首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We have analyzed nucleotide sequence variation in an approximately 900-base pair region of the human mitochondrial DNA molecule encompassing the heavy strand origin of replication and the D-loop. Our analysis has focused on nucleotide sequences available from seven humans. Average nucleotide diversity among the sequences is 1.7%, several-fold higher than estimates from restriction endonuclease site variation in mtDNA from these individuals and previously reported for other humans. This disparity is consistent with the rapidly evolving nature of this noncoding region. However, several instances of convergent or parallel gain and loss of restriction sites due to multiple substitutions were observed. In addition, other results suggest that restriction site (as well as pairwise sequence) comparisons may underestimate the total number of substitutions that have occurred since the divergence of two mtDNA sequences from a common ancestral sequence, even at low levels of divergence. This emphasizes the importance of recognizing the large standard errors associated with estimates of sequence variability, particularly when constructing phylogenies among closely related sequences. Analysis of the observed number and direction of substitutions revealed several significant biases, most notably a strand dependence of substitution type and a 32-fold bias favoring transitions over transversions. The results also revealed a significantly nonrandom distribution of nucleotide substitutions and sequence length variation. Significantly more multiple substitutions were observed than expected for these closely related sequences under the assumption of uniform rates of substitution. The bias for transitions has resulted in predominantly convergent or parallel changes among the observed multiple substitutions. There is no convincing evidence that recombination has contributed to the mtDNA sequence diversity we have observed.  相似文献   

2.
Estimation of evolutionary distance between nucleotide sequences   总被引:34,自引:9,他引:25  
A mathematical formula for estimating the average number of nucleotide substitutions per site (delta) between two homologous DNA sequences is developed by taking into account unequal rates of substitution among different nucleotide pairs. Although this formula is obtained for the equal-input model of nucleotide substitution, computer simulations have shown that it gives a reasonably good estimate for a wide range of nucleotide substitution patterns as long as delta is equal to or smaller than 1. Furthermore, the frequency of cases to which the formula is inapplicable is much lower than that for other similar methods recently proposed. This point is illustrated using insulin genes. A statistical method for estimating the number of nucleotide changes due to deletion and insertion is also developed. Application of this method to globin gene data indicates that the number of nucleotide changes per site increases with evolutionary time but the pattern of the increase is quite irregular.   相似文献   

3.
Accuracy of estimated phylogenetic trees from molecular data   总被引:2,自引:0,他引:2  
Summary The accuracies and efficiencies of four different methods for constructing phylogenetic trees from molecular data were examined by using computer simulation. The methods examined are UPGMA, Fitch and Margoliash's (1967) (F/M) method, Farris' (1972) method, and the modified Farris method (Tateno, Nei, and Tajima, this paper). In the computer simulation, eight OTUs (32 OTUs in one case) were assumed to evolve according to a given model tree, and the evolutionary change of a sequence of 300 nucleotides was followed. The nucleotide substitution in this sequence was assumed to occur following the Poisson distribution, negative binomial distribution or a model of temporally varying rate. Estimates of nucleotide substitutions (genetic distances) were then computed for all pairs of the nucleotide sequences that were generated at the end of the evolution considered, and from these estimates a phylogenetic tree was reconstructed and compared with the true model tree. The results of this comparison indicate that when the coefficient of variation of branch length is large the Farris and modified Farris methods tend to be better than UPGMA and the F/M method for obtaining a good topology. For estimating the number of nucleotide substitutions for each branch of the tree, however, the modified Farris method shows a better performance than the Farris method. When the coefficient of variation of branch length is small, however, UPGMA shows the best performance among the four methods examined. Nevertheless, any tree-making method is likely to make errors in obtaining the correct topology with a high probability, unless all branch lengths of the true tree are sufficiently long. It is also shown that the agreement between patristic and observed genetic distances is not a good indicator of the goodness of the tree obtained.  相似文献   

