首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The finite element (FE) brain model is used increasingly as a design tool for developing technology to mitigate traumatic brain injury. We developed an ultra high-definition FE brain model (>4 million elements) from CT and MRI scans of a 2-month-old pre-adolescent piglet brain, and simulated rapid head rotations. Strain distributions in the thalamus, coronal radiata, corpus callosum, cerebral cortex gray matter, brainstem and cerebellum were evaluated to determine the influence of employing homogeneous brain moduli, or distinct experimentally derived gray and white matter property representations, where some white matter regions are stiffer and others less stiff than gray matter. We find that constitutive heterogeneity significantly lowers white matter deformations in all regions compared with homogeneous properties, and should be incorporated in FE model injury prediction.  相似文献   

3.
MicroRNAs (miRNAs) are present in all known plant and animal tissues and appear to be somewhat concentrated in the mammalian nervous system. Many different miRNA expression profiling platforms have been described. However, relatively little research has been published to establish the importance of 'upstream' variables in RNA isolation for neural miRNA expression profiling. We tested whether apparent changes in miRNA expression profiles may be associated with tissue processing, RNA isolation techniques, or different cell types in the sample. RNA isolation was performed on a single brain sample using eight different RNA isolation methods, and results were correlated using a conventional miRNA microarray and then cross-referenced to Northern blots. Differing results were seen between samples obtained using different RNA isolation techniques and between microarray and Northern blot results. Another complication of miRNA microarrays is tissue-level heterogeneity of cellular composition. To investigate this phenomenon, miRNA expression profiles were determined and compared between highly-purified primary cerebral cortical cell preparations of rat primary E15-E18 neurons versus rat primary E15-E18 astrocytes. Finally, to assess the importance of dissecting human brain gray matter from subjacent white matter in cerebral cortical studies, miRNA expression profiles were compared between gray matter and immediately contiguous white matter. The results suggest that for microarray studies, cellular composition is important, and dissecting white matter from gray matter improves the specificity of the results. Based on these data, recommendations for miRNA expression profiling in neural tissues, and considerations worthy of further study, are discussed.  相似文献   

4.
Neurofibromatosis (NF1) represents the most common single gene cause of learning disabilities. NF1 patients have impairments in frontal lobe based cognitive functions such as attention, working memory, and inhibition. Due to its well–characterized genetic etiology, investigations of NF1 may shed light on neural mechanisms underlying such difficulties in the general population or other patient groups. Prior neuroimaging findings indicate global brain volume increases, consistent with neural over-proliferation. However, little is known about alterations in white matter microstructure in NF1. We performed diffusion tensor imaging (DTI) analyses using tract-based spatial statistics (TBSS) in 14 young adult NF1 patients and 12 healthy controls. We also examined brain volumetric measures in the same subjects. Consistent with prior studies, we found significantly increased overall gray and white matter volume in NF1 patients. Relative to healthy controls, NF1 patients showed widespread reductions in white matter integrity across the entire brain as reflected by decreased fractional anisotropy (FA) and significantly increased absolute diffusion (ADC). When radial and axial diffusion were examined we found pronounced differences in radial diffusion in NF1 patients, indicative of either decreased myelination or increased space between axons. Secondary analyses revealed that FA and radial diffusion effects were of greatest magnitude in the frontal lobe. Such alterations of white matter tracts connecting frontal regions could contribute to the observed cognitive deficits. Furthermore, although the cellular basis of these white matter microstructural alterations remains to be determined, our findings of disproportionately increased radial diffusion against a background of increased white matter volume suggest the novel hypothesis that one potential alteration contributing to increased cortical white matter in NF1 may be looser packing of axons, with or without myelination changes. Further, this indicates that axial and radial diffusivity can uniquely contribute as markers of NF1-associated brain pathology in conjunction with the typically investigated measures.  相似文献   

