首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
While BK virus (BKV) is frequently associated with pathological conditions in bone marrow and renal transplant recipients, BKV infection in neurological individuals has been rarely reported. As a result of a BKV, JCV, and SV40 large T antigen-specific multiplex PCR on 2,062 cerebrospinal fluid (CSF) samples from neurological patients suspicious of JCV infection, we identified 20 subjects with at least 1 CSF specimen positive for BKV large T antigen DNA. Because VP1 protein has been suggested to influence the biological/pathological properties of BKV, we tried to sequence the entire VP1 gene in the BKV-positive neurological patients and succeeded in 14 of the 20 neurological patients. To compare the VP1 sequence of the BKV neurological strains with that of non-neurotropic strains in other clinical situations, full-length VP1 DNA was sequenced in 15 renal and 6 bone marrow transplant recipients positive to BKV-viremia, and in 8 pregnant women as non-pathological controls. An increased (respectively, decreased) tendency for mutations in the BC loop (respectively, EF loop) was observed, and no mutations were detected in the CD, GH, and HI loops. Subtype I was predominant (93%) and compared to archetypal BKV (WW), amino acid substitutions were detected in 4/14 neurological patients, 10/15 renal transplant recipients, 3/6 bone marrow transplant patients, and in all the pregnant women. Each patient group had distinctive VP1 mutations, but these unique substitutions were not present in all patients of this group. However, molecular modeling simulations of the VP1 mutants predicted changes in protein surface properties which might affect the VP1-receptor interaction.  相似文献   

2.
Children with renal diseases are typically treated with immunosuppressive drugs, which place them at high risk of reactivation of the BK virus (BKV). Currently, little is known about the impact of immunosuppressive drugs on the kinetics of urinary shedding of BKV and viral reactivation in pediatric patients with renal diseases. Urine samples were collected monthly for 1 year from 20 children (median age, 9 years; range, 4–15 years) with renal diseases and subjected to real‐time PCR. Urinary shedding of BKV was detected in 35% (7/20) of the patients, three of these patients having persistent viral DNA excretion (two cases, twelve times; one case, four times) and four having intermittent viral DNA excretion. Thirty‐four of the 240 urine samples contained BKV DNA (median copy numbers, 5.66 log copies/mL; range, 2.45–7.69 log copies/mL). In two of the cases with persistent viral shedding, high copy numbers (range, 4.57–7.69 log copies/mL) of BKV DNA were detected in all 12 urine samples collected. In the other case with persistent viral excretion, a range of 2.45–3.98 log copies/mL of BKV DNA was detected in the four urine samples collected between the 9th and 12th sampling time points. Additionally, high copy numbers (range, 3.12–4.36 log copies/mL) of BKV DNA were detected intermittently in the urine samples of the other four cases. No remarkable correlations were found between the kinetics of BKV DNA loads and urinary findings such as proteinuria and hematuria. The present data demonstrate the kinetics of urinary BKV shedding in pediatric patients with renal diseases. Additionally, no pathogenic role for BKV infection was identified.  相似文献   

3.
Polyomavirus BK (BKV) infection is an important cause of renal allograft failure. Viral microRNAs are known to play a crucial role in viral replication. This study investigated the expression of BKV-encoded microRNAs (miR-B1) in patients with polyomavirus-associated nephropathy (PVAN) and their role in viral replication. Following BKV infection in renal proximal tubular cells, the 3p and 5p miR-B1 levels were significantly increased. Cells transfected with the vector containing the miR-B1 precursor (the miR-B1 vector) showed a significant increase in expression of 3p and 5p miR-B1 and decrease in luciferase activity of a reporter containing the 3p and 5p miR-B1 binding sites, compared to cells transfected with the miR-B1-mutated vector. Transfection of the miR-B1 expression vector or the 3p and 5p miR-B1 oligonucleotides inhibited expression of TAg. TAg-enhanced promoter activity and BKV replication were inhibited by miR-B1. In contrast, inhibition of miR-B1 expression by addition of miR-B1 antagomirs or silencing of Dicer upregulated the expression of TAg and VP1 proteins in BKV-infected cells. Importantly, patients with PVAN had significantly higher levels of 3p and 5p miR-B1 compared to renal transplant patients without PVAN. In conclusion, we demonstrated that (1) miR-B1 expression was upregulated during BKV infection and (2) miR-B1 suppressed TAg-mediated autoregulation of BKV replication. Use of miR-B1 can be evaluated as a potential treatment strategy against BKV infection.  相似文献   

