme is a monomer of molecular weight 33,000 and contains a single active site residue. The enzyme is specific for acyl groups, as acyl-CoA thioesters, containing eight or more carbon atoms and can also hydrolyze oxygen esters. Thioesterase II is capable of shifting the product specificity of rat mammary gland fatty acid synthetase from predominately long chain fatty acids (C14, C16, and C18) to mainly medium chain fatty acids (C8, C10, and C12). Thioesterase II can restore the capacity for fatty acid synthesis to fatty acid synthetase in which the thioesterase component (thioesterase I) has been inactivated with phenylmethanesulfonyl fluoride or removed by trypsinization. No evidence was found of significant levels of thioesterase II in lactating rat liver. The presence of thioesterase II in the lactating mammary gland and the ability of the enzyme to hydrolyze acyl-fatty acid synthetase thioesters of intermediate chain length, are indicative of a major role for this enzyme in the synthesis of the medium chain fatty acids characteristic of milk fat.  相似文献   

2.
We have confirmed that coenzyme A is required for rat fatty acid synthetase activity (T. C. Linn, M. J. Stark, and P. A. Srere, 1980, J. Biol. Chem.255, 1388–1392). When rat liver or mammary gland fatty acid synthetase was assayed in the presence of a CoA-scavenging system such as ATP citrate lyase, almost complete inhibition of fatty acid synthesis was observed. The inhibition was reversed by addition of CoA or pantetheine, but not by addition of N-acetylcysteamine or other thiols. In the absence of CoA, the rate of elongation of acyl moieties on both native fatty acid synthetase and fatty acid synthetase lacking the chain-terminating thioesterase I component (trypsinized fatty acid synthetase) was reduced 100-fold. All of the palmitate synthesized slowly by the CoA-depleted native multienzyme was released, by the thioesterase I component, as the free fatty acid; only shorter-chainlength acyl moieties remained bound to the enzyme. The acyl-S-multienzyme thioesters formed by the trypsinized fatty acid synthetase in the absence of CoA contained saturated moieties of chain length C6-C16; addition of CoA promoted elongation of the acyl-S-multienzyme thioesters without release from the enzyme. The transfer of acetyl and malonyl moieties from CoA to the multienzyme, the reduction of S-acetoacetyl-N-acetylcysteamine and S-crotonyl-N-acetylcysteamine, and the dehydration of S-β-hydroxybutyryl-N-acetylcysteamine, reactions catalyzed by the fatty acid synthetase, were not dependent on the presence of CoA. The hydrolysis of acyl-S-multienzyme catalyzed by thioesterase I, the resident chain-terminating component of the fatty acid synthetase, and thioesterase II, a monofunctional mammary gland chain-terminating enzyme, was also independent of CoA availability as was hydrolysis of an acyl-S-pantetheine pentapeptide isolated from the multienzyme. On the basis of these observations we conclude that CoA is required for the elongation of acyl moieties on the fatty acid synthetase but not for their release from the multienzyme.  相似文献   

3.
We have explored a comprehensive experimental approach to determine whether the two condensing-enzyme active centers of the mammalian fatty acid synthetase are simultaneously functional. Our strategy involved utilization of trypsinized fatty acid synthetase, which is a nicked homodimer composed of two pairs of 125 + 95-kDa polypeptides. These core polypeptides lack the chain-terminating thioesterase domains but retain all other functional domains of the native enzyme and can assemble long-chain acyl moieties at a rate equal to that of the native enzyme. The 4'-phosphopantetheine content of these enzyme preparations, estimated from the amount of beta-alanine present, from the amount of taurine formed by performic acid oxidation and from the amount of carboxymethylcysteamine formed by alkylation with iodo[2-14C]acetate, was typically 0.86 mol/mol 95-kDa polypeptide. The stoichiometry of long-chain acyl-enzyme synthesis, measured with radiolabeled precursors, indicated that 0.84 mol acyl-chains were assembled/mol 95-kDa polypeptide. When the small amount of apoenzyme present is taken into account, this stoichiometry translates to 1.94 acyl chains per holoenzyme dimer. The 125-kDa polypeptide of one subunit could be cross-linked to the 95-kDa polypeptide of the other subunit by 1,3-dibromo-2-propanone yielding a single molecular species of 220 kDa. Cross-linking was accompanied by a loss of condensing-enzyme activity. This result is consistent with a structurally symmetrical model for the animal fatty acid synthetase [J.K. Stoops and S.J. Wakil (1981) J. Biol. Chem. 256, 5128-5133] in which the juxtaposed 4'-phosphopantetheine and cysteine thiols of opposing subunits that form the two potential catalytic centers for condensing activity are readily susceptible to cross-linking. Both half-maximal cross-linking and 50% inhibition of activity were observed with 1 mol 1,3-dibromo-2-propanone bound/mol enzyme. After assembly of long-chain acyl moieties on the 4'-phosphopantetheine residues, no vacant condensing-enzyme active sites were demonstrable either by cross-linking with 1,3-dibromo-2-propanone or by formation of carboxymethylcysteamine on treatment with iodoacetate. These results are consistent with a structurally and functionally symmetrical model for the mammalian fatty acid synthetase in which the two condensation sites are simultaneously active.  相似文献   