5.
6.
Intracerebral hemorrhage (ICH) is a devastating stroke sub-type with high mortality and morbidity. ICH frequently occurs in subcortical white matter generating hematomas that contain high heme iron levels. In this study, we examined the consequences of iron-induced oxidation (1-100 microM Fe2+ for 30 min. or 50 microM Fe2+ for 1-120 min.) on the activities of two oxidatively sensitive enzymes, creatine kinase (CK) and glutamine synthetase (GS), and on an oxidative stress marker, protein carbonyl formation, in porcine cerebral cortical white and gray matter. In vitro iron oxidation produced time and concentration dependent decreases in both CK [maximum decreases of 49.3+/-1.2% and 44.3+/-4.1% (average +/- SEM, N=3) for white and gray matter, respectively] and GS activities (maximum decreases of 16.9+/-1.7% and 13.2+/-1.0% for white and gray matter, respectively) and increases in protein carbonyl formation. Interestingly, protein carbonyl concentrations were significantly greater (p<0.05) in white vs. gray matter at 100 microM iron (30 min.) and 50 microM iron (120 min.). Additionally, CK and GS activities were lower for white versus gray matter at several time points and iron concentrations. It is our hypothesis that iron induced oxidative stress contributes to the pathogenesis of perihematomal brain injury following ICH.  相似文献   

7.
In the brain of several animal species testosterone is converted into a series of 5-alpha-reduced metabolites, and especially into 17-beta-hydroxy-5-alpha-androstan-3-one (DHT), by the action of the enzyme 5-alpha-reductase. The formation of DHT has never been evaluated in the white matter structures of the brain, which are composed mainly of myelinated axons. The experiments here described were performed in order to study, in the rat and the mouse, the DHT forming activity of several white matter structures, in comparison with that of the cerebral cortex and of the hypothalamus. Two sampling techniques were used in the rat: microdissection under a stereo-microscope from frozen brain sections of fragments of corpus callosum, optic chiasm and cerebral cortex; fresh tissue macrodissection of subcortical white matter, cerebral cortex and hypothalamus. Only macrodissection was used in the mice. The data show that, independently from the sampling technique used, there are considerable quantitative differences in the distribution pattern of the 5-alpha-reductase activity within different brain structures. Both in the rat and in the mouse, the enzyme appears to be present in higher concentrations in the white matter structures, than in the cerebral cortex and in the hypothalamus. The present results clearly show that the subcortical white matter and the corpus callosum are at least three times as potent as the cerebral cortex in converting testosterone into DHT. An even higher 5-alpha-reductase activity has been found in the optic chiasm. Further work is needed in order to understand the possible physiological role of DHT formation in the white matter structures.  相似文献   

8.
Mechanical signaling plays an important role in cell physiology and pathology. Many cell types, including neurons and glial cells, respond to the mechanical properties of their environment. Yet, for spinal cord tissue, data on tissue stiffness are sparse. To investigate the regional and direction-dependent mechanical properties of spinal cord tissue at a spatial resolution relevant to individual cells, we conducted atomic force microscopy (AFM) indentation and tensile measurements on acutely isolated mouse spinal cord tissue sectioned along the three major anatomical planes, and correlated local mechanical properties with the underlying cellular structures. Stiffness maps revealed that gray matter is significantly stiffer than white matter irrespective of directionality (transverse, coronal, and sagittal planes) and force direction (compression or tension) (Kg= ∼130 Pa vs. Kw= ∼70 Pa); both matters stiffened with increasing strain. When all data were pooled for each plane, gray matter behaved like an isotropic material under compression; however, subregions of the gray matter were rather heterogeneous and anisotropic. For example, in sagittal sections the dorsal horn was significantly stiffer than the ventral horn. In contrast, white matter behaved transversely isotropic, with the elastic stiffness along the craniocaudal (i.e., longitudinal) axis being lower than perpendicular to it. The stiffness distributions we found under compression strongly correlated with the orientation of axons, the areas of cell nuclei, and cellular in plane proximity. Based on these morphological parameters, we developed a phenomenological model to estimate local mechanical properties of central nervous system (CNS) tissue. Our study may thus ultimately help predicting local tissue stiffness, and hence cell behavior in response to mechanical signaling under physiological and pathological conditions, purely based on histological data.  相似文献   