4.
Summary A mathematical formula for the relationship between the average number of nucleotide substitutions per site and the proportion of shared restriction sites between two homologous nucleons is developed by taking into account the unequal rates of substitution among different pairs of nucleotides. Using this formula, the possible amount of bias of the estimate of the number of nucleotide substitutions obtained by the Upholt-Nei-Li formula for restriction site data is investigated. The results obtained indicate that the bias depends upon the nucleotides in the recognition sequence of the restriction enzyme used, the unequal rates of substitution among different nucleotides, and the unequal nucleotide frequencies, but the primary factor is the unequal rates of nucleotide substitution. The amount of bias is generally larger for four-base enzymes than for six-base enzymes. However, when many restriction enzymes are used for the study of DNA divergence, the bias is unlikely to be very large unless the rate of substitution greatly varies from nucleotide to nucleotide.  相似文献   

5.
It has long been known, from the distribution of multiple amino acid replacements, that not all amino acids of a sequence are replaceable. More recently, the phenomenon was observed at the nucleotide level in mitochondrial DNA even after allowing for different rates of transition and transversion substitutions. We have extended the search to globin gene sequences from various organisms, with the following results: (1) Nearly every data set showed evidence of invariable nucleotide positions. (2) In all data sets, substitution rates of transversions and transitions were never in the ratio of 2/1, and rarely was the ratio even constant. (3) Only rarely (e.g., the third codon position of beta hemoglobins) was it possible to fit the data set solely by making allowance for the number of invariable positions and for the relative rates of transversion and transition substitutions. (4) For one data set (the second codon position of beta hemoglobins) we were able to simulate the observed data by making the allowance in (3) and having the set of covariotides (concomitantly variable nucleotides) be small in number and be turned over in a stochastic manner with a probability that was appreciable. (5) The fit in the latter case suggests, if the assumptions are correct and at all common, that current procedures for estimating the total number of nucleotide substitutions in two genes since their divergence from their common ancestor could be low by as much as an order of magnitude. (6) The fact that only a small fraction of the nucleotide positions differ is no guarantee that one is not seriously underestimating the total amount of divergence (substitutions). (7) Most data sets are so heterogeneous in their number of transition and transversion differences that none of the current models of nucleotide substitution seem to fit them even after (a) segregation of coding from noncoding sequences and (b) splitting of the codon into three subsets by codon position. (8) These frequently occurring problems cannot be seen unless several reasonably divergent orthologous genes are examined together.   相似文献   

6.
Unbiased estimation of evolutionary distance between nucleotide sequences   总被引:7,自引:2,他引:5  
A new algorithm for estimating the number of nucleotide substitutions per site (i.e., the evolutionary distance) between two nucleotide sequences is presented. This algorithm can be applied to many estimation methods, such as Jukes and Cantor's method, Kimura's transition/transversion method, and Tajima and Nei's method. Unlike ordinary methods, this algorithm is always applicable. Numerical computations and computer simulations indicate that this algorithm gives an almost unbiased estimate of the evolutionary distance, unless the evolutionary distance is very large. This algorithm should be useful especially when we analyze short nucleotide sequences. It can also be applied to amino acid sequences, for estimating the number of amino acid replacements.   相似文献   

