首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Callus formation in Ecklonia cava Kjellman (Laminariales,Phaeophyta)   总被引:1,自引:1,他引:0  
Kawashima  Yukio  Tokuda  Hiroshi 《Hydrobiologia》1990,(1):375-380
Explants from stipes and meristems of Ecklonia cava were incubated on six media under several culture conditions. Both stipe and meristem explants developed calluses three to six weeks after inoculation onto all media except AS PC-1. Calluses developed on stipe explants but did not develop on meristem explants at a temperature of 23 °C. Temperatures from 8 to 13 °C were favorable for callus development. Callus development on meristem explants required light but callus development on stipe explants did not.  相似文献   

2.
Callus cultures were established from hypocotyl explants of R. bracteosa, R. chalepensis and R. macrophylla. Calli were maintained for more than three years on MS-medium supplemented with 1 mg l-1 of each 2,4-D and kinetin. Acridone and furoquinoline alkaloids and coumarins have been isolated from four week old calli grown on a hormone containing and hormone-free medium. A new chlorinated acridone alkaloid has been detected.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - MS medium after Murashige & Skoog [6]  相似文献   

3.
Callus cultures were initiated from mature excised caryopses of bahiagrass (Paspalum notatum Flugge) on Murashige & Skoog medium supplemented with 20 gl–1 sucrose and 2 mg l–1 2,4-D. Excised mature caryopses readily germinated and callus developed at the base of coleoptiles. There was considerable variation in the amount of non-embryogenic callus among the cultures. Most of the explants produced non-embryogenic translucent callus consisting of thin-walled cells and unorganized tissue. Some of these calli gave rise only to roots. Other explants formed embryogenic calli which were distinguished morphologically as white, globular and friable. Somatic embryos developed and germinated precociously when embryogenic calli were transferred to a 2,4-D-free medium. Somatic embryogenesis was confirmed by histological sections and scanning electron microscopy. Of the 300 cultures, 35 were embryogenic but only 10 produced plants that were successfully grown to maturity.  相似文献   

4.
An efficient, highly reproducible system for plant regeneration via somatic embryogenesis was developed for Cenchrus ciliaris genotypes IG-3108 and IG-74. Explants such as seeds, shoot tip segments and immature inflorescences were cultured on Murashige and Skoog (MS) medium supplemented with 2.0–5.0 mg dm?3 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg dm?3 N6-benzyladenine (BA) for induction of callus. Callus could be successfully induced from all the three explants of both the genotypes. But the high frequency of embryogenic callus could be induced only from immature inflorescence explants. Somatic embryos were formed from nodular, hard and compact embryogenic calli when 2,4-D concentration was gradually reduced and BA concentration increased. Histological studies of somatic embryos indicated the presence of shoot apical meristem with leaf primordia. Ultrastructural details of globular and scutellar somatic embryos further validated successful induction and progression of somatic embryogenesis. Shoots were differentiated upon germination of somatic embryos on MS medium containing 2,4-D (0.25 mg dm?3) and BA or kinetin (1–5 mg dm?3). Roots were induced on ½ MS medium containing charcoal (0.8 %), and the regenerated plants transferred to pots and established in the soil showed normal growth and fertility.  相似文献   

5.
We tested the organogenetic capacity of floral buds of Mammillaria albicoma Böed. (Cactaceae). Buds were incubated on solid MS medium supplemented with 0.1 mg l?1 α-naphthaleneacetic acid (NAA) and 5.0 mg l?1 6-benzylaminopurine (BA). Callus growth was observed from the cut explant base and from within the perianth. These calli during subsequent subcultures to the same medium gave rise to adventitious shoots. Shoots formed also directly from the perianth, as confirmed by observations in the light microscope and scanning electron microscope (SEM). On transfer to a fresh medium, the shoots produced proliferating cultures. This is the first report of regeneration of cactus shoots from floral explants.  相似文献   

