首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
张大鹏 《植物学通报》2011,46(4):361-369
该文全面评述了植物激素脱落酸(ABA)受体的研究进展概况,重点介绍细胞内ABA受体ABAR/镁螯合酶H亚基CHLH对ABA信号感知和向下游转导的研究进展,总结了ABAR介导的、起始于质体/叶绿体的ABA信号通路。ABAR是一个跨越叶绿体被膜的蛋白质,其N-端和C-端暴露在细胞质中;ABAR在细胞质一侧的C-端部分与一组WRKY转录因子(WRKY18、WRKY40、WRKY60)相互作用。WRKY18、WRKY40和WRKY60是一组转录抑制因子。它们互相协作,抑制下游重要的ABA信号调节子基因(如ABI4、ABI5、ABF4和MYB2等)的表达,从而负调节ABA信号通路。WRKY40是其中的核心调节子,WRKY18协助加强WRKY40对ABA信号的负调节。ABAR与ABA信号分子结合后,可以刺激WRKY40从细胞核转移至细胞质,促进ABAR与WRKY40的相互作用;进而激发一种未知因子(或信号系统),阻遏WRKY40的表达,从而解除WRKY40对ABA响应基因转录的抑制,最终实现ABA的生理效应。这些发现描述了一个从信号原初识别到下游基因表达的新的ABA信号通路。论文最后对未来该领域的研究方向进行了讨论。  相似文献   

5.
Jia HF  Chai YM  Li CL  Lu D  Luo JJ  Qin L  Shen YY 《Plant physiology》2011,157(1):188-199
The plant hormone abscisic acid (ABA) has been suggested to play a role in fruit development, but supporting genetic evidence has been lacking. Here, we report that ABA promotes strawberry (Fragaria ananassa) fruit ripening. Using a newly established Tobacco rattle virus-induced gene silencing technique in strawberry fruit, the expression of a 9-cis-epoxycarotenoid dioxygenase gene (FaNCED1), which is key to ABA biosynthesis, was down-regulated, resulting in a significant decrease in ABA levels and uncolored fruits. Interestingly, a similar uncolored phenotype was observed in the transgenic RNA interference (RNAi) fruits, in which the expression of a putative ABA receptor gene encoding the magnesium chelatase H subunit (FaCHLH/ABAR) was down-regulated by virus-induced gene silencing. More importantly, the uncolored phenotype of the FaNCED1-down-regulated RNAi fruits could be rescued by exogenous ABA, but the ABA treatment could not reverse the uncolored phenotype of the FaCHLH/ABAR-down-regulated RNAi fruits. We observed that down-regulation of the FaCHLH/ABAR gene in the RNAi fruit altered both ABA levels and sugar content as well as a set of ABA- and/or sugar-responsive genes. Additionally, we showed that exogenous sugars, particularly sucrose, can significantly promote ripening while stimulating ABA accumulation. These data provide evidence that ABA is a signal molecule that promotes strawberry ripening and that the putative ABA receptor, FaCHLH/ABAR, is a positive regulator of ripening in response to ABA.  相似文献   

6.
7.
Using a newly developed abscisic acid (ABA)-affinity chromatography technique, we showed that the magnesium-chelatase H subunit ABAR/CHLH (for putative abscisic acid receptor/chelatase H subunit) specifically binds ABA through the C-terminal half but not the N-terminal half. A set of potential agonists/antagonists to ABA, including 2-trans,4-trans-ABA, gibberellin, cytokinin-like regulator 6-benzylaminopurine, auxin indole-3-acetic acid, auxin-like substance naphthalene acetic acid, and jasmonic acid methyl ester, did not bind ABAR/CHLH. A C-terminal C370 truncated ABAR with 369 amino acid residues (631–999) was shown to bind ABA, which may be a core of the ABA-binding domain in the C-terminal half. Consistently, expression of the ABAR/CHLH C-terminal half truncated proteins fused with green fluorescent protein (GFP) in wild-type plants conferred ABA hypersensitivity in all major ABA responses, including seed germination, postgermination growth, and stomatal movement, and the expression of the same truncated proteins fused with GFP in an ABA-insensitive cch mutant of the ABAR/CHLH gene restored the ABA sensitivity of the mutant in all of the ABA responses. However, the effect of expression of the ABAR N-terminal half fused with GFP in the wild-type plants was limited to seedling growth, and the restoring effect of the ABA sensitivity of the cch mutant was limited to seed germination. In addition, we identified two new mutant alleles of ABAR/CHLH from the mutant pool in the Arabidopsis Biological Resource Center via Arabidopsis (Arabidopsis thaliana) Targeting-Induced Local Lesions in Genomes. The abar-2 mutant has a point mutation resulting in the N-terminal Leu-348→Phe, and the abar-3 mutant has a point mutation resulting in the N-terminal Ser-183→Phe. The two mutants show altered ABA-related phenotypes in seed germination and postgermination growth but not in stomatal movement. These findings support the idea that ABAR/CHLH is an ABA receptor and reveal that the C-terminal half of ABAR/CHLH plays a central role in ABA signaling, which is consistent with its ABA-binding ability, but the N-terminal half is also functionally required, likely through a regulatory action on the C-terminal half.  相似文献   