4.
Polyomavirus BK (BKV) has emerged as an important pathogen in kidney transplant patients. Existing taxonomic classifications of BKV come from conventional DNA sequence alignments based on limited data derived from the VP1 gene. We have used a phylogenetic whole-genome approach to examine the pattern of diversity and evolutionary relationships between 45 BKV strains isolated from multiple clinical settings. This analysis supports the classification of BKV into six genotypes, of which types V and VI have not been previously recognized. BKV strains hitherto classified as type I are, in fact, quite heterogeneous, and several cluster with our newly defined genotypes V and VI. The sequence information needed for assigning genotypes can be captured by VP1, VP2, VP3, or large T-gene sequencing. The most polymorphic coding region in the viral genome is VP1, but significant variation is also present in the large T-antigen gene, wherein polymorphisms are found in 11.39% of all nucleotide sites, 46.22% of which are cluster specific. Type-specific amino acid changes within the VP1 region are predicted to map to the BC and DE loops. The number of taxonomically informative amino acid changes in the large T antigen exceeds even that of the VP1 region. Viral strains isolated from healthy subjects and from patients with human immunodeficiency virus infection, Wiskott-Aldrich syndrome, and vasculopathy with capillary leak syndrome formed distinct subclusters. However, within the kidney transplant population, BKV strains derived from patients with asymptomatic viruria did not show complete separation from strains associated with allograft nephropathy.  相似文献   

5.
Objective:  BK virus (BKV) may be associated with interstitial nephritis in renal transplant recipients and this can lead to irreversible chronic allograft dysfunction. Early diagnosis of BKV nephropathy determines its progress because no specific antiviral therapy exists. Urine cytology, detection of viral DNA in urine or blood and renal biopsy are the main diagnostic tools. The purpose of this study was to evaluate the use of urine cytology for diagnosis of BKV replication in renal graft recipients.
Patients and methods:  We studied 32 de novo renal transplant recipients prospectively with sequential urine samples for a period of 1 year. Thin-Prep methodology was used to prepare the slides. Cytology results were correlated with polymerase chain reaction (PCR) in urine and blood.
Results:  Decoy cells indicative of BKV infection were detected in 14 (7.3%) of the 190 urine samples derived from 11 recipients. In three cases with positive decoy cells, BK viraemia and viruria were simultaneously identified. In a further three cases, BKV active replication was confirmed in urine by both cytology and PCR.
Conclusions:  Urine cytology is an easy and rapid method of detecting decoy cells in cases where renal biopsy is not possible. However, the low incidence of detection of decoy cells in the present study, together with poor correlation with PCR results, questions its sensitivity and specificity in diagnosing BKV reactivation.  相似文献   

