共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Morgane Kempenaers Martine Roovers Yamina Oudjama Karolina L. Tkaczuk Janusz M. Bujnicki Louis Droogmans 《Nucleic acids research》2010,38(19):6533-6543
Two archaeal tRNA methyltransferases belonging to the SPOUT superfamily and displaying unexpected activities are identified. These enzymes are orthologous to the yeast Trm10p methyltransferase, which catalyses the formation of 1-methylguanosine at position 9 of tRNA. In contrast, the Trm10p orthologue from the crenarchaeon Sulfolobus acidocaldarius forms 1-methyladenosine at the same position. Even more surprisingly, the Trm10p orthologue from the euryarchaeon Thermococcus kodakaraensis methylates the N1-atom of either adenosine or guanosine at position 9 in different tRNAs. This is to our knowledge the first example of a tRNA methyltransferase with a broadened nucleoside recognition capability. The evolution of tRNA methyltransferases methylating the N1 atom of a purine residue is discussed. 相似文献
4.
Occurrence of 1-methyladenosine and absence of ribothymidine in transfer ribonucleic acid of Mycobacterium smegmatis.
下载免费PDF全文

B R Vani T Ramakrishnan Y Taya S Noguchi Z Yamaizumi S Nishimura 《Journal of bacteriology》1979,137(3):1084-1087
The minor base composition of Mycobacterium smegmatis tRNA has been studied. Thin-layer chromatographic patterns of a ribonuclease T2 digest of mycobacterial tRNA indicated the presence of appreciable amounts of 1-methyladenosine (which is commonly present only in eucaryotic tRNA), dihydrouridine, and 7-methylguanosine. Ribothymidine was absent. The S-adenosylmethionine-dependent tRNA methylases of M. smegmatis catalyzed the formation of 1-methyladenosine when Escherichia coli tRNA was used as acceptor. Similarly, E. coli extracts methylated the tRNA of M. smegmatis, forming ribothymidine. 相似文献
5.
Widespread occurrence of bacterial thiol methyltransferases and the biogenic emission of methylated sulfur gases. 总被引:1,自引:4,他引:1
下载免费PDF全文

A majority of heterotrophic bacteria isolated from soil, water, sediment, vegetation, and marine algae cultures methylated sulfide, producing methanethiol. This was demonstrated with intact cells by measuring the emission of methanethiol with a sulfur-selective chemiluminescence detector, and in cell extracts by detection of sulfide-dependent thiol methyltransferase activity. Extracts of two Pseudomonas isolates were fractionated by gel-filtration and ion-exchange chromatography, and with sulfide as the substrate a single peak of thiol methyltransferase activity was seen in each case. Extracts of several bacterial strains also contained thiol methyltransferase activity with organic thiols as substrates. Thus, S-adenosylmethionine-dependent thiol methyltransferase activities are widespread in bacteria and may contribute to biogenic emissions of methylated sulfur gases and to the production of methyl thioethers. 相似文献
6.
7.
Widespread occurrence of bacterial thiol methyltransferases and the biogenic emission of methylated sulfur gases 总被引:1,自引:0,他引:1
A Drotar G A Burton J E Tavernier R Fall 《Applied and environmental microbiology》1987,53(7):1626-1631
A majority of heterotrophic bacteria isolated from soil, water, sediment, vegetation, and marine algae cultures methylated sulfide, producing methanethiol. This was demonstrated with intact cells by measuring the emission of methanethiol with a sulfur-selective chemiluminescence detector, and in cell extracts by detection of sulfide-dependent thiol methyltransferase activity. Extracts of two Pseudomonas isolates were fractionated by gel-filtration and ion-exchange chromatography, and with sulfide as the substrate a single peak of thiol methyltransferase activity was seen in each case. Extracts of several bacterial strains also contained thiol methyltransferase activity with organic thiols as substrates. Thus, S-adenosylmethionine-dependent thiol methyltransferase activities are widespread in bacteria and may contribute to biogenic emissions of methylated sulfur gases and to the production of methyl thioethers. 相似文献
8.