7.
Summary The mRNA sequences of beta hemoglobin for human, mouse and rabbit were examined. Observations included the following: (1) there is a significant bias against the use of codons only one nucleotide different from terminating codons; (2) less than 4% of the codons end in adenine; (3), guanine is the most common third position nucleotide but it never follows a second position cytosine; (4) nearest neighbor (doublet) nucleotides are non-random with the greatest contributor to non-randomness being the third position suggesting that codon choice for a given amino acid rather than a choice among amino acids is the more important contributor; (5) the CG dinucleotide is even rarer in positions other than the first and second of the codon than it is in those two, suggesting that the need for arginine has in fact elevated the CG frequency in those positions; (6) 77 per cent of the nucleotides are unsubstituted among these three taxa, which could be a sampling effect, but there is strong evidence that about one-third of them are in fact unsubstitutable because of selective constrainsts; (7) the two longest stretches of unsubstituted nucleotides (32 and 35 consecutive nucleotides) surround the points of the two non-coding insertion sequences; (8) over half the substitutions occur in the third nucleotide position of the codons; (9) silent (non-amino acid changing) substitutions occur at about four times the rate of non-silent substitutions on the basis of their relative opportunity to occur; (10) silent substitutions occur slightly but significantly more often in codons that also have non-silent substitutions than independence of the two events would predict; (11) substitutions occur in adjacent nucleotides significantly more often than chance would predict; (12) among four-fold degenerate codons, third position transitions (principally cytosine-uracil interchanges) outnumber transversions by two to one although the reverse ratio would be expected.The analysis of these messengers provided an opportunity to evaluate the random evolutionary hit (REH) theory. I observed that: (1) the REH theory is premised upon five assumptions, all false; (2) the theory leads to contradictory estimates of the number of varions; (3) the REH values are underestimates; (4) the REH values frequently violate the triangle inequality; (5) the REH values, contrary to claim, are not concordant either with accepted point mutations (PAMs) or augmented distances; (6) the REH values are more likely than values uncorrected for multiple substitutions to give incorrect phylogenies; and (7) the REH values have statistical problems probably associated with a large variance in its fundamental parameter, re. From this I conclude that REH theory is not suitable for its intended purpose of estimating from protein sequences of nucleotide substitutions since the common ancestor of two gene products.  相似文献   

8.
Examining the pattern of nucleotide substitution for the control region of mitochondrial DNA (mtDNA) in humans and chimpanzees, we developed a new mathematical method for estimating the number of transitional and transversional substitutions per site, as well as the total number of nucleotide substitutions. In this method, excess transitions, unequal nucleotide frequencies, and variation of substitution rate among different sites are all taken into account. Application of this method to human and chimpanzee data suggested that the transition/transversion ratio for the entire control region was approximately 15 and nearly the same for the two species. The 95% confidence interval of the age of the common ancestral mtDNA was estimated to be 80,000-480,000 years in humans and 0.57-2.72 Myr in common chimpanzees.   相似文献   

9.
A mathematical theory for the evolutionary change of restriction endonuclease cleavage sites is developed, and the probabilities of various types of restriction-site changes are evaluated. A computer simulation is also conducted to study properties of the evolutionary change of restriction sites. These studies indicate that parsimony methods of constructing phylogenetic trees often make erroneous inferences about evolutionary changes of restriction sites unless the number of nucleotide substitutions per site is less than 0.01 for all branches of the tree. This introduces a systematic error in estimating the number of mutational changes for each branch and, consequently, in constructing phylogenetic trees. Therefore, parsimony methods should be used only in cases where nucleotide sequences are closely related. Reexamination of Ferris et al.'s data on restriction-site differences of mitochondrial DNAs does not support Templeton's conclusions regarding the phylogenetic tree for man and apes and the molecular clock hypothesis. Templeton's claim that Nei and Li's method of estimating the number of nucleotide substitutions per site is seriously affected by parallel losses and loss-gains of restriction sites is also unsupported.   相似文献   

10.
Summary A method of estimating the number of nucleotide substitutions from amino acid sequence data is developed by using Dayhoff's mutation probability matrix. This method takes into account the effect of nonrandom amino acid substitutions and gives an estimate which is similar to the value obtained by Fitch's counting method, but larger than the estimate obtained under the assumption of random substitutions (Jukes and Cantor's formula). Computer simulations based on Dayhoff's mutation probability matrix have suggested that Jukes and Holmquist's method of estimating the number of nucleotide substitutions gives an overestimate when amino acid substitution is not random and the variance of the estimate is generally very large. It is also shown that when the number of nucleotide substitutions is small, this method tends to give an overestimate even when amino acid substitution is purely at random.  相似文献   