4.
The fatty acid synthetase multienzyme from lactating rat mammary gland was modified either by removal of the two thioesterase I domains with trypsin or by inhibiting the thioesterase I activity with phenylmethanesulfonyl fluoride. The modified multienzymes are able to convert acetyl-CoA, malonyl-CoA, and NADPH to long chain acyl moieties (C16C22), which are covalently bound to the enzyme through thioester linkage, but they are unable to release the acyl groups as free fatty acids. A single enzyme-bound, long chain acyl thioester is formed by each molecule of modified multienzyme. Kinetic studies showed that the modified multienzymes rapidly elongate the acetyl primer moiety to a C16 thioester and that further elongation to C18, C20, and C22 is progressively slower. Thioesterase II, a mammary gland enzyme which is not part of the fatty acid synthetase multienzyme, can release the acyl moiety from its thioester linkage to either modified multienzyme. Kinetic data are consistent with the formation of an enzyme—substrate complex between thioesterase II and the acylated modified multienzymes. The present study demonstrates that the ability of thioesterase II to modify the product specificity of normal fatty acid synthetase is most likely attributable to the capacity of thioesterase II for hydrolysis of acyl moieties from thioester linkage to the multienzyme.  相似文献   

5.
A cloned cDNA containing the entire coding sequence for the long-chain S-acyl fatty acid synthetase thioester hydrolase (thioesterase I) component as well as the 3'-noncoding region of the fatty acid synthetase has been isolated using an expression vector and domain-specific antibodies. The coding region was assigned to the thioesterase I domain by identification of sequences coding for characterized peptide fragments, amino-terminal analysis of the isolated thioesterase I domain and the presence of the serine esterase active-site sequence motif. The thioesterase I domain is 306 amino acids long with a calculated molecular mass of 33,476 daltons; its DNA is flanked at the 5'-end by a region coding for the acyl carrier protein domain and at the 3'-end by a 1,537-base pairs-long noncoding sequence with a poly(A) tail. The thioesterase I domain exhibits a low, albeit discernible, homology with the discrete medium-chain S-acyl fatty acid synthetase thioester hydrolases (thioesterase II) from rat mammary gland and duck uropygial gland, suggesting a distant but common evolutionary ancestry for these proteins.  相似文献   

6.
The fatty acid synthetase from lactating rat mammary gland is shown to consist of two polyfunctional polypeptides of similar molecular weight (about 220,000); a 4'-phosphopantetheine residue is covalently bound to one, or both subunits. Limited trypsinization of the fatty acid synthetase releases on enzymatically active thioesterase component which has been purified and its properties studied. The thioesterase sediments in the ultracentrifuge as a single component of molecular weight 32,000; its sedimentation coefficient is 2.9 x 10-(13) s its diffusion coefficient 5.0 x 10-(7) cm2 s-(1). The thioesterase also elutes from a column of Sephadex G-75 as a single, symmetrical peak of constant specific activity. However, electrophoresis of the denatured thioesterase in the presence of sodium dodecyl sulfate reveals that the enzyme has been partially nicked during isolation. The kinetic data of the enzyme reaction were studied using palmityl-CoA as a model substrate. Solvent pH was found to affect both Vmax and Km (Km = 0.5 micron at pH 6.6, 2.5 micron at pH 8.0) wereas solvent ionic strength affected Vmax but no Km. The thioesterases from the fatty acid synthetases of rat liver and lactating mammary gland have identical physical properties, identical amino acid compositions, and are immunologically indistinguishable. Both thioesterases hydrolyze long chain, in preference to short chain, thioesters of CoA, an observation consistent with their role in regulation of the chain-terminating step in fatty acid synthesis by the parent multienzyme complexes.  相似文献   