8.
9.
10.
植物ABA受体及其介导的信号转导通路   总被引:3,自引:0,他引:3  
易文凯  王佳  杨辉  田云  卢向阳 《植物学报》2012,47(5):515-524
ABA是调控植物体生长发育和响应外界应激的重要植物激素之一。近年来, ABA受体的筛选和鉴定取得了突破性进展, 为植物中ABA信号转导通路的阐明奠定了重要基础。该文主要综述了ABA-binding protein/H subunit of Mgchelatase (ABAR/CHLH)、G protein-coupled receptor 2 (GCR2)、GPCR-type G protein 1/2 (GTG1/2)和pyrabactin resistant/PYR-like/regulatory component of ABA (PYR/PYL/RCAR)被报道为ABA受体的研究历程, 重点介绍了以ABAR/CHLH PYR/PYL/RCAR为受体的ABA信号转导通路模型的构建, 旨在为ABA受体及其信号转导通路的相关研究提供参考。  相似文献   

11.
12.
WRKY转录因子是植物一类比较大的基因家族,在水稻中已鉴定出102个成员。研究表明WRKY转录因子在植物生长发育、抗病耐逆等方面都具有重要的作用。本研究利用基因芯片数据结合实时定量分析,对水稻Os WRKY转录因子基因在不同的非生物逆境下的表达进行了分析,发现至少有33个Os WRKY基因同时对任何两种非生物胁迫因子做出响应,且所选20个基因中,13个基因可被ABA所诱导。OsWRKY基因这种重叠表达的特性,预示着这些基因在非生物逆境中具有功能多效性,对于培育抗逆境水稻品种具有重要的理论与实践意义。  相似文献   

13.
14.
15.
16.
17.
The mechanisms by which the maize antioxidant Cat1 gene responds to abscisic acid (ABA) and osmotic stress have been investigated. Results show that during late embryogenesis, Cat1 expression in vivo is independent of endogenous ABA levels. However, exogenously applied ABA significantly enhances Cat1 expression. Transient assays using particle bombardment show that the proximal ABRE2 element on the Cat1 promoter is responsible for the induction of Cat1 expression by ABA. We further show that ABA induces the expression of Cat1 via the interaction between ABRE2 and one of its binding proteins, CBF1 (Cat1 binding factor 1). Using ABA-deficient mutant embryos, we show that osmotic stress induces Cat1 expression through two alternate signal transduction pathways: an ABA signaling pathway leading to the interaction between the ABRE2 motif and CBF1, and a pathway via the interaction of ABRE2 and CBF2 (Cat1 binding factor 2) that is independent of ABA. The data presented clearly suggest that hydrogen peroxide (H2O2) plays an important intermediary role in the ABA signal transduction pathway leading to the induction of the Cat1 gene.  相似文献   

18.
Abscisic acid (ABA) plays a multifaceted role in plant immunity and can either increase resistance or increase susceptibility to some bacterial and fungal pathogens depending on the pathosystem. ABA is also known to mediate plant defence to some viruses. In this study, the relationship between the ABA pathway and rice black‐streaked dwarf virus (RBSDV) was investigated in rice. The expression of ABA pathway genes was significantly reduced upon RBSDV infection. Application of exogenous hormones and various ABA pathway mutants revealed that the ABA pathway plays a negative role in rice defence against RBSDV. Exogenous hormone treatment and virus inoculation showed that ABA inhibits the jasmonate‐mediated resistance to RBSDV. ABA treatment also suppressed accumulation of reactive oxygen species by inducing the expression of superoxidase dismutases and catalases. Thus, ABA modulates the rice–RBSDV interaction by suppressing the jasmonate pathway and regulating reactive oxygen species levels. This is the first example of ABA increasing susceptibility to a plant virus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号