11.
Summary A formal mathematical analysis of Kimura's (1981) six-parameter model of nucleotide substitution for the case of unequal substitution rates among different pairs of nucleotides is conducted, and new formulae for estimating the number of nucleotide substitutions and its standard error are obtained. By using computer simulation, the validities and utilities of Jukes and Cantor's (1969) one-parameter formula, Takahata and Kimura's (1981) four-parameter formula, and our sixparameter formula for estimating the number of nucleotide substitutions are examined under three different schemes of nucleotide substitution. It is shown that the one-parameter and four-parameter formulae often give underestimates when the number of nucleotide substitutions is large, whereas the six-parameter formula generally gives a good estimate for all the three substitution schemes examined. However, when the number of nucleotide substitutions is large, the six-parameter and four-parameter formulae are often inapplicable unless the number of nucleotides compared is extremely large. It is also shown that as long as the mean number of nucleotide substitutions is smaller than one per nucleotide site the three formulae give more or less the same estimate regardless of the substitution scheme used.On leave of absence from the Department of Biology, Faculty of Science, Kyushu University 33, Fukuoka 812, Japan  相似文献   

12.
The nucleotide sequences of closely related members of a gene family can be used to investigate spontaneous mutations. Here we analyse the sequences of different yeast invertase genes which are more than 93% identical in the coding region and share some very similar, but not identical sequences in the noncoding flanking regions. Since all except one of the invertase genes are active, most of the base substitutions are silent. Within the coding region the base substitutions are unevenly distributed, indicating that parts of the genes were homogenized, probably via gene conversion. Transitions occurred more frequently than transversions in both, coding and noncoding regions. In the coding region pyrimidine transitions were the most abundant event due to silent changes mainly in the third codon position. In the noncoding region pyrimidine and purine transitions were found at equal frequencies. Transversions inverting base pairs (A-T and G-C) outnumber transversions changing base pairs (A-C and G-T). While the spectrum of mutations in the coding region is influenced by selective pressure to maintain the amino acid sequence, the spectrum in the noncoding region may be much less affected by selective pressure.  相似文献   

13.
Sequence Evolution of Drosophila Mitochondrial DNA   总被引:18,自引:3,他引:15       下载免费PDF全文
We have compared nucleotide sequences of corresponding segments of the mitochondrial DNA (mtDNA) molecules of Drosophila yakuba and Drosophila melanogaster, which contain the genes for six proteins and seven tRNAs. The overall frequency of substitution between the nucleotide sequences of these protein genes is 7.2%. As was found for mtDNAs from closely related mammals, most substitutions (86%) in Drosophila mitochondrial protein genes do not result in an amino acid replacement. However, the frequencies of transitions and transversions are approximately equal in Drosophila mtDNAs, which is in contrast to the vast excess of transitions over transversions in mammalian mtDNAs. In Drosophila mtDNAs the frequency of C----T substitutions per codon in the third position is 2.5 times greater among codons of two-codon families than among codons of four-codon families; this is contrary to the hypothesis that third position silent substitutions are neutral in regard to selection. In the third position of codons of four-codon families transversions are 4.6 times more frequent than transitions and A----T substitutions account for 86% of all transversions. Ninety-four percent of all codons in the Drosophila mtDNA segments analyzed end in A or T. However, as this alone cannot account for the observed high frequency of A----T substitutions there must be either a disproportionately high rate of A----T mutation in Drosophila mtDNA or selection bias for the products of A----T mutation. --Consideration of the frequencies of interchange of AGA and AGT codons in the corresponding D. yakuba and D. melanogaster mitochondrial protein genes provides strong support for the view that AGA specifies serine in the Drosophila mitochondrial genetic code.  相似文献   