6.
The HI loop is a prominent domain on the adeno-associated virus (AAV) capsid surface that extends from each viral protein (VP) subunit overlapping the neighboring fivefold VP. Despite the highly conserved nature of the residues at the fivefold pore, the HI loops surrounding this critical region vary significantly in amino acid sequence between the AAV serotypes. In order to understand the role of this unique capsid domain, we ablated side chain interactions between the HI loop and the underlying EF loop in the neighboring VP subunit by generating a collection of deletion, insertion, and substitution mutants. A mutant lacking the HI loop was unable to assemble particles, while a substitution mutant (10 glycine residues) assembled particles but was unable to package viral genomes. Substitution mutants carrying corresponding regions from AAV1, AAV4, AAV5, and AAV8 yielded (i) particles with titers and infectivity identical to those of AAV2 (AAV2 HI1 and HI8), (ii) particles with a decreased virus titer (1 log) but normal infectivity (HI4), and (iii) particles that synthesized VPs but were unable to assemble into intact capsids (HI5). AAV5 HI is shorter than all other HI loops by one amino acid. Replacing the missing residue (threonine) in AAV2 HI5 resulted in a moderate particle assembly rescue. In addition, we replaced the HI loop with peptides varying in length and amino acid sequence. This region tolerated seven-amino-acid peptide substitutions unless they spanned a conserved phenylalanine at amino acid position 661. Mutation of this highly conserved phenylalanine to a glycine resulted in a modest decrease in virus titer but a substantial decrease (1 log order) in infectivity. Subsequently, confocal studies revealed that AAV2 F661G is incapable of efficiently completing a key step in the infectious pathway nuclear entry, hinting at a possible perturbation of VP1 phospholipase activity. Molecular modeling studies with the F661G mutant suggest that disruption of interactions between F661 and an underlying P373 residue in the EF loop of the neighboring subunit might adversely affect incorporation of the VP1 subunit at the fivefold axis. Western blot analysis confirmed inefficient incorporation of VP1, as well as a proteolytically processed VP1 subunit that could account for the markedly reduced infectivity. In summary, our studies show that the HI loop, while flexible in amino acid sequence, is critical for AAV capsid assembly, proper VP1 subunit incorporation, and viral genome packaging, all of which implies a potential role for this unique surface domain in viral infectivity.  相似文献   

7.
Recently, we found that JC polyomavirus (JCPyV) associated with progressive multifocal leukoencephalopathy (PML) frequently undergoes amino acid substitutions (designated VP1 loop mutations) in the outer loops of the major capsid protein, VP1. To further characterize the mutations, we analyzed the VP1 region of the JCPyV genome in brain-tissue or cerebrospinal fluid samples from 20 PML patients. VP1 loop mutations occurred far more frequently than silent mutations. Polymorphic residues were essentially restricted to three positions (55, 60, and 66) within the BC loop, one (123) within the DE loop, and three (265, 267, and 269) within the HI loop. The mutations at most polymorphic residues showed a trend toward a change to specific amino acids. Finally, we presented evidence that the VP1 loop mutations were associated with the progression of PML. These findings should form the basis for elucidating the biological significance of the VP1 loop mutations.  相似文献   

8.
The human polyomavirus BK (BKV) is wide-spread pathogen, associated with urogenital tract disorders or even nephropathy in immunosuppressed patients. Nowadays molecular detection by real-time PCR (qPCR) is recognized as a method-of-choice for detecting human polyomaviruses in clinical samples. The aim of the study was development of real-time PCR assay for detection and quantification of polyomavirus BK DNA in clinical samples, using specific primers targeting a viral DNA VP3 gene and a TaqMan hydrolyzing probe. The analytical sensitivity of assay was tested using serial dilutions of BKV DNA in range between 13500 and 15 copies/ml. 27 urine samples and 23 plasma samples taken from a group of 22 adult recipients of allogeneic HSCT were tested for the presence of polyomavirus BK in the LightCycler system. Described in-house real-time PCR assay detected BKV DNA in 8 specimens (6 urine and 2 plasma). Detected average viral load was 170 copies/ml for plasma and 1250 copies/ml for urine samples, respectively. The results of this study show that developed TaqMan-based probe qPCR assay is very reliable and valuable for detection and quantification of BKV DNA, both in urine and plasma samples. These data, combined with its rapid turnaround time for results and decreased hands-on time, make the LightCycler PCR assay highly suitable for the rapid diagnostics of polyomavirus BK infections in the clinical laboratory.  相似文献   