6.
Callus cultures were established from dioecious plant species Rumex acetosella and R. acetosa, using cotyledons, hypocotyls and stem tips of aseptically germinated seedlings as primary explants. Cultures were also established from male and female R. acetosella adult plants, starting from vegetative lateral buds. Cell division was induced using a high 2,4-D concentration, while bud induction and multiplication were stimulated on a medium with high BAP/IAA ratio. Cotyledon fragments of both species produced only rhizogenic calli. Hypocotyl-derived calli of R. acetosella produced buds, while those of R. acetosa showed no bud forming response under these conditions. Bud multiplication occurred in stem tip cultures of both species and in lateral bud cultures of R. acetosella. Calli derived from male plants produced more buds than those from female. Shoots were easily rooted using IBA, and plantlets were effectively transferred to soil. Flowering was not induced in culture. The sex of regenerated male and female plants was not altered by the culture conditions.  相似文献   

7.
The effects of light quality and irradiance, and supply of organic carbon and vitamins on the growth of two forms of Ecklonia radiata in tissue culture were examined. A callus of unpigmented cells developed over the cut surface of newly excised explants of stipe. This growth was best in the dark but stopped after 10 weeks. Pigmented, mainly filamentous clumps of cells developed from explants after several weeks in culture. These required light for growth, with growth being enhanced by increasing photon flux density up to 30 μmol photon m-2 s-1, with the active spectral component being red light (> 600 nm). The addition to the medium of a range of organic carbon sources or vitamins did not stimulate growth of either culture type in the dark. author for correspondence  相似文献   

8.
Using 6 culture media (12, 12D, 12G, 11, A and B) made up of MS medium (Murashige-Skoog, 1962) supplemented or not with glycerine, with different cytokinins, and/or 2,4-D, the morphological characteristics and contents in total carbohydrates, reducing sugars, sucrose and starch were studied in calli induced from explants (cotyledon, petiole, hypocotyl and leaf) obtained from Medicago strasseri seedlings. Callus formation was induced under photoperiod (16h light/8h darkness) conditions or in the absence of light. Considerable variability in the calli was observed, depending on the explants and media used. Under photoperiod conditions, medium A with KIN (1 mg/l) and 2,4-D (3 mg/l) induced many calli with the highest contents in total carbohydrates (886.1–889.3 mg/g DW), sucrose (132.1–188.2 mg/g DW) and starch (125.2–247.6 mg/g DW) and the lowest contents in reducing sugars (118.4–173.3 mg/g DW). In media 11, A and B, under conditions of darkness, calli degenerated at the start of culture. Calli developed in darkness generally had dry weights and total carbohydrate and starch contents lower than those cultured under photoperiod conditions. However, sucrose contents were greater in calli formed in darkness. At these cultures times, differentiation, in the form of organogenesis, was only seen using medium B with cotyledons, petioles and leaves as explants. It was also observed when petioles were cultured in medium A but with a less pronounced organogenic response.  相似文献   

9.
Calli were induced from mature caryopses of timothy grass (Phleum pratense L.) on MS medium (Murashige and Skoog 1962) supplemented with 500 mg·dm−3 casein hydrolysate and 5 mg·dm−3 2,4-D (2,4-dicholorophenoxyacetic acid) or 2 mg·dm−3 dicamba (3,6-dichloro-o-anisic acid). Twelve-week-old calli were passaged on media with reduced levels of auxins (2 mg·dm−3 2,4-D or 1 mg·dm−3 dicamba). Tissues induced on medium with 2,4-D were transferred on medium with 2,4-D and on medium with dicamba; parallely calli initiated on medium with dicamba were passaged on medium with 2,4-D or dicamba. Calli from various media sequences were used to establish cell suspension cultures in media containing 2 mg·dm−3 2,4-D or 1 mg·dm−3 dicamba. An assessment of regeneration ability of calli was made on MS medium containing 0.2 mg·dm−3 kinetin. Callus tissue induced and/or subcultured on any of the media with 2,4-D did not regenerate plants while dicamba added to the media was the effective stimulator of regenerability. In the presence of 2,4-D calli and suspensions produced a jelly-like extracellular matrix. In cell suspension this phenomenon was observed 4–5 days after each passage. The measurements of electric potential of calli, growing on MS medium with kinetin were performed. Non-regenerating callus areas had an electric potential close to 0 mV while parts of tissue with meristematic centres were characterized by lower values of electric potential.  相似文献   