7.
Mammalian fatty acid synthetase carrying a 3-keto, 3-hydroxy, or 2-enoyl acyl-enzyme intermediate on the 4'-phosphopantetheine thiol is reversibly inhibited by binding of NADP to the enoyl reductase domain. Acyl moieties which can normally leave the enzyme by thioester hydrolysis or by transfer to a CoA acceptor cannot readily be removed from the NADP-inhibited enzyme; in addition, 3-keto or 2-enoyl moieties attached to the enzyme 4'-phosphopantetheine cannot readily be reduced when NADP is replaced by NADPH, even though model substrates can be reduced immediately. Reactivation of the NADP-inhibited 3-ketoacyl-enzyme, by exposure to NADPH, is paralleled by reduction and dehydration of the 3-ketoacyl moiety to a saturated acyl moiety without accumulation of either the 3-hydroxy or 2-enoyl acyl-enzyme intermediates, indicating that once the 4'-phosphopantetheine engages the ketoacyl moiety in the ketoreductase domain, subsequent reactions occur very rapidly. The results are consistent with a hypothesis which proposes that NADP binding to the enoyl reductase domain of fatty acid synthetase carrying an acyl intermediate other than a saturated moiety induces a conformational change in the enzyme that results in decreased mobility of the 4'-phosphopantetheine prosthetic group. Normal mobility of the prosthetic group, essential for transfer of acyl-enzyme intermediates through the active sites of the various functional domains, is restored relatively slowly when NADP is replaced by NADPH. It remains to be determined whether this modulation by pyridine nucleotides observed in vitro plays a role in the regulation of fatty acid synthetase activity in vivo.  相似文献   

8.
The fatty acid synthetase of animal tissue consists of two subunits, each containing seven catalytic centers and an acyl carrier site. Proteolytic cleavage patterns indicate that the subunit is arranged into three major domains, I, II, and III. Domain I contains the NH2-terminal end of the polypeptide and the catalytic sites of beta-ketoacyl synthetase (condensing enzyme) and the acetyl-and malonyl-transacylases. This domain, therefore, functions as a site for acetyl and malonyl substrate entry into the process of fatty acid synthesis and acts in part as the site of carbon-carbon condensation, resulting in chain elongation. Domain II is the medial domain and contains the beta-ketoacyl and enoyl reductases, probably the dehydratase, and the 4'-phosphopantetheine prosthetic group of the acyl carrier protein site. Domain II, therefore, is designated as the reduction domain where the keto carbon is reduced to methylene carbon by sequential processes of reduction, dehydration, and reduction again. Throughout these processes, the acyl group is attached to the pantetheine-SH of the acyl carrier protein. The latter site is distal to the cysteine-SH of the beta-ketoacyl synthetase, constitutes the 15000-dalton polypeptide at the COOH-terminal end of Domain II, and connects to Domain III. When the growing chain reaches C16 carbon length, the fatty acyl group is released by the thioesterase activity, which is contained in Domain III. A functional model is proposed based on the aforementioned results and the recent evidence that the synthetase subunits are arranged in a head-to-tail fashion, such that the pantetheine-SH of the acyl carrier protein of one subunit and the cysteine-SH of the beta-ketoacyl synthetase of the second subunit are juxtaposed. In this model, a palmitate synthesizing site contains Domain I of one subunit and Domains II and III of the second subunit. Therefore, even though each subunit contains all of the partial activities of the reaction sequence, the actual palmitate synthesizing unit consists of one-half of a subunit interacting with the complementary half of the other subunit.  相似文献   