9.
BK virus (BKV) is a ubiquitous pathogen that establishes a persistent infection in the urinary tract of 80% of the human population. Like other polyomaviruses, the major capsid protein of BKV, virion protein 1 (VP1), is critical for host cell receptor recognition and for proper virion assembly. BKV uses a carbohydrate complex containing alpha(2,3)-linked sialic acid attached to glycoprotein and glycolipid motifs as a cellular receptor. To determine the amino acids important for BKV binding to the sialic acid portion of the complex, we generated a series of 17 point mutations in VP1 and scored them for viral growth. The first set of mutants behaved identically to wild-type virus, suggesting that these amino acids were not critical for virus propagation. Another group of VP1 mutants rendered the virus nonviable. These mutations failed to protect viral DNA from DNase I digestion, indicating a role for these domains in capsid assembly and/or packaging of DNA. A third group of VP1 mutations packaged DNA similarly to the wild type but failed to propagate. The initial burst size of these mutations was similar to that of the wild type, indicating that there is no defect in the lytic release of the mutated virions. Binding experiments revealed that a subset of the BKV mutants were unable to attach to their host cells. These motifs are likely important for sialic acid recognition. We next mapped these mutations onto a model of BKV VP1 to provide atomic insight into the role of these sites in the binding of sialic acid to VP1.  相似文献   

10.
We performed experiments to test the suitability of squirrel monkeys (Saimiri sciureus) as an experimental model for BK virus (BKV) and simian virus 40 (SV40) infection. Four squirrel monkeys received intravenous inoculation with BKV Gardner strain, and six squirrel monkeys received intravenous inoculation with SV40 777 strain. Eight of 10 monkeys received immunosuppression therapy, namely, cyclophosphamide subcutaneously either before or both before and after viral inoculation. The presence of viral infection was assessed by quantitative real-time PCR amplification of viral DNA from blood, urine, and 10 tissues. We found that squirrel monkeys were susceptible to infection with BKV, with high viral copy number detected in blood and viral genome detected in all tissues examined. BKV genome was detected in urine from only one monkey, while three monkeys manifested focal interstitial nephritis. BKV T antigen was expressed in renal peritubular capillary endothelial cells. By contrast, SV40 was detected at very low copy numbers in only a few tissues and was not detected in blood. We conclude that the squirrel monkey is a suitable animal for studies of experimental BKV infection and may facilitate studies of viral entry, pathogenesis, and therapy.  相似文献   

11.
12.
In renal transplant recipients, polyomavirus BK can reactivate resulting in graft nephropathy. Screening for BK virus replication may allow for earlier interventions with reduced allograft loss. The measurement of urinary cell BKV VP1 mRNA for identify viral replication levels at risk of developing nephropathy has been proposed. In this article, the development, optimization, and standardization of a Taqman real-time RT-PCR assay for the quantitation of BKV VP1 mRNA levels in urine is described. Subsequently, the method has been validated on urine specimens obtained from renal transplant recipients. The use of VP1 mRNA measurement as a marker for viral replication and a tool for noninvasive diagnosis of nephropathy should be regarded with great caution, given the potentially limited positive predictive value and the drawbacks associated with the complexity of the real-time RT-PCR assay requiring an expert well trained operator and the relatively poor cost-efficiency ratio.  相似文献   