10.
Callus and plant regenertion were induced from shoot portions of mature embryos (dry seeds) of five high tannin Sorghum bicolor (L.) Moench cultivars. The explants were cultured on Murashige and Skoog medium with altered concentrations of 5 salts, supplemented with 150 mg/L L-asparagine, 5mg/L 2,4-Dichlorophenoxyacetic acid and 0.05mg/L kinetin. Calli which were yellow and globular were formed with 70–90% frequencies. The subculture medium which gave best results was MS with 2mg/L 2,4-Dichlorophenoxyacetic acid and 0.5mg/L kinetin. Plants were regenerated on MS medium supplemented with 150mg/L L-asparagine and 0.2mg/L kinetin with regeneration frequencies of 11–48%.Abbreviations 2,4-D dichlorophenoxyacetic acid  相似文献   

11.
Micropropagated plants of two annual haloxerophytic Asiatic Salsola species (S. pestifer and S. lanata) were obtained from zygotic embryos cultured on Murashige and Skoog (MS) agar medium supplemented with 0.5 μM benzylamino-purine (BAP) and 0.3 μM indole-3-acetic acid (IAA) or with 0.5 μM 6 γ, γ-dimethylallylaminopurine and 0.3 μM IAA. The callus induction from shoot and leaf explants derived from plants propagated in vitro were obtained on MS agar medium with various concentration of auxins and cytokinins. The best medium for growth and proliferation of calluses of both studied species was MS medium containing 9.0 μM 2,4-dichlorophenoxyacetic acid. It was also determined that beginning of plant regeneration from callus of S. lanata was induced by 8.8 μM BAP. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
An efficient in vitro plant regeneration protocol through somatic embryogenesis and direct shoot organogenesis has been developed for pearl millet (Pennisetum glaucum). Efficient plant regeneration is a prerequisite for a complete genetic transformation protocol. Shoot tips, immature inflorescences, and seeds of two genotypes (843B and 7042-DMR) of pearl millet formed callus when cultured on Murashige and Skoog (MS) medium supplemented with varying levels of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9, 13.5, and 18 μM). The level of 2,4-D, the type of explant, and the genotype significantly effected callus induction. Calli from each of the three explant types developed somatic embryos on MS medium containing 2.22 μM 6-benzyladenine (BA) and either 1.13, 2.25, or 4.5 μM of 2,4-D. Somatic embryos developed from all three explants and generated shoots on MS medium containing high levels of BA (4.4, 8.8, or 13.2 μM) combined with 0.56 μM 2,4-D. The calli from the immature inflorescences exhibited the highest percentage of somatic embryogenesis and shoot regeneration. Moreover, these calli yielded the maximum number of differentiated shoots per callus. An efficient and direct shoot organogenesis protocol, without a visible, intervening callus stage, was successfully developed from shoot tip explants of both genotypes of pearl millet. Multiple shoots were induced on MS medium containing either BA or kinetin (4.4, 8.8, 17.6, or 26.4 μM). The number of shoots formed per shoot tip was significantly influenced by the level of cytokinin (BA/kinetin) and genotype. Maximum rooting was induced in 1/2 strength MS with 0.8% activated charcoal. The regenerated plants were transferred to soil in pots, where they exhibited normal growth.  相似文献   