14.
Summary Goodman et al.'s (1974) populous path algorithm for estimating hidden mutational change in protein evolution is designed to be used as an adjunct to the maximum parsimony method. When the algorithm is so used, the augmented maximum parsimony distances, far from being overestimates, are underestimates of the actual number of nucleotide substitutions which occur in Tateno and Nei's (1978) computer simulation by the Poisson process model, even when the simulation is carried out at two and a half times the sequence density. Although underestimates, our evidence shows that they are nevertheless more accurate than estimates obtained by a Poisson correction. In the maximum parsimony reconstruction, there is a bias towards overrepresenting the number of shared nucleotide identities between adjacent ancestral and descendant nodal sequences with the bias being stronger in those portions of the evolutionary tree sparser in sequence data. Because of this particular property of maximum parsimony reconstructed sequences, the conclusions of Tateno and Nei concerning the statistical properties of the populous path algorithm are invalid. We conclude that estimates of protein evolutionary rates by the maximum parsimony - populous path approach will become more accurate rather than less as larger numbers of closely related species are included in the analysis.  相似文献   

15.
The relative efficiencies of the maximum parsimony (MP) and distance-matrix methods in obtaining the correct tree (topology) were studied by using computer simulation. The distance-matrix methods examined are the neighbor-joining, distance-Wagner, Tateno et al. modified Farris, Faith, and Li methods. In the computer simulation, six or eight DNA sequences were assumed to evolve following a given model tree, and the evolutionary changes of the sequences were followed. Both constant and varying rates of nucleotide substitution were considered. From the sequences thus obtained, phylogenetic trees were constructed using the six tree-making methods and compared with the model (true) tree. This process was repeated 300 times for each different set of parameters. The results obtained indicate that when the number of nucleotide substitutions per site is small and a relatively small number of nucleotides are used, the probability of obtaining the correct topology (P1) is generally lower in the MP method than in the distance-matrix methods. The P1 value for the MP method increases with increasing number of nucleotides but is still generally lower than the value for the NJ or DW method. Essentially the same conclusion was obtained whether or not the rate of nucleotide substitution was constant or whether or not a transition bias in nucleotide substitution existed. The relatively poor performance of the MP method for these cases is due to the fact that information from singular sites is not used in this method. The MP method also showed a relatively low P1 value when the model of varying rate of nucleotide substitution was used and the number of substitutions per site was large. However, the MP method often produced cases in which the correct tree was one of several equally parsimonious trees. When these cases were included in the class of "success," the MP method performed better than the other methods, provided that the number of nucleotide substitutions per site was small.  相似文献   

16.
Most of the sophisticated methods to estimate evolutionary divergence between DNA sequences assume that the two sequences have evolved with the same pattern of nucleotide substitution after their divergence from their most recent common ancestor (homogeneity assumption). If this assumption is violated, the evolutionary distance estimated will be biased, which may result in biased estimates of divergence times and substitution rates, and may lead to erroneous branching patterns in the inferred phylogenies. Here we present a simple modification for existing distance estimation methods to relax the assumption of the substitution pattern homogeneity among lineages when analyzing DNA and protein sequences. Results from computer simulations and empirical data analyses for human and mouse genes are presented to demonstrate that the proposed modification reduces the estimation bias considerably and that the modified method performs much better than the LogDet methods, which do not require the homogeneity assumption in estimating the number of substitutions per site. We also discuss the relationship of the substitution and mutation rate estimates when the substitution pattern is not the same in the lineages leading to the two sequences compared.  相似文献   

17.
Genomewide comparison of DNA sequences between humans and chimpanzees   总被引:30,自引:1,他引:29       下载免费PDF全文
A total of 8,859 DNA sequences encompassing ~1.9 million base pairs of the chimpanzee genome were sequenced and compared to corresponding human DNA sequences. Although the average sequence difference is low (1.24%), the extent of changes is markedly different among sites and types of substitutions. Whereas ~15% of all CpG sites have experienced changes between humans and chimpanzees, owing to a 23-fold excess of transitions and a 7-fold excess of transversions, substitutions at other sites vary in frequency, between 0.1% and 0.5%. If the nucleotide diversity in the common ancestral species of humans and chimpanzees is assumed to have been about fourfold higher than in contemporary humans, all possible comparisons between autosomes and X and Y chromosomes result in estimates of the ratio between male and female mutation rates of ~3. Thus, the relative time spent in the male and female germlines may be a major determinant of the overall accumulation of nucleotide substitutions. However, since the extent of divergence differs significantly among autosomes, additional unknown factors must also influence the accumulation of substitutions in the human genome.  相似文献   