13.
JC virus (JCV)-specific CD8+ cytotoxic T lymphocytes (CTL) are associated with a favorable outcome in patients with progressive multifocal leukoencephalopathy (PML) and cross-recognize the polyomavirus BK virus (BKV). We sought to determine the frequency and phenotype in fresh blood of CD8+ T cells specific for two A*0201-restricted JCV epitopes, VP1(p36) and VP1(p100), and assess their impact on JC and BK viremia and viruria in 15 healthy subjects, eight human immunodeficiency virus-positive (HIV+) individuals, and nine HIV+ patients with PML (HIV+ PML patients) classified as survivors. After magnetic pre-enrichment of CD8+ T cells, epitope-specific cells ranged from 0.001% to 0.022% [corrected] by tetramer staining, with no significant difference among the three study groups. By use of seven-color flow cytometry, there was no predominant differentiation phenotype subset among JCV-specific CD8+ T cells in healthy individuals, HIV+ subjects, or HIV+ PML patients. However, in one HIV+ PML patient studied in the acute phase, there was a majority of activated effector memory cells. BKV DNA was undetectable in all blood samples by quantitative PCR, while a low JC viral load was found in the blood of only one HIV+ and two HIV+ PML patients. JCV and BKV DNA were detected in 33.3% and 13.3% of all urine samples, respectively, independent of the presence of JCV-specific CTL. The detection of JCV DNA in the urine was associated with the presence of a JCV VP1(p100) CTL response. Immunotherapies aiming at increasing the cellular immune response against JCV may be valuable in the treatment of HIV+ individuals with PML.  相似文献   

14.
Reactivation of the polyomavirus BK (BKV) causes polyomavirus nephropathy (PVN) in kidney transplant (KTx) recipients and may lead to loss of the renal allograft. We have identified two HLA-A*0201-restricted nine-amino-acid cytotoxic T lymphocyte (CTL) epitopes of the BKV major capsid protein VP1, VP1(p44), and VP1(p108). Using tetramer staining assays, we showed that these epitopes were recognized by CTLs in 8 of 10 (VP1(p44)) and 5 of 10 (VP1(p108)) HLA-A*0201+ healthy individuals, while both epitopes elicited a CTL response in 10 of 10 KTx recipients with biopsy-proven PVN, although at variable levels. After in vitro stimulation with the respective peptides, CTLs directed against VP1(p44) were more abundant than against VP1(p108) in most healthy individuals, while the converse was true in KTx recipients with PVN, suggesting a shift in epitope immunodominance in the setting of active BKV infection. A strong CTL response in KTx recipients with PVN appeared to be associated with decreased BK viral load in blood and urine and low anti-BKV antibody titers, while a low or undetectable CTL response correlated with viral persistence and high anti-BKV antibody titers. These results suggest that this cellular immune response is present in most BKV-seropositive healthy individuals and plays an important role in the containment of BKV in KTx recipients with PVN. Interestingly, the BKV CTL epitopes bear striking homology with the recently described CTL epitopes of the other human polyomavirus JC (JCV), JCV VP1(p36) and VP1(p100). A high degree of epitope cross-recognition was present between BKV and corresponding JCV-specific CTLs, which indicates that the same population of cells is functionally effective against these two closely related viruses.  相似文献   

15.
This study evaluated the relative occurrences of BK virus (BKV) and JC virus (JCV) infections in patients with chronic kidney disease (CKD). Urine samples were analysed from CKD patients and from 99 patients without CKD as a control. A total of 100 urine samples were analysed from the experimental (CKD patients) group and 99 from the control group. Following DNA extraction, polymerase chain reaction (PCR) was used to amplify a 173 bp region of the gene encoding the T antigen of the BKV and JCV. JCV and BKV infections were differentiated based on the enzymatic digestion of the amplified products using BamHI endonuclease. The results indicated that none of the patients in either group was infected with the BKV, whereas 11.1% (11/99) of the control group subjects and 4% (4/100) of the kidney patients were infected with the JCV. High levels of urea in the excreted urine, low urinary cellularity, reduced bladder washout and a delay in analysing the samples may have contributed to the low prevalence of infection. The results indicate that there is a need to increase the sensitivity of assays used to detect viruses in patients with CDK, especially given that polyomavirus infections, especially BKV, can lead to a loss of kidney function following transplantation.  相似文献   