9.
Medium-chain S-acyl fatty acid synthetase thioester hydrolase (thioesterase II), a discrete monomeric enzyme of 29 kDa, regulates the product specificity of the de novo lipogenic systems in certain specialized mammalian and avian tissues, such as mammary and uropygial glands. The amino acid sequence of a 57-residue region containing the active site of the rat mammary gland enzyme has been established by a combination of amino acid and cDNA sequencing. Thioesterase II was radiolabeled with the serine esterase inhibitor [1,3-14C]diisopropyl-fluorophosphate and digested sequentially with cyanogen bromide, Staphylococcus aureus V8 protease and trypsin. A radiolabeled tryptic peptide was isolated and sequenced by automated Edman degradation and the location of the active-site residue established. The amino acid sequence was confirmed by sequencing an overlapping, unlabeled peptide, obtained by V8 digestion of the whole enzyme, and by dideoxynucleotide sequencing of a thioesterase II cDNA clone isolated from a lambda gt11 expression library. The active center contains the motif Gly-Xaa-Ser-Xaa-Gly, characteristic of the serine esterase family of enzymes. A seven-residue region around the essential serine of the rat mammary thioesterase II, Phe-Gly-Met-Ser-Phe-Gly-Ser, is completely homologous with a region of the mallard uropygial thioesterase, recently analyzed by cDNA sequencing, indicating that this is likely to be the active site of the avian enzyme. Overall homology between the mammalian and avian enzymes for the 57-amino-acid residue region is 47% and suggests that the two enzymes may share a common evolutionary origin.  相似文献   

10.
Immunochemical procedures and limited proteolysis have been used to investigate the subunit structure of fatty acid synthetase from rat mammary gland. Specific antibodies were raised against the two thioesterase I domains obtained from the fatty acid synthetase by treatment with trypsin. The antibodies precipitated both subunits of the dissociated fatty acid synthetase, indicating that both subunits contained a single thioesterase I domain. An analysis of the time course of limited trypsinization of the fatty acid synthetase, labeled in its two thioesterase I domains with [1,3-14C] diisopropylphosphofluoridate, indicated that each subunit was susceptible to tryptic attack at identical locations and that the thioesterase I domains occupied a terminal locus at one end of each polyfunctional polypeptide chain. The most plausible explanation for these results is that the mammalian fatty acid synthetase is a homodimer.  相似文献   

11.
Z I Randhawa  S Smith 《Biochemistry》1987,26(5):1365-1373
The complete amino acid sequence of the medium-chain S-acyl fatty acid synthetase thio ester hydrolase (thioesterase II) from rat mammary gland is presented. Most of the sequence was derived by analysis of peptide fragments produced by cleavage at methionyl, glutamyl, lysyl, arginyl, and tryptophanyl residues. A small section of the sequence was deduced from a previously analyzed cDNA clone. The protein consists of 260 residues and has a blocked amino-terminal methionine and calculated Mr of 29,212. The carboxy-terminal sequence, verified by Edman degradation of the carboxy-terminal cyanogen bromide fragment and carboxypeptidase Y digestion of the intact thioesterase II, terminates with a serine residue and lacks three additional residues predicted by the cDNA sequence. The native enzyme contains three cysteine residues but no disulfide bridges. The active site serine residue is located at position 101. The rat mammary gland thioesterase II exhibits approximately 40% homology with a thioesterase from mallard uropygial gland, the sequence of which was recently determined by cDNA analysis [Poulose, A.J., Rogers, L., Cheesbrough, T. M., & Kolattukudy, P. E. (1985) J. Biol. Chem. 260, 15953-15958]. Thus the two enzymes may share similar structural features and a common evolutionary origin. The location of the active site in these thioesterases differs from that of other serine active site esterases; indeed, the enzymes do not exhibit any significant homology with other serine esterases, suggesting that they may constitute a separate new family of serine active site enzymes.  相似文献   

12.
The separation of the half-molecular weight, nonidentical subunits (I and II) of the pigeon liver fatty acid synthetase complex has been achieved on a large (20 mg) scale by affinity chromatography on Sepharose epsilon-aminocaproyl pantetheine. This separation requires a careful control of temperature, ionic strength, pH, and column flow rate for success. The yield of subunit II is further improved by transacetylation (with acetyl-CoA) of the dissociated fatty acid synthetase prior to affinity chromatography. The separated subunit I (reductase) contains the 4'-phosphopantetheine (A2) acyl binding site, two NADPH binding sites, and beta-ketoacyl and crotonyl thioester reductases. Subunit II (transacylase) contains the B1 (hydroxyl or loading) and B2 (cysteine) acyl binding sites, and acetyl- and malonyl-CoA: pantetheine transacylases. When subunit I is mixed in equimolar quantities with subunit II, an additional NADPH binding site is found even though subunit II alone shows no NADPH binding. Both subunits contain activities for the partial reactions, beta-hydroxybutyryl thioester dehydrase (crotonase) and palmityl-CoA deacylase. Subunit I has 8 sulfhydryl groups per mol whereas subunit II has 60. Reconstitution of fatty acid synthetase activity to 75% of the control level is achieved on reassociation of subunits I and II.  相似文献   