9.
Resting state functional magnetic resonance imaging (fMRI) has been commonly used to measure functional connectivity between cortical regions, while diffusion tensor imaging (DTI) can be used to characterize structural connectivity of white matter tracts. In principle combining resting state fMRI and DTI data could allow characterization of structure-function relations of distributed neural networks. However, due to differences in the biophysical origins of their signals and in the tissues to which they apply, there has been no direct integration of these techniques to date. We demonstrate that MRI signal variations and power spectra in a resting state are largely comparable between gray matter and white matter, that there are temporal correlations of fMRI signals that persist over long distances within distinct white matter structures, and that neighboring intervoxel correlations of low frequency resting state signals showed distinct anisotropy in many regions. These observations suggest that MRI signal variations from within white matter in a resting state may convey similar information as their corresponding fluctuations of MRI signals in gray matter. We thus derive a local spatio-temporal correlation tensor which captures directional variations of resting-state correlations and which reveals distinct structures in both white and gray matter. This novel concept is illustrated with in vivo experiments in a resting state, which demonstrate the potential of the technique for mapping the functional structure of neural networks and for direct integration of structure-function relations in the human brain.  相似文献   

10.
Attention-Deficit/Hyperactivity Disorder (ADHD) and intelligence (IQ) are both heritable phenotypes. Overlapping genetic effects have been suggested to influence both, with neuroimaging work suggesting similar overlap in terms of morphometric properties of the brain. Together, this evidence suggests that the brain changes characteristic of ADHD may vary as a function of IQ. This study investigated this hypothesis in a sample of 108 children with ADHD and 106 typically developing controls, who participated in a cross-sectional anatomical MRI study. A subgroup of 64 children also participated in a diffusion tensor imaging scan. Brain volumes, local cortical thickness and average cerebral white matter microstructure were analyzed in relation to diagnostic group and IQ. Dimensional analyses investigated possible group differences in the relationship between anatomical measures and IQ. Second, the groups were split into above and below median IQ subgroups to investigate possible differences in the trajectories of cortical development. Dimensionally, cerebral gray matter volume and cerebral white matter microstructure were positively associated with IQ for controls, but not for ADHD. In the analyses of the below and above median IQ subgroups, we found no differences from controls in cerebral gray matter volume in ADHD with below-median IQ, but a delay of cortical development in a number of regions, including prefrontal areas. Conversely, in ADHD with above-median IQ, there were significant reductions from controls in cerebral gray matter volume, but no local differences in the trajectories of cortical development.In conclusion, the basic relationship between IQ and neuroanatomy appears to be altered in ADHD. Our results suggest that there may be multiple brain phenotypes associated with ADHD, where ADHD combined with above median IQ is characterized by small, more global reductions in brain volume that are stable over development, whereas ADHD with below median IQ is associated more with a delay of cortical development.  相似文献   

11.
A crucial role for Olig2 in white matter astrocyte development   总被引:5,自引:0,他引:5  
  相似文献   

12.
A quantitative neuropathological necropsy study of 22 control and 22 chronic alcoholic subjects showed a statistically significant loss of brain tissue in the chronic alcoholic group. The loss of tissue appeared to be from the white matter of the cerebral hemispheres rather than the cerebral cortex. This may reflect a primary alteration in the composition or structure of the white matter or it may be secondary to loss of nerve cells from the cortex with subsequent degeneration of the axons in the white matter. Further morphometric analyses including cortical neuronal counts will be necessary to clarify this issue.  相似文献   

13.
The gene expression for seven phosphatidylinositol phosphate kinases (PIPKs)-types Ialpha, Ibeta, Igamma, types IIalpha, IIbeta, IIgamma, and type III-was examined using in situ hybridization histochemistry, in the mouse brain during normal development. In the embryonic mouse brain, positive expression signals were detected only for the genes encoding PIPK Igamma and PIPK IIbeta in both the cerebral ventricular and mantle zones, with weaker signals in the former zone. On the other hand, the genes encoding all PIPKs were essentially detected in the external granule cell layer which represents the germinal zone for the neuronal granule cells. In the postnatal brain, among the seven PIPKs, the expression for genes encoding PIPK Igamma and IIbeta is evident in most gray matter, while the expression for the other five types was weak in the cortical gray matter and negligible in most non-cortical gray matter such as the diencephalon and brain stem nuclei. While the expression for most PIPKs in the mature hippocampus was distinct, the expression in the CA3 and the dentate gyrus was less definite for the genes encoding PIPK Ialpha and IIgamma, respectively. The distinct expression for the gene encoding PIPK IIalpha was detected in the postnatal white matter such as the cerebellar medulla, the corpus callosum, the hippocampal fimbriae, and the internal capsule.  相似文献   