16.
BK polyomavirus (BKV) establishes persistent, low-level, and asymptomatic infections in most humans and causes polyomavirus-associated nephropathy (PVAN) and other pathologies in some individuals. The activation of BKV replication following kidney transplantation, leading to viruria, viremia, and, ultimately, PVAN, is associated with immune suppression as well as inflammation and stress from ischemia-reperfusion injury of the allograft, but the stimuli and molecular mechanisms leading to these pathologies are not well defined. The replication of BKV DNA in cell cultures is regulated by the viral noncoding control region (NCCR) comprising the core origin and flanking sequences, to which BKV T antigen (Tag), cellular proteins, and small regulatory RNAs bind. Six nuclear factor I (NFI) binding sites occur in sequences flanking the late side of the core origin (the enhancer) of the archetype virus, and their mutation, either individually or in toto, reduces BKV DNA replication when placed in competition with templates containing intact BKV NCCRs. NFI family members interacted with the helicase domain of BKV Tag in pulldown assays, suggesting that NFI helps recruit Tag to the viral core origin and may modulate its function. However, Tag may not be the sole target of the replication-modulatory activities of NFI: the NFIC/CTF1 isotype stimulates BKV template replication in vitro at low concentrations of DNA polymerase-α primase (Pol-primase), and the p58 subunit of Pol-primase associates with NFIC/CTF1, suggesting that NFI also recruits Pol-primase to the NCCR. These results suggest that NFI proteins (and the signaling pathways that target them) activate BKV replication and contribute to the consequent pathologies caused by acute infection.  相似文献   

17.
OBJECTIVE: To investigate the significance of polyomavirus (PV) viruria and viremia by morphologic, immunohistochemical and molecular analysis (multiplex nested-polymerase chain reaction) in renal transplant patients. STUDY DESIGN: Urine (n=328), serum (n= 53) and renal biopsies (n=24) from renal transplant patients (n=106) were studied. RESULTS: Decoy cells were found in 53 samples (16%) from 19 patients (18%); viral DNA was amplified in all urinary samples and disclosed BK virus (BKV) (n=24), JC virus (JCV) (n=16), and JCV and BKV DNA (n=13). BKV was the prevailing genotype in patients with a high frequency of decoy cell excretion (p = 0.001). JCV excretion correlated with a low number (p = 0.01) and BKV with a high number of decoy cells (p=0.003). PV DNA was amplified from 30/53 serum samples (56.6%); BKV was the prevailing genotype (p = 0.04). On 24 renal biopsies (18 from the decoy cell-negative and 6 from the decoy cell-positive group) PV nephropathy (PVN) was identified and BKV DNA amplified in 4 biopsies, all from the group with a high frequency of decoy cell excretion. PVN was not identified in renal biopsies from the decoy cell-negative group. CONCLUSION: PV infection is frequent in renal transplant patients. The BKV genotype in urine and serum is significantly related to a high frequency and high number of decoy cells. PVN occurs only in patients with BKV viremia and a high number and frequency of decoy cell excretion in urine. In the absence of decoy cells, PVN can be excluded. Cytologic analysis of urine is an important diagnostic tool for screening renal transplant patients at risk of PVN.  相似文献   

18.
The mechanism of human-to-human transmission of the polyomaviruses JC virus (JCV) and BK virus (BKV) has not been firmly established with regard to possible human exposure. JCV and BKV have been found in sewage samples from different geographical areas in Europe, Africa, and the United States, with average concentrations of 10(2) to 10(3) JCV particles/ml and 10(1) to 10(2) BKV particles/ml. Selected polyomavirus-positive sewage samples were further characterized. The JCV and BKV present in these samples were identified by sequencing of the intergenic region (the region found between the T antigen and VP coding regions) of JCV and the VP1 region of BKV. The regulatory region of the JCV and BKV strains found in sewage samples presented archetypal or archetype-like genetic structures, as described for urine samples. The stability (the time required for a 90% reduction in the virus concentration) of the viral particles in sewage at 20 degrees C was estimated to be 26.7 days for JCV and 53.6 days for BKV. The presence of JCV in 50% of the shellfish samples analyzed confirmed the stability of these viral particles in the environment. BKV and JCV particles were also found to be stable at pH 5; however, treatment at a pH lower than 3 resulted in the detection of free viral DNA. Since most humans are infected with JCV and BKV, these data indicate that the ingestion of contaminated water or food could represent a possible portal of entrance of these viruses or polyomavirus DNA into the human population.  相似文献   

19.