13.
Fatty acid synthetase from lactating rat mammary gland after limited proteolysis with chymotrypsin or trypsin synthesizes longer chain fatty acids than those produced by the native enzyme. Of the seven partial reactions of the multienzyme complex, only the thioesterase activity was decreased. The results suggest that modification of the fatty acid synthetase product specificity by chymotrypsin and trypsin results from a specific action of these proteases on the thioesterase component. Trypsin, but not chymotrypsin, cleaved a catalytically active thioesterase from the complex; it thus appears that limited trypsinization will be a useful tool for the isolation of the thioesterase component of the multienzyme.  相似文献   

14.
Trypsin treatment of purified fatty acid synthetase from the uropygial gland of goose released a 33,000 molecular weight peptide from the 270,000 molecular weight synthease. A combination of ammonium sulfate precipitation, Sephadex G-100 gel filtration, anion-exchange chromatography with QAE-Sephadex, and cation-exchange chromatography with cellulose phosphate gave rise to the first homogeneous preparation of the 33,000 molecular weight fragment containing fatty acyl-CoA thioesterase activity. Amino acid composition of this peptide was quite similar to that of the intact fatty acid synthetase except for a lower valine content; a partial specific volume of 0.734 was calculated for the thioesterase fragment. The pH optimum for the thioesterase was near 7.5 and the enzyme showed a high degree of preference for CoA esters of fatty acids with 16 or more carbon atoms. Palmitoyl-CoA inhibited the enzyme and therefore the rate of hydrolysis was not proportional to the amount of protein at low concentrations. Inclusion of bovine serum albumin in the reaction mixture prevented this inhibition. Disregarding the substrate inhibition, an apparent Km of 5 × 10?5m and a V of 340 nmol/min/mg were calculated. The thioesterase was inhibited by active serine-directed reagents such as phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate as well as by SH-directed reagents as p-chloromercuribenzoate and N-ethylmaleimide. The isolated thioesterase fragment generated antibodies in rabbits and the antithioesterase inhibited the enzymatic activity of fatty acid synthetase. The antithioesterase showed immunoprecipitant lines with fatty acid synthetase from the uropygial gland and the synthetase from the liver of goose. Anti-fatty acid synthetase prepared against the enzyme from the gland cross-reacted with the thioesterase segment. Even though the synthetase from the uropygial gland synthesizes multimethyl-branched fatty acids in vivo, the thioesterase segment of this synthetase appears to be quite similar to that isolated from the rat.  相似文献   

15.
Limited digestion, with trypsin, of the fatty acid synthetase from rat mammary gland releases an enzymically active thioesterase component that, under denaturing conditions, consists of two major species of mol.wts. 35000 and 17500 and a minor species, mol.wt. 15,000. The 17500- and 150000-mol.wt. species are shown to originate from the 35000-mol.wt. species as a result of nicking by trypsin. The nicked polypeptides are enzymically active. The fatty acid synthetase is inhibited by [1,3-14C]di-isopropyl phosphorofluoridate, which is shown to bind to, and inactivate, two thioesterase active sites. When the [1,3-14C]di-isopropyl phosphate-labelled fatty acid synthetase is subjected to limited digestion with trypsin, all of the radioactivity is recovered in the isolated thioesterase component, i.e. in the 35000-mol.wt. polypeptide and its nicked products. Since the isolated thioesterase is shown to bind only one di-isopropyl phosphate residue per 35000-mol.wt. polypeptide, we conclude that the fatty acid synthetase has two thioesterase domains, both of which are removed by limited trypsin treatment.  相似文献   