13.
Callus cultures were established from seedling explants of Pergularia daemia (Forsk) Chiov on Murashige and Skoog (MS) medium supplemented with different concentrations of auxins. Optimal callus developed from leaf explants on MS medium supplemented with 2,4-D (2 mg l?1) + 2iP (0.1 mg l?1), was used for morphogenesis. Adventitious shoots were regenerated (70%) from the calli on MS medium supplemented with NAA (0.1 mg l?1)+ BAP (2 mg l?1). Individual shoots were rooted on half strength MS medium supplemented with 0.1 mg l?1 IBA. Plantlets with well developed roots were successfully transferred to soil and 50% of the transferred plants survived.  相似文献   

14.
This report deals with micropropagation of the critically endangered and endemic Turkish shrub, Thermopsis turcica using callus, root and cotyledonary explants. Callus cultures were initiated from root and cotyledon explants on MS medium supplemented with 0.5–20 μM NAA or 2,4-D. The root explants were found to be better in terms of quick responding and callusing percentages as compared to the cotyledons. Organogenic callus production with adventitious roots and shoots were obtained on MS medium with only NAA. The calli obtained with NAA, root and cotyledonary explants were cultured with BA and kinetin (2–8 μM) alone or in combination with a low level (0.5 μM) of 2,4-D or NAA. The best regeneration of shoots from root explants was observed on hormone-free MS medium. NAA with BA or kinetin in the medium improved shoot induction from the calli obtained with NAA. Maximum percentage of shoots (93.3%), maximum number of shoots (6.2) and maximun length of shoots (8.22 cm) were achieved from cotyledonary explants at 4 μM BA and 0.5 μM NAA. The presence of 0.5 μM or higher levels of 2,4-D in shoot induction medium inhibited the regeneration in T. turcica explants. 83% of in vitro rooting was attained on pulsed-IBA treated shoots. The regenerated plants with well developed shoots and roots were successfully acclimatized. Application of this study’s results has the potential to conserve T. turcica from extinction.  相似文献   

15.
《Plant science》1988,54(1):65-74
Olive tree (Olea europaea L) plantlets were regenerated from cotyledon segment calli on a modified olive medium (OMc) supplemented with 2iP alone or in combination with indol-3-butyric acid (IBA). Cell division in the explants was initially induced on OMc medium with high auxin (5 mg·l−1 of IBA) and low cytokinin (0.2–0.5 mg·l−1 of 2-isopentenyladenine (2iP) or zeatin riboside) content. Calli were then transferred to the same medium with different levels of IBA and/or 2iP in order to promote further development and obtain calli bearing either roots or shoots. On OMc medium, 1 mg·l−1 of IBA induced the maximum of rooting, while shoot induction was greater when the medium was supplemented with 4 mg·l−1 of 2iP. Shoot induction mainly occurred from calli of cotyledon fragments proximal to the embryo axes. Whole plantlets were obtained when the regenerated shoots were stimulated to produce adventitious roots on OMr medium with 1 mg·l−1 of IBA or naphthaleneacetic acid (NAA). After root elongation on OMe medium without auxin, plantlets were transfered to peat and soil conditions where about 75–80% were able to survive. A certain variability was detected between regenerated olive plants.  相似文献   

16.
Callus induction and plant regeneration from maize mature embryos   总被引:7,自引:0,他引:7  
Calli were induced from mature embryos of maize (Zea mays L.) inbred lines A632, B73 and Mol7 on MS medium supplemented with 1–2 mg/1 2,4-dichlorophenoxyacetic acid. Callus induction frequency ranged from 23–100%, with Mol7 having the highest frequency. Plants were regenerated from 4–5% of the B73 and Mol7 explants. Embryogenic and organogenic calli of B73 were maintained for more than two and one half years without losing regenerability. Of 95 regenerated plants, only one R0 plant with abnormal pollen was detected, and no morphological variants were observed in the R1 progeny.Abbreviations Dicamba 3,6-Dichloro-o-anisic acid - IAA 3-indoleacetic acid - NAA 1-naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - Ze zeatin  相似文献   