枯芽孢杆菌α—淀粉酶基在在大肠杆菌中的表达及其产物的分泌 总被引:1,自引:0,他引:1
The E. coli which carrying the alpha-amylase gene fragment cloned from B. subtilis secreted the gene products into the medium. The reason is the exogenous gene fragment act on the cell wall of E. coli by some way, gives rise to the change of its structure. It leads up to the alpha-amylase and some periplasm proteins passing through the cell wall into the medium. It also causes the change of host colonial morphology. The secrete process are non-specific. 相似文献
9.
10.
Organization of multispecific DNA methyltransferases encoded by temperate Bacillus subtilis phages. 总被引:21,自引:6,他引:21
下载免费PDF全文

B Behrens M Noyer-Weidner B Pawlek R Lauster T S Balganesh T A Trautner 《The EMBO journal》1987,6(4):1137-1142
B. subtilis phage rho 11s codes for a multispecific DNA methyltransferase (Mtase) which methylates cytosine within the sequences GGCC and GAGCTC. The Mtase gene of rho 11s was isolated and sequenced. It has 1509 bp, corresponding to 503 amino acids (aa). The enzyme's Mr of 57.2 kd predicted from the nucleotide sequence was verified by direct Mr determinations of the Mtase. A comparison of the aa sequence of the rho 11s Mtase with those of related phages SPR and phi 3%, which differ in their methylation potential, revealed generalities in the building plan of such enzymes. At least 70% of the aa of each enzyme are contained in two regions of 243 and 109 aa at the N and C termini respectively, which are highly conserved among the three enzymes. In each enzyme, variable sequences separate the conserved regions. Variability is generated through the single or multiple use of related and unrelated sequence motifs. We propose that the recognition of those DNA target sequences, which are unique for each of the three enzymes, is determined by these variable regions. Evolutionary relationships between the three enzymes are discussed. 相似文献
11.
Expression of Escherichia coli SecB in Bacillus subtilis facilitates secretion of the SecB-dependent maltose-binding protein of E. coli.
下载免费PDF全文

D N Collier 《Journal of bacteriology》1994,176(16):4937-4940
Less than 20% of the Escherichia coli maltose-binding protein (MBP) synthesized in Bacillus subtilis is exported. However, a portion of the secreted MBP was processed cotranslationally. Coexpression of SecB, a secretion-related chaperone of E. coli, stimulated posttranslational export of MBP in B. subtilis but inhibited its cotranslational processing. Export of a SecB-independent MBP-ribose-binding protein hybrid precursor was not enhanced by SecB. A slowly folding MBP derivative (MBP-Y283D) was more efficiently secreted than wild-type MBP, suggesting that the antifolding activity of SecB promotes posttranslational secretion of MBP in B. subtilis. 相似文献
12.
13.
14.
15.
Cloning and characterization of a Bacillus subtilis gene homologous to E. coli secY 总被引:13,自引:0,他引:13
A 3.5-kb HindIII DNA fragment containing the secY gene of Bacillus subtilis has been cloned into plasmid pUC13 using the Escherichia coli secY gene as a probe. The complete nucleotide sequence of the cloned DNA indicated that it contained five open reading frames, and their order in the region, given by the gene product, was suggested to be L30-L15-SecY-Adk-Map by their similarity to the products of the E. coli genes. The region was similar to a part of the spc operon of the E. coli chromosome, although the genes for Adk and Map were not included. The gene product of the B. subtilis secY homologue was composed of 423 amino acids and its molecular weight was calculated to be 46,300. The distribution of hydrophobic amino acids in the gene product suggested that the protein is a membrane integrated protein with ten transmembrane segments. The total deduced amino acid sequence of the B. subtilis SecY homologue shows 41.3% homology with that of E. coli SecY, but remarkably higher homologous regions (more than 80% identity) are present in the four cytoplasmic domains. 相似文献
16.