18.
Comparison of numbers of synonymous and nonsynonymous substitutions is useful for understanding mechanisms of molecular evolution. In this paper, I examine the statistical properties of six methods of estimating numbers of synonymous and nonsynonymous substitutions. The six methods are Miyata and Yasunaga’s (MY) method; Nei and Gojobori’s (NG) method; Li, Wu and Luo’s (LWL) method; Pamilo, Bianchi and Li’s (PBL) method; and Ina’s (Ina) two methods. When the transition/transversion bias at the mutation level is strong, the numbers of synonymous and nonsynonymous substitutions are estimated more accurately by the PBL and Ina methods than by the NG, MY and LWL methods. When the nucleotide-frequency bias is strong and distantly related sequences are compared, all the six methods give underestimates of the number of synonymous substitutions. The concept of synonymous and nonsynonymous categories is also useful for analysis of DNA polymorphism data.  相似文献   

19.
A method is presented for estimating the transition/transversion ratio (TI/TV), based on phylogenetically independent comparisons. TI/TV is a parameter of some models used in phylogeny estimation intended to reflect the fact that nucleotide substitutions are not all equally likely. Previous attempts to estimate TI/TV have commonly faced three problems: (1) few taxa; (2) nonindependence among pairwise comparisons; and (3) multiple hits make the apparent TI/TV between two sequences decrease over time since their divergence, giving a misleading impression of relative substitution probabilities. We have made use of the time dependency, modeling how the observed TI/TV changes over time and extrapolating to estimate the ``instantaneous' TI/TV—the relevant parameter for phylogenetic inference. To illustrate our method, TI/TV was estimated for two mammalian mitochondrial genes. For 26 pairs of cytochrome b sequences, the estimate of TI/TV was 5.5; 16 pairs of 12s rRNA yielded an estimate of 9.5. These estimates are higher than those given by the maximum likelihood method and than those obtained by averaging all possible pairwise comparisons (with or without a two-parameter correction for multiple substitutions). We discuss strengths, weaknesses, and further uses of our method. Received: 22 August 1995 / Accepted: 26 July 1996  相似文献   

20.
A O Urrutia  L D Hurst 《Genetics》2001,159(3):1191-1199
In numerous species, from bacteria to Drosophila, evidence suggests that selection acts even on synonymous codon usage: codon bias is greater in more abundantly expressed genes, the rate of synonymous evolution is lower in genes with greater codon bias, and there is consistency between genes in the same species in which codons are preferred. In contrast, in mammals, while nonequal use of alternative codons is observed, the bias is attributed to the background variance in nucleotide concentrations, reflected in the similar nucleotide composition of flanking noncoding and exonic third sites. However, a systematic examination of the covariants of codon usage controlling for background nucleotide content has yet to be performed. Here we present a new method to measure codon bias that corrects for background nucleotide content and apply this to 2396 human genes. Nearly all (99%) exhibit a higher amount of codon bias than expected by chance. The patterns associated with selectively driven codon bias are weakly recovered: Broadly expressed genes have a higher level of bias than do tissue-specific genes, the bias is higher for genes with lower rates of synonymous substitutions, and certain codons are repeatedly preferred. However, while these patterns are suggestive, the first two patterns appear to be methodological artifacts. The last pattern reflects in part biases in usage of nucleotide pairs. We conclude that we find no evidence for selection on codon usage in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号