16.
A fluorescent thiol reagent, N-(7-dimethylamino-4-methylcoumarinyl) maleimide, was used to label the acyl carrier site of the bacterial fatty acid synthetase from Brevibacterium ammoniagenes. The reagent bound preferentially to the 4'-phosphopantetheine thiol group of the acyl carrier domain and irreversively inactivated the enzyme. The modified enzyme was cleaved by proteinases for the mapping of the labeled site. The fluorescent fragment was readily detected on a polyacrylamide gel after electrophoresis. The region of 45 kDa containing the 4'-phosphopantetheine was located on the polypeptide at around two-thirds of the full length from the N-terminal.  相似文献   

17.
The goat mammary gland fatty acid synthetase hydrolysed both medium (C8:0, C10:0) and long (C16:0, C18:0) chain length acyl CoA esters, whereas the enzyme from rabbit mammary gland only hydrolysed long chain length acyl CoA esters. The medium chain acyl-thioester hydrolase activity of goat mammary gland fatty acid synthetase was much less sensitive to inhibition by phenylmethanesulfonyl-fluorid than the long chain acylthioester hydrolase activity. These results indicate the presence of either two acyl-thioester hydrolases with different specificity or one acyl-thioester hydrolase containing two different active sites.  相似文献   

18.
The concentration of medium-chain acyl thioester hydrolase and of fatty acid synthetase was determined by rocket immunoelectrophoresis in nine different particle-free supernatant fractions from lactating-rabbit mammary gland. The molar ratio of the hydrolase to fatty acid synthetase was 1.99 +/- 0.66 (mean +/- S.D.). A rate-limiting concentration of malonyl-CoA was required to ensure the predominant synthesis of medium-chain fatty acids when 2 mol of the hydrolase was added per mol of fatty acid synthetase. The interaction of the hydrolase with fatty acid synthetase was concentration-dependent, though an optimum concentration of hydrolase to synthetase could not be obtained. The lactating-rabbit mammary gland hydrolase altered the pattern of fatty acids synthesized by fatty acid synthetases prepared from cow, goat, sheep and rabbit lactating mammary glands, rabbit liver and cow adipose tissue.  相似文献   

19.
Joyard J  Stumpf PK 《Plant physiology》1980,65(6):1039-1043
The enzymic hydrolysis of acyl-coenzyme A occurs in intact and purified chloroplasts. The different components of spinach chloroplasts were separated after a slight osmotic shock and the purified envelope membranes were shown to be the site of very active acyl-CoA thioesterase activity (EC 3.1.2.2.). The enzyme, which had a pH optimum of 9.0, was not affected by sulfhydryl reagents or by serine esterase inhibitors. However, the acyl-CoA thioesterase was strongly inhibited by unsaturated fatty acids, especially oleic acid, at concentrations above 100 micromolar. In marked contrast, saturated fatty acids had only a slight effect on the thioesterase activity. Substrate specificities showed that the velocity of the reaction increased with the chain length of the substrate from decanoyl-CoA to myristoyl-CoA and then decreased with the chain length from myristoyl-CoA to stearoyl-CoA. Interestingly, oleoyl-CoA was only slowly hydrolyzed. These results suggest that the envelope acyl-CoA thioesterase coupled with an envelope acyl-CoA synthetase may be involved in a switching system which indirectly allows acyl transfer from acyl carrier protein derivatives to unsaturated acyl-CoA derivatives and ensures the predominance of unsaturated 18 carbon fatty acids in plants. Furthermore, the position of both acyl-CoA thioesterase and synthetase in the envelope membranes suggest that these two enzymes may be involved in the transport of oleic acid from the stroma phase to the cytosol compartment of the leaf cell.  相似文献   

20.
The 4'-phosphopantetheine hydrolase of rat liver, partially purified by ammonium sulfate precipitation, catalyzes the hydrolysis of the prosthetic group 4'-phosphopantetheine from the holo-fatty acid synthetase. The two products of the action of this enzyme, 4'-phosphopantetheine and apo-fatty acid synthetase, were isolated by DEAE-cellulose chromatography and by chromatography on a Sepharose epsilon-aminocaproyl pantetheine column, respectively. The resultant apo-fatty acid synthetase was quantitated by immunoprecipitation and it was also converted to the holoprotein with a crude preparation of rat liver 4'-phosphopantetheine transferase. Quantitative determination of the hydrolase reaction product, 4'-phosphopantetheine, by amino acid analysis and microbiological assays confirmed the presence of 1 mol of this compound/mol of holo-fatty acid synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号