Background

Polyomavirus associated nephropathy (PVAN) is a significant cause of early allograft loss and the course is difficult to predict. The aim of this study is to identify factors influencing outcome for PVAN.

Methods

Between 2006 and 2014, we diagnosed PVAN in 48 (7.8%) of 615 patients monitored for BK virus every 1–4 weeks after modification of maintenance immunosuppression. Logistic or Cox regression analysis were performed to determine which risk factors independently affected clinical outcome and graft loss respectively.

Results

After 32.1±26.4 months follow-up, the frequencies of any graft functional decline at 1 year post-diagnosis, graft loss and any graft functional decline at the last available follow-up were 27.1% (13/48), 25.0% (12/48), and 33.3% (16/48), respectively. The 1, 3, 5 year graft survival rates were 100%, 80.5% and 69.1%, respectively. The mean level of serum creatinine at 1 year post-diagnosis and long-term graft survival rates were the worst in class C (p<0.05). Thirty-eight of 46 (82.6%) BKV DNAuria patients reduced viral load by 90% with a median time of 2.75 months (range, 0.25–34.0 months) and showed better graft survival rates than the 8 patients (17.4%) without viral load reduction (p<0.001). Multivariate logistic regression analysis showed that extensive interstitial inflammation (OR 20.2, p = 0.042) and delayed fall in urinary viral load (>2.75 months for >90% decrease) in urine (OR 16.7, p = 0.055) correlated with worse creatinine at 1 year post-diagnosis. Multivariate Cox regression analysis showed that extensive interstitial inflammation (HR 46988, p = 0.032) at diagnosis, and high PVAN stage (HR 162.2, p = 0.021) were associated with worse long-term graft survival rates.

Conclusions

The extent of interstitial inflammation influences short and long-term graft outcomes in patients with PVAN. The degree of PVAN, rate of reduction in viral load, and viral clearance also can be used as prognostic markers in PVAN.  相似文献   

20.

Background

The diagnosis and management of BK virus (BKV) reactivation following renal transplantation continues to be a significant clinical problem. Following reactivation of latent virus, impaired cellular immunity enables sustained viral replication to occur in urothelial cells, which potentially leads to the development of BKV-associated nephropathy (BKVAN). Current guidelines recommend regular surveillance for BKV reactivation through the detection of infected urothelial cells in urine (decoy cells) or viral nucleic acid in urine or blood. However, these methods have variable sensitivity and cannot routinely distinguish between different viral subtypes. We therefore asked whether mass spectrometry might be able to overcome these limitations and provide an additional non-invasive technique for the surveillance of BKV and identification of recipients at increased risk of BKVAN.

Results

Here we describe a mass spectrometry (MS)-based method for the detection of BKV derived proteins directly isolated from clinical urine samples. Peptides detected by MS derived from Viral Protein 1 (VP1) allowed differentiation between subtypes I and IV. Using this approach, we observed an association between higher decoy cell numbers and the presence of the VP1 subtype Ib-2 in urine samples derived from a cohort of 20 renal transplant recipients, consistent with the hypothesis that certain viral subtypes may be associated with more severe BKVAN.

Conclusions

This is the first study to identify BK virus proteins in clinical samples by MS and that this approach makes it possible to distinguish between different viral subtypes. Further studies are required to establish whether this information could lead to stratification of patients at risk of BKVAN, facilitate distinction between BKVAN and acute rejection (AR), and ultimately improve patient treatment and outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号