14.
The isolated brachial spinal cord of the mudpuppy is useful for studies of neural networks underlying forelimb locomotion, but information about its anatomy is scarce. We addressed this issue by combining retrograde labeling with fluorescent tracers and confocal microscopy. Remarkably, the central region of gray matter was aneural and contained only a tenuous meshwork of glial fibers and large extracellular spaces. Somata of motoneurons (MNs) and interneurons (INs), labeled retrogradely from ventral roots or axons in the ventro-lateral funiculus, respectively, were confined within a gray neuropil layer abutting the white matter borders, while their dendrites projected widely throughout the white matter. A considerable fraction of labeled INs was found contralaterally with axons crossing beneath a thick layer of ependyma surrounding the central canal. Dorsal roots (DRs) produced dense presynaptic arbors within a restricted dorsal region containing afferent terminations, within which dorsally directed MN and IN dendrites mingled with dense collections of synaptic boutons. Our data suggest that a major fraction of synaptic interactions takes place within the white matter. This study provides a detailed foundation for electrophysiological experiments aimed at elucidating the neural circuits involved in locomotor pattern generation.  相似文献   

15.
Sphingolipids, glycosylphosphatidylinositol (GPI)-anchored proteins, and certain signaling molecules segregate from bulk membrane lipids into lateral domains termed lipid rafts, which are often isolated based on their insolubility in cold nonionic detergents. During immunohistological studies of gangliosides, major sphingolipids of the brain, we found that cold Triton X-100 solubility is bidirectional, leading to histological redistribution from gray to white matter. When brain sections were treated with > or =0.25% Triton X-100 at 4 degrees C, ganglioside GD1a, which is normally enriched in gray matter and depleted in white matter, redistributed into white matter tracts. Incubation of brain sections from knockout mice lacking GD1a with wild-type sections in the presence of cold Triton X-100 resulted in GD1a redistribution from wild-type gray matter to knockout white matter. GM1, which is normally enriched in white matter, remained in white matter after cold detergent treatment and did not migrate to knockout mouse brain sections. However, when gray matter gangliosides were enzymatically converted into GM1 in situ, the newly formed GM1 transmigrated to knockout mouse brain sections in the presence of cold detergent. When purified GD1a was added to knockout mouse brain sections in the presence of cold Triton X-100, it preferentially incorporated into white matter tracts. These data demonstrate that brain white matter is a sink for gangliosides, which redistribute from gray matter in the presence of low concentrations of cold Triton X-100. A GPI-anchored protein, Thy-1, also transmigrated from wild-type to Thy-1 knockout mouse brain sections in the presence of detergent at 4 degrees C, although less efficiently than did gangliosides. These data raise technical challenges for using nonionic detergents in certain histological protocols and for isolation of lipid rafts from brain tissue.  相似文献   

16.
Axon growth-promoting and -inhibitory molecules are likely to work in concert to promote and guide axons in vivo. In adult mammals, inhibitory molecules associated with myelin in the white matter of the central nervous system (CNS) play an important role in the failure of long-distance axon regeneration. The presence of neurite growth-inhibitory molecules in the adult rat gray matter has not been extensively studied. In this article we describe work on the characterization of neurite growth-inhibitory activity in the adult rat cerebral cortical gray matter using various biochemical and cell culture approaches. We show using a neuronal cell line (NG108–-15 cells) that neurite growth-inhibitory activity is present in membrane preparations of the cortical gray matter. Purified gray matter membranes also induce growth cone collapse of cultured embryonic rat dorsal root ganglion neurons. The inhibitory activity in the membrane preparations is extractable with 3-[(3-cholamidoprophyl)-dimethylammonio]-1-propane-sulfonate, but does not appear to be depleted by various lectins. Western blots and enzyme treatments showed that the inhibitory effect of the gray-matter preparations is not likely to be mediated by myelin-associated inhibitors or chondroitin sulfate proteoglycans. However, tenascin was detected in these samples and may contribute to some of the inhibitory activity. Selective separation of the inhibitory molecules can be achieved by ion-exchange chromatography, which also suggests the presence of multiple inhibitors in cortical gray matter membranes. © 1997 John Wiley & Sons, Inc. J Neurobiol 32 : 671–683, 1997  相似文献   