Summary The leucine genes of Bacillus subtilis have been cloned directly from the chromosomal DNA into Escherichia coli leuB cells by selection for the Leu+ phenotype using RSF2124 as a vector plasmid. The hybrid plasmid designated RSF2124-B·leu contained a 4.2 megadalton fragment derived from B. subtilis DNA, including the leu genes. The fragment had one site susceptible to EcoRI* and another site susceptible to BamNI endonuclease. Among the three fragments produced by EcoRI* and BamNI endonucleases, the 1.2 megadalton fragment had the ability to transform B. subtilis leuA, leuB and leuC auxotrophs to leu
+. However, B. subtilis ilvB and ilvC auxotrophs were not rescued even by the whole 4.2 megadalton fragment present in the hybrid plasmid. -Isopropylmalate dehydrogenase (leuB gene product) activity found in E. coli cells containing the hybrid plasmid was about 60% of that in E. coli wild type cells, despite the high copy number (7.8) of the plasmid per chromosome observed. 相似文献
17.
Calf thymus DNA was methylated in vitro with cell extracts of Bacillus subtilis OG3R (r+m+) and S-adenosyl[Me-3H]methionine. After depurination of the [3H]methylated DNA, the analysis of the pyrimidine dinucleotides revealed the following positions of the methylated nucleosides (indicated by an asterisk) within the BsuRI recognition sequence: 5' dG--dG--dC--dC dC--dC--dG--dG 5'. 相似文献
18.
To study the overall structure of the peptidoglycan fabric of the sacculi of gram-negative and gram-positive walls, actively growing cultures of Escherichia coli and Bacillus subtilis were treated with boiling sodium dodecyl sulfate solutions. The sacculi were then treated with enzymes to eliminate proteins and nucleic acids. These intact saccoli were probed with fluorescein-labeled dextrans with a range of known molecular weights. The penetration of the probes could be monitored by the negative-staining appearance in the fluorescence microscope. At several chosen times, the molecular weight fraction that allowed barely observable entry of the fluorescein-labeled probe and the molecular weight fraction that penetrated to achieve almost, but not quite, the concentration of probe in the solution external to the sacculi were determined. From three pairs of times and molecular weights that met one or the other of these two criteria, the effective pore size could be calculated. The minimum size of protein molecule that could diffuse through the pores was also calculated. Two mathematical models, which gave essentially the same results, were used to interpret the experimental data: one for the permeation of random coils through a surface containing holes and the other for rigid spheres diffusing through water-filled cylindrical pores. The mean estimate of the effective hole radius in walls from E. coli is 2.06 nm, and that of the effective hole size in walls from B. subtilis is 2.12 nm. These results are supported by experiments in which the loss of preloaded cells was monitored. Various fluorescein-labeled dextran samples were mixed with samples of intact cell walls, held for a long time, and then diluted. The efflux of the dextrans was monitored. Neither large nor small dextrans stained under these conditions. Only with dextran samples of a sufficiently small size were the sacculi filled during the preincubation period, and only with the largest of these could the probe not escape quickly. From the pore (or mesh) size, it can be concluded that the wall fabric of both organisms has few imperfections and that the major passageway is through the smallest possible pore, or "tessera," formed by the maximal cross-linking of the peptides from glycan chain to glycan chain compatible with the degree of rotational flexibility of the chains of repeating disaccharides of N-acetyl muramic acid and N-acetyl glucosamine. A tessera is composed of two chains of eight saccharides cross-linked by two octapeptides. The size of a globular hydrophilic molecule, if it did not bind to wall components, that could pass freely through the meshwork of an unstretched sacculus of either organism is roughly 25 kDa. We stress that this is only a rough estimate, and it may be possible for proteins of less than 50 kDa to pass through the native wall during normal growth conditions. 相似文献
19.
20.
Bacillus subtilis anaerobic respiration and fermentative growth capabilities were compared to two other facultative anaerobes, Bacillus licheniformis and Escherichia coli. In glycerol defined medium, B. subtilis grew with nitrate, but not nitrite or fumarate, while B. licheniformis grew with nitrate or fumarate, but not nitrite. Growth of E. coli occurred in glycerol defined medium with either nitrate, nitrite, or fumarate. In order to grow by fermentation, B. subtilis required both glucose and pyruvate, while B. licheniformis and E. coli were capable of using either glucose or pyruvate. 相似文献