17.
Zinc tolerant and non-tolerant ecotypes of Silene vulgaris (Moench) Garcke were examined for their suitability to provide an efficient and reproducible callus formation and regeneration system. Successful and rapid regeneration of adventitious shoots from callus was achieved in leaf tissue but not root or apical meristematic tissue using concentrations of plant growth regulators that spanned a concentration range of (0.05–1 mg l–1) NAA and (0.5–10 mg l–1) BAP respectively. Large differences were observed between ecotypes regarding both callus formation and shoot regeneration on the different hormone concentrations. Leaf explants incubated on basal media with different concentrations of auxin/cytokinin demonstrated initial callus formation after 3 weeks of incubation. Callus initiation was seen to develop from the wounded margins of the leaf explants and, after 2 weeks the initially dark callus became more swollen and green. A mean of 6–8 shoots per leaf explant was observed and the survival rate of these regenerates was seen to be 90%. All regenerated plants that were transferred to soil after the emergence of roots, were seen to have no disturbed morphological characteristics. This study demonstrates the stability of the zinc tolerance traits in the regenerated explants and the potential use of this calli formation and regeneration system in Silene vulgaris. Further, this study is a necessary pre-requite for the development of a genetic transformation system with which to study the genetic basis of zinc and, other heavy metal tolerances in a species with a naturally selected high-level tolerance.  相似文献   

18.
Plants were regenerated from root explants of Arabidopsis halleri (L.) O’Kane and Al-Shehbaz via a three-step procedure callus induction, induction of somatic embryos and shoot development. Callus was induced from root segments, leaflets and petiole segments after incubation for 2 weeks in Murashige and Skoog medium (MS) supplemented with 0.5 mg/l−1 (2.26 μM) 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.05 mg/l−1 (0.23 μM) kinetin. Only calli developed from root segments continued to grow when transferred to a regeneration medium containing 2.0 mg/l−1 (9.8 μM) 6-γ-γ-(dimethylallylamino)-purine (2ip) and 0.05 mg/l−1 (2.68 μM) α-naphthalenacetic acid (NAA) and eventually 40 of them developed embryogenic structures. On the same medium 38 of these calli regenerated shoots. Rooting was achieved for 50 of the shoots subcultured in MS medium without hormones. The regeneration ability of callus derived from root cuttings, observed in this study, makes this technique useful for genetic transformation experiments and in vitro culture studies.  相似文献   

19.
Fertile regenerated plants were obtained from protoplasts via somatic embryogenesis in Coker 201 (Gossypium hirsutum L.). Protoplasts were isolated from six different explantsleaves, hypocotyls, young roots, embryogenic callus, immature somatic embryos and suspension cultures and cultured in liquid thin layer KM8P medium. Callus-forming percentage of 20–50% was obtained in protoplast cultures from embryogenic callus, immature embryos and suspension cultures, and visible callus formed within 2 months. Callus-forming percentage of 5–20% in protoplast cultures from young roots, hypocotyls and leaves, and visible callus formed in 3 months. NAA 5.371 μM/kinetin 0.929 μM was effective to stimulate protoplast division and callus formation from six explants. Percentage of callus formation in the medium with 2,4-D 0.452 μM/kinetin 0.465 μM was over 40% from suspension cultures and immature embryos, 25% from embryogenic callus and 10% from hypocotyls. Callus from protoplasts developed into plantlets via somatic embryogenesis. Over 100 plantlets were obtained from protoplasts derived from 6 explants. Ten plants have been transferred to the soil, where they all have set seeds.  相似文献   

20.
The in vitro studies with Cardiospermum halicacabum indicated that the different explants, i.e cotyledon, hypocotyl, cotyledonary node, leaf, internode and node had the potential to produce calli on Murashige and Skoog (MS) medium supplemented with benzylaminopurine (BAP) and napthalene acetic acid (NAA). Calli of different explant origin showed variable growth responses on different BAP concentrations. The shoots were favourably formed from the calli of leaf and cotyledon explants. The maximum number of shoots were produced from calli subcultured on MS + BAP (17.8 µM). The roots were initiated on growth regulator free MS medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号