17.
Dynamic responses of brain tissues are needed for predicting traumatic brain injury (TBI). We modified a dynamic experimental technique for characterizing high strain-rate mechanical behavior of brain tissues. Using the setup, the gray and white matters from bovine brains were characterized under compression to large strains at five different strain rates ranging from 0.01 to 3000/s. The white matter was examined both along and perpendicular to the coronal section for anisotropy characterization. The results show that both brain tissue matters are highly strain-rate sensitive. Differences between the white matter and gray matter in their mechanical responses are recorded. The white matter shows insignificant anisotropy over all strain rates. These results will lead to rate-dependent material modeling for dynamic event simulations.  相似文献   

18.
BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations.  相似文献   

19.
Advances in brain connectomics set the need for detailed knowledge of functional properties of myelinated and non-myelinated (if present) axons in specific white matter pathways. The corpus callosum (CC), a major white matter structure interconnecting brain hemispheres, is extensively used for studying CNS axonal function. Unlike another widely used CNS white matter preparation, the optic nerve where all axons are myelinated, the CC contains also a large population of non-myelinated axons, making it particularly useful for studying both types of axons. Electrophysiological studies of optic nerve use suction electrodes on nerve ends to stimulate and record compound action potentials (CAPs) that adequately represent its axonal population, whereas CC studies use microelectrodes (MEs), recording from a limited area within the CC. Here we introduce a novel robust isolated "whole" CC preparation comparable to optic nerve. Unlike ME recordings where the CC CAP peaks representing myelinated and non-myelinated axons vary broadly in size, "whole" CC CAPs show stable reproducible ratios of these two main peaks, and also reveal a third peak, suggesting a distinct group of smaller caliber non-myelinated axons. We provide detailed characterization of "whole" CC CAPs and conduction velocities of myelinated and non-myelinated axons along the rostro-caudal axis of CC body and show advantages of this preparation for comparing axonal function in wild type and dysmyelinated shiverer mice, studying the effects of temperature dependence, bath-applied drugs and ischemia modeled by oxygen-glucose deprivation. Due to the isolation from gray matter, our approach allows for studying CC axonal function without possible "contamination" by reverberating signals from gray matter. Our analysis of "whole" CC CAPs revealed higher complexity of myelinated and non-myelinated axonal populations, not noticed earlier. This preparation may have a broad range of applications as a robust model for studying myelinated and non-myelinated axons of the CNS in various experimental models.  相似文献   

20.

Background

Gait impairments increase with advancing age and can lead to falls and loss of independence. Brain atrophy also occurs in older age and may contribute to gait decline. We aimed to investigate global and regional relationships of cerebral gray and white matter volumes with gait speed, and its determinants step length and cadence, in older people.

Methods

In a population-based study, participants aged >60 years without Parkinson''s disease or brain infarcts underwent magnetic resonance imaging and gait measurements using a computerized walkway. Linear regression was used to study associations of total gray and white matter volumes with gait, adjusting for each other, age, sex, height and white matter hyperintensity volume. Other covariates considered in analyses included weight and vascular disease history. Voxel-based morphometry was used to study regional relationships of gray and white matter with gait.

Results

There were 305 participants, mean age 71.4 (6.9) years, 54% male, mean gait speed 1.16 (0.22) m/s. Smaller total gray matter volume was independently associated with poorer gait speed (p = 0.001) and step length (p<0.001), but not cadence. Smaller volumes of cortical and subcortical gray matter in bilateral regions important for motor control, vision, perception and memory were independently associated with slower gait speed and shorter steps. No global or regional associations were observed between white matter volume and gait independent of gray matter volume, white matter hyperintensity volume and other covariates.

Conclusion

Smaller gray matter volume in bilaterally distributed brain networks serving motor control was associated with slower gait speed and step length, but not cadence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号